metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1203-m1204

Poly[[tetra­aqua­(μ6-2,2′-di­iodo­bi­phenyl-4,4′,5,5′-tetra­carboxyl­ato)dizinc(II)] dihydrate]

aApplied Chemistry Department, School of Material Science & Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, People's Republic of China
*Correspondence e-mail: yz_shen@nuaa.edu.cn

(Received 23 June 2008; accepted 18 August 2008; online 30 August 2008)

In the title compound, {[Zn2(C16H4I2O8)(H2O)4]·2H2O}n, two crystallographically independent ZnII atoms are each located on a twofold rotation axis. Both ZnII atoms are in distorted octa­hedral coordination geometries: one is coordinated by six O atoms from four carboxyl­ate groups, while the other is coordinated by two carboxyl­ate groups and four water mol­ecules. The tetra­carboxyl­ate ligand mol­ecules connect the ZnII atoms, completing a three-dimensional metal–organic framework. O—H⋯O hydrogen bonds link the metal–organic framework with the uncoord­inated water mol­ecules.

Related literature

For related literature, see: Beringer et al. (1953[Beringer, F. M., Drexler, M., Gindler, E. M. & Lumpkin, C. C. (1953). J. Am. Chem. Soc. 75, 2705-2708.]); Cordes et al. (2006[Cordes, D. B., Hanton, L. R. & Spicer, M. D. (2006). Inorg. Chem. 45, 7651-7664.]); Garay et al. (2007[Garay, A. L., Pichon, A. & James, S. L. (2007). Chem. Soc. Rev. 36, 846-855.]); Noro et al. (2007[Noro, S., Akutagawa, T. & Nakamura, T. (2007). Cryst. Growth Des. 7, 1205-1208.]); Qiu et al. (2007[Qiu, Z.-M., Chen, G., Zhang, Q.-Y. & Zhang, S.-B. (2007). Eur. Polym. J. 43, 194-204.]); Wang et al. (2007[Wang, J.-J., Gou, L., Hu, H.-M., Han, Z.-X., Li, D.-S., Xue, G.-L., Yang, M.-L. & Shi, Q.-Z. (2007). Cryst. Growth Des. 7, 1514-1521.]); Weng et al. (2007[Weng, D.-F., Zheng, X.-J., Li, L.-C., Yang, W.-W. & Jin, L.-P. (2007). Dalton Trans. pp. 4822-4828.]); Williams et al. (2005[Williams, C. A., Blake, A. J., Hubberstey, P. & Schroder, M. (2005). Chem. Commun. pp. 5435-5437.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C16H4I2O8)(H2O)4]·2H2O

  • Mr = 816.83

  • Monoclinic, C 2

  • a = 10.9466 (16) Å

  • b = 9.8135 (14) Å

  • c = 11.3913 (17) Å

  • β = 100.187 (3)°

  • V = 1204.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.62 mm−1

  • T = 295 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.20, Tmax = 0.39

  • 3279 measured reflections

  • 2126 independent reflections

  • 1767 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.088

  • S = 0.97

  • 2126 reflections

  • 155 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.07 e Å−3

  • Δρmin = −1.01 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 870 Friedel pairs

  • Flack parameter: 0.00 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3i 0.85 2.35 3.074 (9) 144
O5—H5A⋯O1ii 0.85 2.30 2.967 (9) 136
O5—H5B⋯O7iii 0.85 1.97 2.807 (15) 169
O6—H6A⋯O3iv 0.85 2.01 2.772 (10) 148
O6—H6B⋯O7 0.85 2.50 3.113 (16) 129
O7—H7B⋯O4 0.85 2.23 2.910 (16) 137
Symmetry codes: (i) -x, y, -z+1; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Interest in the self-assembled construction of coordination polymers is rapidly increasing not only owing to their potential applications in gas storage, ion-exchange, catalysis, electrical conductivity, nonlinear optics and magnetism, but also because of their fascinating diversified architectures and topologies (Cordes et al., 2006; Garay et al., 2007). Multicarboxylate ligands, such as 1,4-benzenedicarboxylate (Williams et al., 2005), 1,3,5-benzenetricarboxylate (Noro et al., 2007) and biphenyl-3,3',4,4'-tetracarboxylate (Weng et al., 2007), have been extensively employed in the construction of novel metal-organic complexes with multidimensional networks and interesting properties. In view of the excellent coordination capability of multicarboxylate anions and the solubility of diaryliodonium salts, we employed 2,2'-diiodobiphenyl-4,4',5,5'-tetracarboxylic acid (H4L), as an organic building unit to generate three dimensional metal-organic framework. In this paper, we describe the synthesis of a novel zinc(II) complexes, namely, [Zn2(L)(H2O)4.2H2O]n, by reaction of Zn(NO3)2.6H2O and H4L via hydrothermal method, which was characterized by IR, elemental analysis and X-ray single-crystal analysis. To the best of our knowledge, transition metal coordination polymers based on diiodobiphenyl tetracarboxylate has never been reported before. This work may provide useful information for the further design of metal-organic frameworks with interesting architectures using diiodobiphenyl tetracarboxylate as versatile multidentate ligands.

The title complex crystallizes in the monoclinic system, space group C2, with two crystallographically independent ZnII atoms each located on a twofold axis. As shown in Fig. 1, both ZnII atoms are in distorted octahedral configurations and are connected by carboxylate groups. The Zn1 center is coordinated by four carboxylate groups, that is, 4(4')-COO- from two different L4- ligands in a monodentate fashion (O1 and O1ii) and 5(5')-COO- from other two L4- ligands in a bischelating fashion (O3i, O4i, O3iii and O4iii). In contrast, the Zn2 center is coordinated by four O atoms of water (O5, O6, O5ii and O6ii) and two carboxylate groups: 4(4')-COO- from two different L4- ligands in a monodentate fashion (O2 and O2ii). The Zn–O bond lengths fall in the range of 1.953 (6)–2.368 (7) Å, similar to those in other zinc-tetracarboxylate coordination polymers (Wang et al., 2007). Hence, the L4- ligand acts as a octadentate ligand, linking six different ZnII atoms to form a three-dimensional metal–organic framework (Fig. 2); the 5,5'-carboxyl groups adopt a bidentate bridging mode, while the 4,4'-carboxyl groups exhibit a bis(monodentate) bridging mode. Within the L4- ligand, the two phenyl rings are almost perpendicular to each other with the dihedral angle of 88.6 (1)°, and the dihedral angles between 4,5(4',5')-carboxylate groups and the plane of correspondingly linked phenyl rings are respectively 72.0 (1) and 27.3 (1)°.

There are various O—H···O hydrogen bonds associated with the coordinated water molecules, uncoordinated water molecules and carboxylate O atoms in the title complex, linking the metal-organic framework with the uncoordinated water molecules.

Related literature top

For related literature, see: Beringer et al. (1953); Cordes et al. (2006); Garay et al. (2007); Noro et al. (2007); Qiu et al. (2007); Wang et al. (2007); Weng et al. (2007); Williams et al. (2005).

Experimental top

All chemicals were of analytical grade and used without further purification. According to the reported procedure (Beringer et al., 1953; Qiu et al., 2007), H4L was prepared by iodine substitution of the N-methyl protected 3,3',4,4'-biphenyltetracarboxylicdianhydride, hydrolysis by 3M KOH and acidification by 6.5 M HCl to pH 1.0. The hydrothermal reaction was performed in a 25 ml Teflon-lined stainless steel autoclave under autogenous pressure. An solution of H4L (58 mg, 0.1 mmol), Zn(NO3)2.6H2O (59 mg, 0.2 mmol), 2 ml EtOH and 8 ml H2O was adjusted to pH 7 with 1 M NaOH solution and then heated at 140 °C for 3 days. After the sample was cooled slowly to room temperature, colourless crystals were obtained and air-dried by filtration ca 60% yield based on Zn. Anal. calcd for C8H8O7IZn: C 23.53, H 1.97%; Found: C 23.48, H 2.02%. IR (KBr discs, νmax/cm-1): 3379(vs), 1599(s), 1562(s), 1539(s), 1472(w), 1401(vs), 1318(w), 1254(m), 1163(w), 1098(m), 953(w), 915(w), 873(m), 846(m), 802(m), 678(w), 605(w), 543(w).

Refinement top

O-bound H atoms were located in a difference Fourier map and then constrained to ride on their parent atoms, with O—H = 0.85 Å and with Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically (C—H = 0.93 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The highest peak and the deepest hole are 0.34 and 0.97 Å, respectively, from I1.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title complex, depicting the ZnII coordination environment. Displacement ellipsoids are drawn at the 30% probability level. The solvent water molecules and H atoms have been omitted for clarity [symmetry codes: (i) -x + 1/2, y - 1/2, -z + 1; (ii) -x, y, -z + 1; (iii) x - 1/2, y - 1/2, z].
[Figure 2] Fig. 2. Packing diagram of the title complex viewed along the a axis, showing a three-dimensional metal-organic framework. The dashed lines indicate hydrogen bonds.
Poly[[tetraaqua(µ6-2,2'-diiodobiphenyl-4,4',5,5'-tetracarboxylato)dizinc(II)] dihydrate] top
Crystal data top
[Zn2(C16H4I2O8)(H2O)4]·2H2OF(000) = 780
Mr = 816.83Dx = 2.252 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71069 Å
Hall symbol: C 2yCell parameters from 762 reflections
a = 10.9466 (16) Åθ = 2.8–18.3°
b = 9.8135 (14) ŵ = 4.62 mm1
c = 11.3913 (17) ÅT = 295 K
β = 100.187 (3)°Block, colourless
V = 1204.4 (3) Å30.40 × 0.30 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2126 independent reflections
Radiation source: fine-focus sealed tube1767 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 26.0°, θmin = 2.8°
Absorption correction: numerical
(SADABS; Bruker, 2000)
h = 913
Tmin = 0.20, Tmax = 0.39k = 1112
3279 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0207P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
2126 reflectionsΔρmax = 1.07 e Å3
155 parametersΔρmin = 1.01 e Å3
1 restraintAbsolute structure: Flack (1983), 870 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (4)
Crystal data top
[Zn2(C16H4I2O8)(H2O)4]·2H2OV = 1204.4 (3) Å3
Mr = 816.83Z = 2
Monoclinic, C2Mo Kα radiation
a = 10.9466 (16) ŵ = 4.62 mm1
b = 9.8135 (14) ÅT = 295 K
c = 11.3913 (17) Å0.40 × 0.30 × 0.20 mm
β = 100.187 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2126 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2000)
1767 reflections with I > 2σ(I)
Tmin = 0.20, Tmax = 0.39Rint = 0.040
3279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.088Δρmax = 1.07 e Å3
S = 0.98Δρmin = 1.01 e Å3
2126 reflectionsAbsolute structure: Flack (1983), 870 Friedel pairs
155 parametersAbsolute structure parameter: 0.00 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.31728 (8)0.46912 (8)1.05780 (7)0.0770 (3)
Zn10.00000.52673 (14)0.50000.0296 (4)
Zn20.00000.94976 (18)0.50000.0373 (4)
O10.1541 (6)0.6253 (7)0.5567 (6)0.0404 (17)
O20.1099 (7)0.8284 (7)0.6272 (6)0.0399 (18)
O30.3711 (6)0.8475 (7)0.5451 (6)0.0454 (19)
O40.4839 (6)0.9757 (8)0.6747 (6)0.0543 (19)
O50.1277 (5)0.9419 (7)0.6112 (5)0.0454 (18)
H5A0.20290.95180.57870.054*
H5B0.12540.87430.65770.054*
O60.1005 (8)1.1179 (7)0.5892 (7)0.057 (2)
H6A0.12321.19820.57460.068*
H6B0.15381.09200.64880.068*
O70.3492 (12)1.2077 (15)0.7470 (11)0.116 (4)
H7A0.33461.23670.81450.139*
H7B0.40101.14310.76700.139*
C10.1734 (8)0.7220 (12)0.6301 (8)0.032 (2)
C20.4137 (9)0.8752 (11)0.6505 (9)0.038 (3)
C30.3828 (10)0.7879 (9)0.7465 (9)0.030 (2)
C40.2774 (9)0.7090 (10)0.7331 (8)0.027 (2)
C50.2594 (9)0.6187 (9)0.8224 (9)0.036 (2)
H50.18810.56520.81240.043*
C60.3468 (9)0.6073 (9)0.9266 (8)0.033 (2)
C70.4536 (8)0.6899 (9)0.9425 (7)0.028 (2)
C80.4700 (9)0.7767 (9)0.8536 (9)0.031 (2)
H80.54110.83050.86360.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0650 (6)0.0980 (7)0.0621 (5)0.0337 (6)0.0053 (4)0.0436 (5)
Zn10.0288 (9)0.0325 (9)0.0269 (8)0.0000.0029 (7)0.000
Zn20.0294 (8)0.0396 (10)0.0414 (9)0.0000.0021 (7)0.000
O10.030 (4)0.042 (4)0.047 (5)0.000 (4)0.000 (3)0.011 (3)
O20.037 (4)0.049 (5)0.032 (4)0.015 (4)0.001 (3)0.001 (3)
O30.049 (5)0.050 (5)0.040 (4)0.009 (4)0.015 (4)0.004 (4)
O40.041 (4)0.054 (5)0.062 (5)0.014 (4)0.006 (3)0.032 (4)
O50.027 (3)0.057 (5)0.053 (4)0.012 (4)0.009 (3)0.009 (4)
O60.079 (6)0.035 (4)0.048 (5)0.012 (4)0.010 (4)0.010 (3)
O70.118 (10)0.116 (9)0.124 (10)0.014 (8)0.049 (8)0.031 (8)
C10.028 (5)0.039 (6)0.029 (5)0.006 (5)0.008 (4)0.009 (5)
C20.027 (6)0.041 (7)0.043 (7)0.004 (5)0.003 (5)0.008 (5)
C30.035 (6)0.021 (5)0.033 (6)0.005 (4)0.006 (5)0.002 (4)
C40.035 (6)0.029 (5)0.017 (5)0.006 (5)0.000 (4)0.008 (4)
C50.026 (6)0.035 (6)0.047 (7)0.004 (5)0.009 (5)0.001 (5)
C60.039 (6)0.028 (5)0.028 (6)0.007 (5)0.002 (5)0.003 (4)
C70.023 (5)0.042 (6)0.022 (5)0.007 (4)0.007 (4)0.006 (4)
C80.021 (5)0.030 (6)0.043 (6)0.008 (4)0.006 (5)0.001 (4)
Geometric parameters (Å, º) top
I1—C62.085 (9)O5—H5A0.85
Zn1—O11.953 (6)O5—H5B0.85
Zn1—O1i1.953 (6)O6—H6A0.85
Zn1—O4ii2.090 (6)O6—H6B0.85
Zn1—O4iii2.090 (6)O7—H7A0.85
Zn1—O3iii2.368 (7)O7—H7B0.85
Zn1—O3ii2.368 (7)C1—C41.488 (12)
Zn2—O52.047 (5)C2—C31.475 (13)
Zn2—O5i2.047 (5)C3—C41.375 (13)
Zn2—O2i2.085 (7)C3—C81.415 (14)
Zn2—O22.085 (7)C4—C51.389 (12)
Zn2—O62.138 (8)C5—C61.391 (13)
Zn2—O6i2.138 (7)C5—H50.9300
O1—C11.258 (12)C6—C71.408 (12)
O2—C11.251 (12)C7—C81.359 (12)
O3—C21.239 (11)C7—C7iv1.509 (17)
O4—C21.251 (11)C8—H80.9300
O1—Zn1—O1i120.6 (4)C1—O2—Zn2138.1 (6)
O1—Zn1—O4ii102.7 (3)C2—O3—Zn1v84.9 (6)
O1i—Zn1—O4ii91.0 (3)C2—O4—Zn1v97.5 (6)
O1—Zn1—O4iii91.0 (3)H5A—O5—H5B106.00
O1i—Zn1—O4iii102.7 (3)H6A—O6—H6B104.00
O4ii—Zn1—O4iii152.3 (5)H7A—O7—H7B103.00
O1—Zn1—O3iii144.0 (3)O2—C1—O1125.7 (9)
O1i—Zn1—O3iii85.8 (2)O2—C1—C4115.9 (9)
O4ii—Zn1—O3iii100.5 (3)O1—C1—C4118.3 (10)
O4iii—Zn1—O3iii57.4 (3)O3—C2—O4119.9 (10)
O1—Zn1—O3ii85.8 (2)O3—C2—C3119.6 (9)
O1i—Zn1—O3ii144.0 (3)O4—C2—C3120.5 (9)
O4ii—Zn1—O3ii57.4 (3)C4—C3—C8118.5 (8)
O4iii—Zn1—O3ii100.5 (3)C4—C3—C2122.9 (9)
O3iii—Zn1—O3ii84.1 (3)C8—C3—C2118.4 (9)
O5—Zn2—O5i175.7 (4)C3—C4—C5120.2 (9)
O5—Zn2—O2i92.0 (3)C3—C4—C1123.3 (8)
O5i—Zn2—O2i85.5 (3)C5—C4—C1116.3 (9)
O5—Zn2—O285.5 (3)C4—C5—C6120.7 (9)
O5i—Zn2—O292.0 (3)C4—C5—H5120
O2i—Zn2—O2110.3 (4)C6—C5—H5120
O5—Zn2—O694.9 (3)C5—C6—C7119.6 (9)
O5i—Zn2—O688.4 (3)C5—C6—I1119.6 (7)
O2i—Zn2—O6163.0 (3)C7—C6—I1120.8 (7)
O2—Zn2—O685.7 (3)C8—C7—C6118.8 (9)
O5—Zn2—O6i88.4 (3)C8—C7—C7iv119.3 (9)
O5i—Zn2—O6i94.9 (3)C6—C7—C7iv121.9 (8)
O2i—Zn2—O6i85.7 (3)C7—C8—C3122.2 (9)
O2—Zn2—O6i163.0 (3)C7—C8—H8119
O6—Zn2—O6i79.0 (4)C3—C8—H8119
C1—O1—Zn1128.9 (6)
O1i—Zn1—O1—C149.0 (8)O3—C2—C3—C8150.4 (9)
O4ii—Zn1—O1—C1147.9 (8)O4—C2—C3—C828.7 (14)
O4iii—Zn1—O1—C156.4 (9)C8—C3—C4—C51.3 (16)
O3iii—Zn1—O1—C183.0 (9)C2—C3—C4—C5173.6 (8)
O3ii—Zn1—O1—C1156.9 (8)C8—C3—C4—C1173.6 (9)
C2iii—Zn1—O1—C167.9 (9)C2—C3—C4—C111.5 (17)
C2ii—Zn1—O1—C1176.4 (8)O2—C1—C4—C370.1 (13)
O5—Zn2—O2—C1132.2 (10)O1—C1—C4—C3112.1 (12)
O5i—Zn2—O2—C144.3 (10)O2—C1—C4—C5105.0 (11)
O2i—Zn2—O2—C141.7 (9)O1—C1—C4—C572.8 (12)
O6—Zn2—O2—C1132.6 (11)C3—C4—C5—C60.4 (15)
O6i—Zn2—O2—C1158.2 (10)C1—C4—C5—C6174.8 (9)
Zn2—O2—C1—O128.8 (16)C4—C5—C6—C71.1 (14)
Zn2—O2—C1—C4153.7 (7)C4—C5—C6—I1179.4 (7)
Zn1—O1—C1—O250.1 (14)C5—C6—C7—C81.7 (13)
Zn1—O1—C1—C4127.4 (8)I1—C6—C7—C8178.8 (6)
Zn1v—O3—C2—O45.3 (9)C5—C6—C7—C7iv175.1 (8)
Zn1v—O3—C2—C3173.8 (9)I1—C6—C7—C7iv4.4 (11)
Zn1v—O4—C2—O36.1 (10)C6—C7—C8—C30.8 (13)
Zn1v—O4—C2—C3173.0 (8)C7iv—C7—C8—C3176.1 (9)
O3—C2—C3—C424.4 (15)C4—C3—C8—C70.7 (16)
O4—C2—C3—C4156.5 (10)C2—C3—C8—C7174.4 (8)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y1/2, z+1; (iii) x1/2, y1/2, z; (iv) x+1, y, z+2; (v) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.852.353.074 (9)144
O5—H5A···O1vi0.852.302.967 (9)136
O5—H5B···O7iii0.851.972.807 (15)169
O6—H6A···O3vii0.852.012.772 (10)148
O6—H6B···O70.852.503.113 (16)129
O7—H7B···O40.852.232.910 (16)137
Symmetry codes: (i) x, y, z+1; (iii) x1/2, y1/2, z; (vi) x1/2, y+1/2, z; (vii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Zn2(C16H4I2O8)(H2O)4]·2H2O
Mr816.83
Crystal system, space groupMonoclinic, C2
Temperature (K)295
a, b, c (Å)10.9466 (16), 9.8135 (14), 11.3913 (17)
β (°) 100.187 (3)
V3)1204.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)4.62
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionNumerical
(SADABS; Bruker, 2000)
Tmin, Tmax0.20, 0.39
No. of measured, independent and
observed [I > 2σ(I)] reflections
3279, 2126, 1767
Rint0.040
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.088, 0.98
No. of reflections2126
No. of parameters155
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 1.01
Absolute structureFlack (1983), 870 Friedel pairs
Absolute structure parameter0.00 (4)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.852.353.074 (9)144
O5—H5A···O1ii0.852.302.967 (9)136
O5—H5B···O7iii0.851.972.807 (15)169
O6—H6A···O3iv0.852.012.772 (10)148
O6—H6B···O70.852.503.113 (16)129
O7—H7B···O40.852.232.910 (16)137
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+1/2, z; (iii) x1/2, y1/2, z; (iv) x+1/2, y+1/2, z+1.
 

Acknowledgements

We gratefully acknowledge the National 863 Research Project (2006 A A03Z219), the Natural Science Foundation of Jiangsu Province (BK2007199), the `Liu Da Ren Cai' Foundation of Jiangsu Province (06-E-021), the State Postdoctoral Foundation of China (No. 2006040932) and the Postdoctoral Foundation of Jiangsu Province (No. 0602008B).

References

First citationBeringer, F. M., Drexler, M., Gindler, E. M. & Lumpkin, C. C. (1953). J. Am. Chem. Soc. 75, 2705–2708.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordes, D. B., Hanton, L. R. & Spicer, M. D. (2006). Inorg. Chem. 45, 7651–7664.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGaray, A. L., Pichon, A. & James, S. L. (2007). Chem. Soc. Rev. 36, 846–855.  CrossRef PubMed CAS Google Scholar
First citationNoro, S., Akutagawa, T. & Nakamura, T. (2007). Cryst. Growth Des. 7, 1205–1208.  Web of Science CSD CrossRef CAS Google Scholar
First citationQiu, Z.-M., Chen, G., Zhang, Q.-Y. & Zhang, S.-B. (2007). Eur. Polym. J. 43, 194–204.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-J., Gou, L., Hu, H.-M., Han, Z.-X., Li, D.-S., Xue, G.-L., Yang, M.-L. & Shi, Q.-Z. (2007). Cryst. Growth Des. 7, 1514–1521.  Web of Science CSD CrossRef CAS Google Scholar
First citationWeng, D.-F., Zheng, X.-J., Li, L.-C., Yang, W.-W. & Jin, L.-P. (2007). Dalton Trans. pp. 4822–4828.  Web of Science CSD CrossRef Google Scholar
First citationWilliams, C. A., Blake, A. J., Hubberstey, P. & Schroder, M. (2005). Chem. Commun. pp. 5435–5437.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1203-m1204
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds