metal-organic compounds
Poly[[tetraaqua(μ6-2,2′-diiodobiphenyl-4,4′,5,5′-tetracarboxylato)dizinc(II)] dihydrate]
aApplied Chemistry Department, School of Material Science & Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, People's Republic of China
*Correspondence e-mail: yz_shen@nuaa.edu.cn
In the title compound, {[Zn2(C16H4I2O8)(H2O)4]·2H2O}n, two crystallographically independent ZnII atoms are each located on a twofold rotation axis. Both ZnII atoms are in distorted octahedral coordination geometries: one is coordinated by six O atoms from four carboxylate groups, while the other is coordinated by two carboxylate groups and four water molecules. The tetracarboxylate ligand molecules connect the ZnII atoms, completing a three-dimensional metal–organic framework. O—H⋯O hydrogen bonds link the metal–organic framework with the uncoordinated water molecules.
Related literature
For related literature, see: Beringer et al. (1953); Cordes et al. (2006); Garay et al. (2007); Noro et al. (2007); Qiu et al. (2007); Wang et al. (2007); Weng et al. (2007); Williams et al. (2005).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808026494/is2308sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808026494/is2308Isup2.hkl
All chemicals were of analytical grade and used without further purification. According to the reported procedure (Beringer et al., 1953; Qiu et al., 2007), H4L was prepared by iodine substitution of the N-methyl protected 3,3',4,4'-biphenyltetracarboxylicdianhydride, hydrolysis by 3M KOH and acidification by 6.5 M HCl to pH 1.0. The hydrothermal reaction was performed in a 25 ml Teflon-lined stainless steel autoclave under autogenous pressure. An solution of H4L (58 mg, 0.1 mmol), Zn(NO3)2.6H2O (59 mg, 0.2 mmol), 2 ml EtOH and 8 ml H2O was adjusted to pH 7 with 1 M NaOH solution and then heated at 140 °C for 3 days. After the sample was cooled slowly to room temperature, colourless crystals were obtained and air-dried by filtration ca 60% yield based on Zn. Anal. calcd for C8H8O7IZn: C 23.53, H 1.97%; Found: C 23.48, H 2.02%. IR (KBr discs, νmax/cm-1): 3379(vs), 1599(s), 1562(s), 1539(s), 1472(w), 1401(vs), 1318(w), 1254(m), 1163(w), 1098(m), 953(w), 915(w), 873(m), 846(m), 802(m), 678(w), 605(w), 543(w).
O-bound H atoms were located in a difference Fourier map and then constrained to ride on their parent atoms, with O—H = 0.85 Å and with Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically (C—H = 0.93 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The highest peak and the deepest hole are 0.34 and 0.97 Å, respectively, from I1.
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn2(C16H4I2O8)(H2O)4]·2H2O | F(000) = 780 |
Mr = 816.83 | Dx = 2.252 Mg m−3 |
Monoclinic, C2 | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: C 2y | Cell parameters from 762 reflections |
a = 10.9466 (16) Å | θ = 2.8–18.3° |
b = 9.8135 (14) Å | µ = 4.62 mm−1 |
c = 11.3913 (17) Å | T = 295 K |
β = 100.187 (3)° | Block, colourless |
V = 1204.4 (3) Å3 | 0.40 × 0.30 × 0.20 mm |
Z = 2 |
Bruker SMART APEX CCD area-detector diffractometer | 2126 independent reflections |
Radiation source: fine-focus sealed tube | 1767 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.8° |
Absorption correction: numerical (SADABS; Bruker, 2000) | h = −9→13 |
Tmin = 0.20, Tmax = 0.39 | k = −11→12 |
3279 measured reflections | l = −14→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0207P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max < 0.001 |
2126 reflections | Δρmax = 1.07 e Å−3 |
155 parameters | Δρmin = −1.01 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 870 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.00 (4) |
[Zn2(C16H4I2O8)(H2O)4]·2H2O | V = 1204.4 (3) Å3 |
Mr = 816.83 | Z = 2 |
Monoclinic, C2 | Mo Kα radiation |
a = 10.9466 (16) Å | µ = 4.62 mm−1 |
b = 9.8135 (14) Å | T = 295 K |
c = 11.3913 (17) Å | 0.40 × 0.30 × 0.20 mm |
β = 100.187 (3)° |
Bruker SMART APEX CCD area-detector diffractometer | 2126 independent reflections |
Absorption correction: numerical (SADABS; Bruker, 2000) | 1767 reflections with I > 2σ(I) |
Tmin = 0.20, Tmax = 0.39 | Rint = 0.040 |
3279 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
wR(F2) = 0.088 | Δρmax = 1.07 e Å−3 |
S = 0.98 | Δρmin = −1.01 e Å−3 |
2126 reflections | Absolute structure: Flack (1983), 870 Friedel pairs |
155 parameters | Absolute structure parameter: 0.00 (4) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.31728 (8) | 0.46912 (8) | 1.05780 (7) | 0.0770 (3) | |
Zn1 | 0.0000 | 0.52673 (14) | 0.5000 | 0.0296 (4) | |
Zn2 | 0.0000 | 0.94976 (18) | 0.5000 | 0.0373 (4) | |
O1 | 0.1541 (6) | 0.6253 (7) | 0.5567 (6) | 0.0404 (17) | |
O2 | 0.1099 (7) | 0.8284 (7) | 0.6272 (6) | 0.0399 (18) | |
O3 | 0.3711 (6) | 0.8475 (7) | 0.5451 (6) | 0.0454 (19) | |
O4 | 0.4839 (6) | 0.9757 (8) | 0.6747 (6) | 0.0543 (19) | |
O5 | −0.1277 (5) | 0.9419 (7) | 0.6112 (5) | 0.0454 (18) | |
H5A | −0.2029 | 0.9518 | 0.5787 | 0.054* | |
H5B | −0.1254 | 0.8743 | 0.6577 | 0.054* | |
O6 | 0.1005 (8) | 1.1179 (7) | 0.5892 (7) | 0.057 (2) | |
H6A | 0.1232 | 1.1982 | 0.5746 | 0.068* | |
H6B | 0.1538 | 1.0920 | 0.6488 | 0.068* | |
O7 | 0.3492 (12) | 1.2077 (15) | 0.7470 (11) | 0.116 (4) | |
H7A | 0.3346 | 1.2367 | 0.8145 | 0.139* | |
H7B | 0.4010 | 1.1431 | 0.7670 | 0.139* | |
C1 | 0.1734 (8) | 0.7220 (12) | 0.6301 (8) | 0.032 (2) | |
C2 | 0.4137 (9) | 0.8752 (11) | 0.6505 (9) | 0.038 (3) | |
C3 | 0.3828 (10) | 0.7879 (9) | 0.7465 (9) | 0.030 (2) | |
C4 | 0.2774 (9) | 0.7090 (10) | 0.7331 (8) | 0.027 (2) | |
C5 | 0.2594 (9) | 0.6187 (9) | 0.8224 (9) | 0.036 (2) | |
H5 | 0.1881 | 0.5652 | 0.8124 | 0.043* | |
C6 | 0.3468 (9) | 0.6073 (9) | 0.9266 (8) | 0.033 (2) | |
C7 | 0.4536 (8) | 0.6899 (9) | 0.9425 (7) | 0.028 (2) | |
C8 | 0.4700 (9) | 0.7767 (9) | 0.8536 (9) | 0.031 (2) | |
H8 | 0.5411 | 0.8305 | 0.8636 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0650 (6) | 0.0980 (7) | 0.0621 (5) | −0.0337 (6) | −0.0053 (4) | 0.0436 (5) |
Zn1 | 0.0288 (9) | 0.0325 (9) | 0.0269 (8) | 0.000 | 0.0029 (7) | 0.000 |
Zn2 | 0.0294 (8) | 0.0396 (10) | 0.0414 (9) | 0.000 | 0.0021 (7) | 0.000 |
O1 | 0.030 (4) | 0.042 (4) | 0.047 (5) | 0.000 (4) | 0.000 (3) | −0.011 (3) |
O2 | 0.037 (4) | 0.049 (5) | 0.032 (4) | 0.015 (4) | −0.001 (3) | 0.001 (3) |
O3 | 0.049 (5) | 0.050 (5) | 0.040 (4) | 0.009 (4) | 0.015 (4) | 0.004 (4) |
O4 | 0.041 (4) | 0.054 (5) | 0.062 (5) | −0.014 (4) | −0.006 (3) | 0.032 (4) |
O5 | 0.027 (3) | 0.057 (5) | 0.053 (4) | 0.012 (4) | 0.009 (3) | 0.009 (4) |
O6 | 0.079 (6) | 0.035 (4) | 0.048 (5) | −0.012 (4) | −0.010 (4) | 0.010 (3) |
O7 | 0.118 (10) | 0.116 (9) | 0.124 (10) | 0.014 (8) | 0.049 (8) | 0.031 (8) |
C1 | 0.028 (5) | 0.039 (6) | 0.029 (5) | −0.006 (5) | 0.008 (4) | 0.009 (5) |
C2 | 0.027 (6) | 0.041 (7) | 0.043 (7) | 0.004 (5) | −0.003 (5) | 0.008 (5) |
C3 | 0.035 (6) | 0.021 (5) | 0.033 (6) | −0.005 (4) | 0.006 (5) | −0.002 (4) |
C4 | 0.035 (6) | 0.029 (5) | 0.017 (5) | 0.006 (5) | 0.000 (4) | 0.008 (4) |
C5 | 0.026 (6) | 0.035 (6) | 0.047 (7) | −0.004 (5) | 0.009 (5) | 0.001 (5) |
C6 | 0.039 (6) | 0.028 (5) | 0.028 (6) | 0.007 (5) | −0.002 (5) | 0.003 (4) |
C7 | 0.023 (5) | 0.042 (6) | 0.022 (5) | 0.007 (4) | 0.007 (4) | −0.006 (4) |
C8 | 0.021 (5) | 0.030 (6) | 0.043 (6) | −0.008 (4) | 0.006 (5) | 0.001 (4) |
I1—C6 | 2.085 (9) | O5—H5A | 0.85 |
Zn1—O1 | 1.953 (6) | O5—H5B | 0.85 |
Zn1—O1i | 1.953 (6) | O6—H6A | 0.85 |
Zn1—O4ii | 2.090 (6) | O6—H6B | 0.85 |
Zn1—O4iii | 2.090 (6) | O7—H7A | 0.85 |
Zn1—O3iii | 2.368 (7) | O7—H7B | 0.85 |
Zn1—O3ii | 2.368 (7) | C1—C4 | 1.488 (12) |
Zn2—O5 | 2.047 (5) | C2—C3 | 1.475 (13) |
Zn2—O5i | 2.047 (5) | C3—C4 | 1.375 (13) |
Zn2—O2i | 2.085 (7) | C3—C8 | 1.415 (14) |
Zn2—O2 | 2.085 (7) | C4—C5 | 1.389 (12) |
Zn2—O6 | 2.138 (8) | C5—C6 | 1.391 (13) |
Zn2—O6i | 2.138 (7) | C5—H5 | 0.9300 |
O1—C1 | 1.258 (12) | C6—C7 | 1.408 (12) |
O2—C1 | 1.251 (12) | C7—C8 | 1.359 (12) |
O3—C2 | 1.239 (11) | C7—C7iv | 1.509 (17) |
O4—C2 | 1.251 (11) | C8—H8 | 0.9300 |
O1—Zn1—O1i | 120.6 (4) | C1—O2—Zn2 | 138.1 (6) |
O1—Zn1—O4ii | 102.7 (3) | C2—O3—Zn1v | 84.9 (6) |
O1i—Zn1—O4ii | 91.0 (3) | C2—O4—Zn1v | 97.5 (6) |
O1—Zn1—O4iii | 91.0 (3) | H5A—O5—H5B | 106.00 |
O1i—Zn1—O4iii | 102.7 (3) | H6A—O6—H6B | 104.00 |
O4ii—Zn1—O4iii | 152.3 (5) | H7A—O7—H7B | 103.00 |
O1—Zn1—O3iii | 144.0 (3) | O2—C1—O1 | 125.7 (9) |
O1i—Zn1—O3iii | 85.8 (2) | O2—C1—C4 | 115.9 (9) |
O4ii—Zn1—O3iii | 100.5 (3) | O1—C1—C4 | 118.3 (10) |
O4iii—Zn1—O3iii | 57.4 (3) | O3—C2—O4 | 119.9 (10) |
O1—Zn1—O3ii | 85.8 (2) | O3—C2—C3 | 119.6 (9) |
O1i—Zn1—O3ii | 144.0 (3) | O4—C2—C3 | 120.5 (9) |
O4ii—Zn1—O3ii | 57.4 (3) | C4—C3—C8 | 118.5 (8) |
O4iii—Zn1—O3ii | 100.5 (3) | C4—C3—C2 | 122.9 (9) |
O3iii—Zn1—O3ii | 84.1 (3) | C8—C3—C2 | 118.4 (9) |
O5—Zn2—O5i | 175.7 (4) | C3—C4—C5 | 120.2 (9) |
O5—Zn2—O2i | 92.0 (3) | C3—C4—C1 | 123.3 (8) |
O5i—Zn2—O2i | 85.5 (3) | C5—C4—C1 | 116.3 (9) |
O5—Zn2—O2 | 85.5 (3) | C4—C5—C6 | 120.7 (9) |
O5i—Zn2—O2 | 92.0 (3) | C4—C5—H5 | 120 |
O2i—Zn2—O2 | 110.3 (4) | C6—C5—H5 | 120 |
O5—Zn2—O6 | 94.9 (3) | C5—C6—C7 | 119.6 (9) |
O5i—Zn2—O6 | 88.4 (3) | C5—C6—I1 | 119.6 (7) |
O2i—Zn2—O6 | 163.0 (3) | C7—C6—I1 | 120.8 (7) |
O2—Zn2—O6 | 85.7 (3) | C8—C7—C6 | 118.8 (9) |
O5—Zn2—O6i | 88.4 (3) | C8—C7—C7iv | 119.3 (9) |
O5i—Zn2—O6i | 94.9 (3) | C6—C7—C7iv | 121.9 (8) |
O2i—Zn2—O6i | 85.7 (3) | C7—C8—C3 | 122.2 (9) |
O2—Zn2—O6i | 163.0 (3) | C7—C8—H8 | 119 |
O6—Zn2—O6i | 79.0 (4) | C3—C8—H8 | 119 |
C1—O1—Zn1 | 128.9 (6) | ||
O1i—Zn1—O1—C1 | 49.0 (8) | O3—C2—C3—C8 | 150.4 (9) |
O4ii—Zn1—O1—C1 | 147.9 (8) | O4—C2—C3—C8 | −28.7 (14) |
O4iii—Zn1—O1—C1 | −56.4 (9) | C8—C3—C4—C5 | −1.3 (16) |
O3iii—Zn1—O1—C1 | −83.0 (9) | C2—C3—C4—C5 | 173.6 (8) |
O3ii—Zn1—O1—C1 | −156.9 (8) | C8—C3—C4—C1 | 173.6 (9) |
C2iii—Zn1—O1—C1 | −67.9 (9) | C2—C3—C4—C1 | −11.5 (17) |
C2ii—Zn1—O1—C1 | 176.4 (8) | O2—C1—C4—C3 | −70.1 (13) |
O5—Zn2—O2—C1 | 132.2 (10) | O1—C1—C4—C3 | 112.1 (12) |
O5i—Zn2—O2—C1 | −44.3 (10) | O2—C1—C4—C5 | 105.0 (11) |
O2i—Zn2—O2—C1 | 41.7 (9) | O1—C1—C4—C5 | −72.8 (12) |
O6—Zn2—O2—C1 | −132.6 (11) | C3—C4—C5—C6 | 0.4 (15) |
O6i—Zn2—O2—C1 | −158.2 (10) | C1—C4—C5—C6 | −174.8 (9) |
Zn2—O2—C1—O1 | −28.8 (16) | C4—C5—C6—C7 | 1.1 (14) |
Zn2—O2—C1—C4 | 153.7 (7) | C4—C5—C6—I1 | −179.4 (7) |
Zn1—O1—C1—O2 | −50.1 (14) | C5—C6—C7—C8 | −1.7 (13) |
Zn1—O1—C1—C4 | 127.4 (8) | I1—C6—C7—C8 | 178.8 (6) |
Zn1v—O3—C2—O4 | 5.3 (9) | C5—C6—C7—C7iv | 175.1 (8) |
Zn1v—O3—C2—C3 | −173.8 (9) | I1—C6—C7—C7iv | −4.4 (11) |
Zn1v—O4—C2—O3 | −6.1 (10) | C6—C7—C8—C3 | 0.8 (13) |
Zn1v—O4—C2—C3 | 173.0 (8) | C7iv—C7—C8—C3 | −176.1 (9) |
O3—C2—C3—C4 | −24.4 (15) | C4—C3—C8—C7 | 0.7 (16) |
O4—C2—C3—C4 | 156.5 (10) | C2—C3—C8—C7 | −174.4 (8) |
Symmetry codes: (i) −x, y, −z+1; (ii) −x+1/2, y−1/2, −z+1; (iii) x−1/2, y−1/2, z; (iv) −x+1, y, −z+2; (v) x+1/2, y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O3i | 0.85 | 2.35 | 3.074 (9) | 144 |
O5—H5A···O1vi | 0.85 | 2.30 | 2.967 (9) | 136 |
O5—H5B···O7iii | 0.85 | 1.97 | 2.807 (15) | 169 |
O6—H6A···O3vii | 0.85 | 2.01 | 2.772 (10) | 148 |
O6—H6B···O7 | 0.85 | 2.50 | 3.113 (16) | 129 |
O7—H7B···O4 | 0.85 | 2.23 | 2.910 (16) | 137 |
Symmetry codes: (i) −x, y, −z+1; (iii) x−1/2, y−1/2, z; (vi) x−1/2, y+1/2, z; (vii) −x+1/2, y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Zn2(C16H4I2O8)(H2O)4]·2H2O |
Mr | 816.83 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 295 |
a, b, c (Å) | 10.9466 (16), 9.8135 (14), 11.3913 (17) |
β (°) | 100.187 (3) |
V (Å3) | 1204.4 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 4.62 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Numerical (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.20, 0.39 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3279, 2126, 1767 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.088, 0.98 |
No. of reflections | 2126 |
No. of parameters | 155 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.07, −1.01 |
Absolute structure | Flack (1983), 870 Friedel pairs |
Absolute structure parameter | 0.00 (4) |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O3i | 0.85 | 2.35 | 3.074 (9) | 144 |
O5—H5A···O1ii | 0.85 | 2.30 | 2.967 (9) | 136 |
O5—H5B···O7iii | 0.85 | 1.97 | 2.807 (15) | 169 |
O6—H6A···O3iv | 0.85 | 2.01 | 2.772 (10) | 148 |
O6—H6B···O7 | 0.85 | 2.50 | 3.113 (16) | 129 |
O7—H7B···O4 | 0.85 | 2.23 | 2.910 (16) | 137 |
Symmetry codes: (i) −x, y, −z+1; (ii) x−1/2, y+1/2, z; (iii) x−1/2, y−1/2, z; (iv) −x+1/2, y+1/2, −z+1. |
Acknowledgements
We gratefully acknowledge the National 863 Research Project (2006 A A03Z219), the Natural Science Foundation of Jiangsu Province (BK2007199), the `Liu Da Ren Cai' Foundation of Jiangsu Province (06-E-021), the State Postdoctoral Foundation of China (No. 2006040932) and the Postdoctoral Foundation of Jiangsu Province (No. 0602008B).
References
Beringer, F. M., Drexler, M., Gindler, E. M. & Lumpkin, C. C. (1953). J. Am. Chem. Soc. 75, 2705–2708. CrossRef CAS Web of Science Google Scholar
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cordes, D. B., Hanton, L. R. & Spicer, M. D. (2006). Inorg. Chem. 45, 7651–7664. Web of Science CSD CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Garay, A. L., Pichon, A. & James, S. L. (2007). Chem. Soc. Rev. 36, 846–855. CrossRef PubMed CAS Google Scholar
Noro, S., Akutagawa, T. & Nakamura, T. (2007). Cryst. Growth Des. 7, 1205–1208. Web of Science CSD CrossRef CAS Google Scholar
Qiu, Z.-M., Chen, G., Zhang, Q.-Y. & Zhang, S.-B. (2007). Eur. Polym. J. 43, 194–204. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, J.-J., Gou, L., Hu, H.-M., Han, Z.-X., Li, D.-S., Xue, G.-L., Yang, M.-L. & Shi, Q.-Z. (2007). Cryst. Growth Des. 7, 1514–1521. Web of Science CSD CrossRef CAS Google Scholar
Weng, D.-F., Zheng, X.-J., Li, L.-C., Yang, W.-W. & Jin, L.-P. (2007). Dalton Trans. pp. 4822–4828. Web of Science CSD CrossRef Google Scholar
Williams, C. A., Blake, A. J., Hubberstey, P. & Schroder, M. (2005). Chem. Commun. pp. 5435–5437. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Interest in the self-assembled construction of coordination polymers is rapidly increasing not only owing to their potential applications in gas storage, ion-exchange, catalysis, electrical conductivity, nonlinear optics and magnetism, but also because of their fascinating diversified architectures and topologies (Cordes et al., 2006; Garay et al., 2007). Multicarboxylate ligands, such as 1,4-benzenedicarboxylate (Williams et al., 2005), 1,3,5-benzenetricarboxylate (Noro et al., 2007) and biphenyl-3,3',4,4'-tetracarboxylate (Weng et al., 2007), have been extensively employed in the construction of novel metal-organic complexes with multidimensional networks and interesting properties. In view of the excellent coordination capability of multicarboxylate anions and the solubility of diaryliodonium salts, we employed 2,2'-diiodobiphenyl-4,4',5,5'-tetracarboxylic acid (H4L), as an organic building unit to generate three dimensional metal-organic framework. In this paper, we describe the synthesis of a novel zinc(II) complexes, namely, [Zn2(L)(H2O)4.2H2O]n, by reaction of Zn(NO3)2.6H2O and H4L via hydrothermal method, which was characterized by IR, elemental analysis and X-ray single-crystal analysis. To the best of our knowledge, transition metal coordination polymers based on diiodobiphenyl tetracarboxylate has never been reported before. This work may provide useful information for the further design of metal-organic frameworks with interesting architectures using diiodobiphenyl tetracarboxylate as versatile multidentate ligands.
The title complex crystallizes in the monoclinic system, space group C2, with two crystallographically independent ZnII atoms each located on a twofold axis. As shown in Fig. 1, both ZnII atoms are in distorted octahedral configurations and are connected by carboxylate groups. The Zn1 center is coordinated by four carboxylate groups, that is, 4(4')-COO- from two different L4- ligands in a monodentate fashion (O1 and O1ii) and 5(5')-COO- from other two L4- ligands in a bischelating fashion (O3i, O4i, O3iii and O4iii). In contrast, the Zn2 center is coordinated by four O atoms of water (O5, O6, O5ii and O6ii) and two carboxylate groups: 4(4')-COO- from two different L4- ligands in a monodentate fashion (O2 and O2ii). The Zn–O bond lengths fall in the range of 1.953 (6)–2.368 (7) Å, similar to those in other zinc-tetracarboxylate coordination polymers (Wang et al., 2007). Hence, the L4- ligand acts as a octadentate ligand, linking six different ZnII atoms to form a three-dimensional metal–organic framework (Fig. 2); the 5,5'-carboxyl groups adopt a bidentate bridging mode, while the 4,4'-carboxyl groups exhibit a bis(monodentate) bridging mode. Within the L4- ligand, the two phenyl rings are almost perpendicular to each other with the dihedral angle of 88.6 (1)°, and the dihedral angles between 4,5(4',5')-carboxylate groups and the plane of correspondingly linked phenyl rings are respectively 72.0 (1) and 27.3 (1)°.
There are various O—H···O hydrogen bonds associated with the coordinated water molecules, uncoordinated water molecules and carboxylate O atoms in the title complex, linking the metal-organic framework with the uncoordinated water molecules.