organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,7-Dimeth­­oxy-1,4-anthra­quinone

aDepartment of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
*Correspondence e-mail: kitamura@eng.u-hyogo.ac.jp

(Received 16 August 2008; accepted 18 August 2008; online 23 August 2008)

The mol­ecule of the title compound, C16H12O4, is almost planar; the two meth­oxy groups are slightly out of the plane of the anthraquinone ring system, with C—C—O—C torsion angles of −6.25 (19) and −10.22 (19)°. In the crystal structure, the mol­ecules adopt a herringbone arrangement and form face-to-face slipped anti­parallel ππ stacking inter­actions along the b axis, with an inter­planar distance of 3.278 (2) Å.

Related literature

For the synthesis of 1,4-anthraquinone, see: McOmie & Perry (1973[McOmie, J. F. W. & Perry, D. H. (1973). Synthesis, pp. 416-417.]). For related structures, see: Kitamura et al. (2006[Kitamura, C., Kawatsuki, N. & Yoneda, A. (2006). Anal. Sci. 22, x293-x294.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12O4

  • Mr = 268.26

  • Monoclinic, P 21 /c

  • a = 7.478 (3) Å

  • b = 7.492 (3) Å

  • c = 22.949 (9) Å

  • β = 106.646 (10)°

  • V = 1231.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 223 K

  • 0.5 × 0.1 × 0.1 mm

Data collection
  • Rigaku/MSC Mercury CCD area-detector diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.974, Tmax = 0.991

  • 5255 measured reflections

  • 2705 independent reflections

  • 2177 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.147

  • S = 1.09

  • 2705 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX.

Supporting information


Comment top

1,4-Anthraquinone has a weak dipole moment along the molecular long axis, whose value was estimated to be 2.54 debye by a B3LYP/6–31G(d) DFT calculation (Kitamura et al., 2006). The crystal structure exhibited a herring-bone packing with face-to-face slipped π-overlap along the stacking direction. In addition, the molecules were antiparallel with respect to one another. These charasteristics inspired us to study other 1,4-anthraquinone derivatives. The title compound (I), which was first prepared by McOmie & Perry (1973), has strong electron-donating methoxy groups, and therefore, has a larger dipole moment, compared with 1,4-anthraquinone, which was estimated to be 3.91 debye. This property should affect the intermolecular interactions in the crystal.

The molecular structure of (I) is shown in Fig. 1. The molecule is an almost coplanar conformation. The displacements of atoms O1, O2, O3, O4, C15, and C16 relative to the plane of the anthracene backbone are 0.159 (2), -0.004 (2), -0.039 (2), -0.003 (2), 0.168 (2), and -0.145 (2) Å, respectively. The torsion angles of the two methoxy groups are -6.25 (19)° for C11—C10—O4—C16 and -10.22 (19)° for C8—C9—O3—C15, indicating that the Cmethyl—O bonds are directed along the molecular short axis. As shown in Fig. 2, the molecules adopt a herring-bone arrangement and form face-to-face slipped antiparallel π-π stacking along the direction of the b axis. The interplanar distance is 3.278 (2) Å, whose value is shorter than that (3.423 Å) of 1,4-anthraquinone (Kitamura et al., 2006) and is indicating the existence of strong intermolecular interactions.

Related literature top

For the synthesis of 1,4-anthraquinone, see: McOmie & Perry (1973). For related structures, see: Kitamura et al. (2006).

Experimental top

The title compound was prepared according to the modified method described by McOmie & Perry (1973). A mixture of 4,5-bis(bromomethyl)-1,2-dimethoxybenezene (340 mg, 1.05 mmol), 1,4-benzoquinone (571 mg, 5.28 mmol) and sodium iodide (797 mg, 5.31 mmol) in DMF (6 ml) was heated at 110 °C for 16 h. After the reaction mixture was cooled to room temperature, the mixture was decolorized by addition of aqueous 5% Na2SO3 solution. The resulting yellow precipitate was filtered off, washed with acetone, and dried under vacuum to give the crude product of (I) (74 mg, 26%). Yellow single crystals suitable for X-ray analysis were obtained by standing of a hot DMF solution of the crude product at room temperature.

Refinement top

All the H atoms were positioned geometrically (Caromatic—H = 0.94 and Cmethyl—H = 0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: WinGX (Farrugia, 1999); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing diagram of (I). Hydrogen atoms are omitted for clarity.
6,7-Dimethoxy-1,4-anthraquinone top
Crystal data top
C16H12O4F(000) = 560
Mr = 268.26Dx = 1.446 Mg m3
Monoclinic, P21/cMelting point: 547 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.478 (3) ÅCell parameters from 3335 reflections
b = 7.492 (3) Åθ = 3.2–27.5°
c = 22.949 (9) ŵ = 0.10 mm1
β = 106.646 (10)°T = 223 K
V = 1231.8 (8) Å3Prism, yellow
Z = 40.5 × 0.1 × 0.1 mm
Data collection top
Rigaku/MSC Mercury CCD area-detector
diffractometer
2705 independent reflections
Radiation source: rotating-anode X-ray tube2177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 14.7059 pixels mm-1θmax = 27.5°, θmin = 3.3°
ϕ and ω scansh = 99
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 99
Tmin = 0.974, Tmax = 0.991l = 299
5255 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.089P)2 + 0.0212P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2705 reflectionsΔρmax = 0.28 e Å3
181 parametersΔρmin = 0.17 e Å3
0 restraints
Crystal data top
C16H12O4V = 1231.8 (8) Å3
Mr = 268.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.478 (3) ŵ = 0.10 mm1
b = 7.492 (3) ÅT = 223 K
c = 22.949 (9) Å0.5 × 0.1 × 0.1 mm
β = 106.646 (10)°
Data collection top
Rigaku/MSC Mercury CCD area-detector
diffractometer
2705 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2177 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.991Rint = 0.018
5255 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.09Δρmax = 0.28 e Å3
2705 reflectionsΔρmin = 0.17 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2346 (2)0.81897 (17)0.17745 (6)0.0348 (3)
C20.4192 (2)0.7551 (2)0.21515 (7)0.0439 (4)
H20.45460.77730.25720.053*
C30.5361 (2)0.66760 (19)0.19142 (7)0.0429 (4)
H30.64980.62690.21760.052*
C40.4950 (2)0.63168 (17)0.12589 (6)0.0362 (3)
C50.30905 (19)0.68684 (15)0.08623 (6)0.0286 (3)
C60.26003 (18)0.65203 (15)0.02483 (6)0.0280 (3)
H60.34650.5960.00810.034*
C70.08283 (18)0.69868 (15)0.01340 (6)0.0254 (3)
C80.03163 (18)0.66243 (15)0.07661 (6)0.0273 (3)
H80.11770.60740.09370.033*
C90.14174 (19)0.70671 (16)0.11289 (6)0.0285 (3)
C100.27351 (18)0.79192 (15)0.08715 (6)0.0289 (3)
C110.22806 (19)0.82638 (16)0.02631 (6)0.0285 (3)
H110.31630.880.00980.034*
C120.04838 (18)0.78199 (15)0.01235 (6)0.0263 (3)
C130.00577 (19)0.81899 (16)0.07530 (6)0.0292 (3)
H130.07940.87490.09260.035*
C140.18036 (19)0.77496 (16)0.11181 (6)0.0289 (3)
C150.0736 (2)0.6124 (2)0.20281 (7)0.0449 (4)
H15A0.13530.5930.24570.067*
H15B0.01860.50130.18430.067*
H15C0.02350.70140.19840.067*
C160.5822 (2)0.9018 (2)0.10571 (7)0.0413 (4)
H16A0.69250.92560.13930.062*
H16B0.53991.01170.08370.062*
H16C0.61230.81530.07850.062*
O10.13258 (17)0.90386 (15)0.20045 (5)0.0496 (3)
O20.61027 (17)0.55939 (15)0.10512 (5)0.0524 (3)
O30.20663 (14)0.67321 (13)0.17341 (4)0.0372 (3)
O40.43858 (14)0.83254 (13)0.12867 (4)0.0375 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0407 (8)0.0377 (7)0.0246 (7)0.0091 (5)0.0069 (6)0.0012 (5)
C20.0509 (9)0.0481 (8)0.0260 (7)0.0077 (7)0.0000 (7)0.0020 (6)
C30.0426 (9)0.0416 (7)0.0348 (8)0.0005 (6)0.0047 (7)0.0043 (6)
C40.0348 (8)0.0339 (7)0.0344 (8)0.0014 (5)0.0014 (6)0.0030 (5)
C50.0301 (7)0.0271 (6)0.0263 (7)0.0030 (4)0.0045 (5)0.0022 (4)
C60.0276 (7)0.0285 (6)0.0280 (7)0.0012 (4)0.0078 (5)0.0011 (4)
C70.0279 (7)0.0248 (6)0.0237 (7)0.0032 (4)0.0076 (5)0.0012 (4)
C80.0283 (7)0.0299 (6)0.0248 (7)0.0030 (4)0.0093 (5)0.0020 (4)
C90.0309 (7)0.0327 (6)0.0218 (6)0.0065 (5)0.0073 (5)0.0014 (4)
C100.0243 (7)0.0320 (6)0.0283 (7)0.0032 (5)0.0044 (5)0.0026 (5)
C110.0276 (7)0.0312 (6)0.0274 (7)0.0003 (4)0.0089 (5)0.0009 (5)
C120.0281 (7)0.0265 (6)0.0243 (6)0.0031 (4)0.0073 (5)0.0011 (4)
C130.0322 (7)0.0305 (6)0.0256 (7)0.0029 (5)0.0094 (6)0.0017 (4)
C140.0333 (7)0.0286 (6)0.0240 (7)0.0065 (5)0.0069 (5)0.0005 (4)
C150.0452 (9)0.0650 (9)0.0254 (7)0.0003 (7)0.0114 (6)0.0089 (6)
C160.0267 (7)0.0530 (8)0.0431 (9)0.0020 (6)0.0081 (6)0.0042 (6)
O10.0507 (7)0.0691 (7)0.0311 (6)0.0053 (5)0.0150 (5)0.0111 (5)
O20.0393 (7)0.0647 (7)0.0473 (7)0.0151 (5)0.0029 (5)0.0009 (5)
O30.0324 (6)0.0543 (6)0.0226 (5)0.0008 (4)0.0041 (4)0.0040 (4)
O40.0275 (6)0.0520 (6)0.0292 (5)0.0027 (4)0.0021 (4)0.0007 (4)
Geometric parameters (Å, º) top
C1—O11.2233 (18)C9—O31.3570 (16)
C1—C141.4806 (19)C9—C101.4356 (19)
C1—C21.482 (2)C10—O41.3603 (16)
C2—C31.328 (2)C10—C111.3637 (19)
C2—H20.94C11—C121.4213 (19)
C3—C41.471 (2)C11—H110.94
C3—H30.94C12—C131.4116 (19)
C4—O21.2248 (18)C13—C141.374 (2)
C4—C51.4856 (19)C13—H130.94
C5—C61.3755 (19)C15—O31.4273 (18)
C5—C141.4249 (19)C15—H15A0.97
C6—C71.4078 (18)C15—H15B0.97
C6—H60.94C15—H15C0.97
C7—C81.4165 (18)C16—O41.4231 (18)
C7—C121.4262 (19)C16—H16A0.97
C8—C91.3659 (19)C16—H16B0.97
C8—H80.94C16—H16C0.97
O1—C1—C14122.12 (14)O4—C10—C9113.79 (12)
O1—C1—C2120.49 (13)C11—C10—C9120.42 (12)
C14—C1—C2117.39 (13)C10—C11—C12120.58 (12)
C3—C2—C1122.14 (14)C10—C11—H11119.7
C3—C2—H2118.9C12—C11—H11119.7
C1—C2—H2118.9C13—C12—C11122.39 (12)
C2—C3—C4122.70 (14)C13—C12—C7118.71 (12)
C2—C3—H3118.7C11—C12—C7118.90 (12)
C4—C3—H3118.7C14—C13—C12121.39 (13)
O2—C4—C3120.97 (13)C14—C13—H13119.3
O2—C4—C5121.61 (13)C12—C13—H13119.3
C3—C4—C5117.42 (13)C13—C14—C5119.72 (12)
C6—C5—C14119.78 (12)C13—C14—C1120.17 (13)
C6—C5—C4120.19 (13)C5—C14—C1120.11 (12)
C14—C5—C4120.03 (12)O3—C15—H15A109.5
C5—C6—C7121.23 (12)O3—C15—H15B109.5
C5—C6—H6119.4H15A—C15—H15B109.5
C7—C6—H6119.4O3—C15—H15C109.5
C6—C7—C8121.38 (12)H15A—C15—H15C109.5
C6—C7—C12119.13 (11)H15B—C15—H15C109.5
C8—C7—C12119.48 (12)O4—C16—H16A109.5
C9—C8—C7120.57 (12)O4—C16—H16B109.5
C9—C8—H8119.7H16A—C16—H16B109.5
C7—C8—H8119.7O4—C16—H16C109.5
O3—C9—C8125.28 (12)H16A—C16—H16C109.5
O3—C9—C10114.65 (12)H16B—C16—H16C109.5
C8—C9—C10120.05 (12)C9—O3—C15116.71 (11)
O4—C10—C11125.79 (12)C10—O4—C16116.88 (11)
O1—C1—C2—C3177.80 (14)C10—C11—C12—C13178.54 (11)
C14—C1—C2—C32.5 (2)C10—C11—C12—C70.80 (18)
C1—C2—C3—C41.9 (2)C6—C7—C12—C131.57 (17)
C2—C3—C4—O2175.88 (15)C8—C7—C12—C13179.27 (10)
C2—C3—C4—C54.0 (2)C6—C7—C12—C11179.07 (10)
O2—C4—C5—C62.1 (2)C8—C7—C12—C110.09 (17)
C3—C4—C5—C6178.01 (11)C11—C12—C13—C14179.95 (10)
O2—C4—C5—C14178.31 (13)C7—C12—C13—C140.61 (19)
C3—C4—C5—C141.54 (18)C12—C13—C14—C51.28 (19)
C14—C5—C6—C71.29 (18)C12—C13—C14—C1178.67 (10)
C4—C5—C6—C7178.27 (10)C6—C5—C14—C132.25 (18)
C5—C6—C7—C8179.76 (10)C4—C5—C14—C13177.31 (11)
C5—C6—C7—C120.62 (18)C6—C5—C14—C1177.71 (11)
C6—C7—C8—C9179.20 (10)C4—C5—C14—C12.73 (17)
C12—C7—C8—C90.06 (18)O1—C1—C14—C134.4 (2)
C7—C8—C9—O3177.93 (10)C2—C1—C14—C13175.27 (11)
C7—C8—C9—C100.46 (19)O1—C1—C14—C5175.55 (12)
O3—C9—C10—O43.06 (16)C2—C1—C14—C54.77 (18)
C8—C9—C10—O4178.39 (11)C8—C9—O3—C1510.22 (19)
O3—C9—C10—C11177.38 (11)C10—C9—O3—C15171.32 (11)
C8—C9—C10—C111.16 (19)C11—C10—O4—C166.25 (19)
O4—C10—C11—C12178.17 (10)C9—C10—O4—C16174.23 (11)
C9—C10—C11—C121.33 (19)

Experimental details

Crystal data
Chemical formulaC16H12O4
Mr268.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)7.478 (3), 7.492 (3), 22.949 (9)
β (°) 106.646 (10)
V3)1231.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.5 × 0.1 × 0.1
Data collection
DiffractometerRigaku/MSC Mercury CCD area-detector
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.974, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
5255, 2705, 2177
Rint0.018
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.147, 1.09
No. of reflections2705
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.17

Computer programs: CrystalClear (Rigaku/MSC, 2001), WinGX (Farrugia, 1999), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

We thank the Instrument Center of the Institute for Molecular Science for the X-ray structural analysis. This work was supported by a Grant-in-Aid (No. 20550128) for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKitamura, C., Kawatsuki, N. & Yoneda, A. (2006). Anal. Sci. 22, x293–x294.  CAS Google Scholar
First citationMcOmie, J. F. W. & Perry, D. H. (1973). Synthesis, pp. 416–417.  CrossRef Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds