organic compounds
6,7-Dimethoxy-1,4-anthraquinone
aDepartment of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
*Correspondence e-mail: kitamura@eng.u-hyogo.ac.jp
The molecule of the title compound, C16H12O4, is almost planar; the two methoxy groups are slightly out of the plane of the anthraquinone ring system, with C—C—O—C torsion angles of −6.25 (19) and −10.22 (19)°. In the the molecules adopt a herringbone arrangement and form face-to-face slipped antiparallel π–π stacking interactions along the b axis, with an interplanar distance of 3.278 (2) Å.
Related literature
For the synthesis of 1,4-anthraquinone, see: McOmie & Perry (1973). For related structures, see: Kitamura et al. (2006).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku/MSC, 2001); cell CrystalClear; data reduction: WinGX (Farrugia, 1999); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX.
Supporting information
10.1107/S1600536808026500/is2326sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808026500/is2326Isup2.hkl
The title compound was prepared according to the modified method described by McOmie & Perry (1973). A mixture of 4,5-bis(bromomethyl)-1,2-dimethoxybenezene (340 mg, 1.05 mmol), 1,4-benzoquinone (571 mg, 5.28 mmol) and sodium iodide (797 mg, 5.31 mmol) in DMF (6 ml) was heated at 110 °C for 16 h. After the reaction mixture was cooled to room temperature, the mixture was decolorized by addition of aqueous 5% Na2SO3 solution. The resulting yellow precipitate was filtered off, washed with acetone, and dried under vacuum to give the crude product of (I) (74 mg, 26%). Yellow single crystals suitable for X-ray analysis were obtained by standing of a hot DMF solution of the crude product at room temperature.
All the H atoms were positioned geometrically (Caromatic—H = 0.94 and Cmethyl—H = 0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).
Data collection: CrystalClear (Rigaku/MSC, 2001); cell
CrystalClear (Rigaku/MSC, 2001); data reduction: WinGX (Farrugia, 1999); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms. | |
Fig. 2. The packing diagram of (I). Hydrogen atoms are omitted for clarity. |
C16H12O4 | F(000) = 560 |
Mr = 268.26 | Dx = 1.446 Mg m−3 |
Monoclinic, P21/c | Melting point: 547 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 7.478 (3) Å | Cell parameters from 3335 reflections |
b = 7.492 (3) Å | θ = 3.2–27.5° |
c = 22.949 (9) Å | µ = 0.10 mm−1 |
β = 106.646 (10)° | T = 223 K |
V = 1231.8 (8) Å3 | Prism, yellow |
Z = 4 | 0.5 × 0.1 × 0.1 mm |
Rigaku/MSC Mercury CCD area-detector diffractometer | 2705 independent reflections |
Radiation source: rotating-anode X-ray tube | 2177 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 14.7059 pixels mm-1 | θmax = 27.5°, θmin = 3.3° |
ϕ and ω scans | h = −9→9 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −9→9 |
Tmin = 0.974, Tmax = 0.991 | l = −29→9 |
5255 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.147 | w = 1/[σ2(Fo2) + (0.089P)2 + 0.0212P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
2705 reflections | Δρmax = 0.28 e Å−3 |
181 parameters | Δρmin = −0.17 e Å−3 |
0 restraints |
C16H12O4 | V = 1231.8 (8) Å3 |
Mr = 268.26 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.478 (3) Å | µ = 0.10 mm−1 |
b = 7.492 (3) Å | T = 223 K |
c = 22.949 (9) Å | 0.5 × 0.1 × 0.1 mm |
β = 106.646 (10)° |
Rigaku/MSC Mercury CCD area-detector diffractometer | 2705 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 2177 reflections with I > 2σ(I) |
Tmin = 0.974, Tmax = 0.991 | Rint = 0.018 |
5255 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.28 e Å−3 |
2705 reflections | Δρmin = −0.17 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2346 (2) | 0.81897 (17) | 0.17745 (6) | 0.0348 (3) | |
C2 | 0.4192 (2) | 0.7551 (2) | 0.21515 (7) | 0.0439 (4) | |
H2 | 0.4546 | 0.7773 | 0.2572 | 0.053* | |
C3 | 0.5361 (2) | 0.66760 (19) | 0.19142 (7) | 0.0429 (4) | |
H3 | 0.6498 | 0.6269 | 0.2176 | 0.052* | |
C4 | 0.4950 (2) | 0.63168 (17) | 0.12589 (6) | 0.0362 (3) | |
C5 | 0.30905 (19) | 0.68684 (15) | 0.08623 (6) | 0.0286 (3) | |
C6 | 0.26003 (18) | 0.65203 (15) | 0.02483 (6) | 0.0280 (3) | |
H6 | 0.3465 | 0.596 | 0.0081 | 0.034* | |
C7 | 0.08283 (18) | 0.69868 (15) | −0.01340 (6) | 0.0254 (3) | |
C8 | 0.03163 (18) | 0.66243 (15) | −0.07661 (6) | 0.0273 (3) | |
H8 | 0.1177 | 0.6074 | −0.0937 | 0.033* | |
C9 | −0.14174 (19) | 0.70671 (16) | −0.11289 (6) | 0.0285 (3) | |
C10 | −0.27351 (18) | 0.79192 (15) | −0.08715 (6) | 0.0289 (3) | |
C11 | −0.22806 (19) | 0.82638 (16) | −0.02631 (6) | 0.0285 (3) | |
H11 | −0.3163 | 0.88 | −0.0098 | 0.034* | |
C12 | −0.04838 (18) | 0.78199 (15) | 0.01235 (6) | 0.0263 (3) | |
C13 | 0.00577 (19) | 0.81899 (16) | 0.07530 (6) | 0.0292 (3) | |
H13 | −0.0794 | 0.8749 | 0.0926 | 0.035* | |
C14 | 0.18036 (19) | 0.77496 (16) | 0.11181 (6) | 0.0289 (3) | |
C15 | −0.0736 (2) | 0.6124 (2) | −0.20281 (7) | 0.0449 (4) | |
H15A | −0.1353 | 0.593 | −0.2457 | 0.067* | |
H15B | −0.0186 | 0.5013 | −0.1843 | 0.067* | |
H15C | 0.0235 | 0.7014 | −0.1984 | 0.067* | |
C16 | −0.5822 (2) | 0.9018 (2) | −0.10571 (7) | 0.0413 (4) | |
H16A | −0.6925 | 0.9256 | −0.1393 | 0.062* | |
H16B | −0.5399 | 1.0117 | −0.0837 | 0.062* | |
H16C | −0.6123 | 0.8153 | −0.0785 | 0.062* | |
O1 | 0.13258 (17) | 0.90386 (15) | 0.20045 (5) | 0.0496 (3) | |
O2 | 0.61027 (17) | 0.55939 (15) | 0.10512 (5) | 0.0524 (3) | |
O3 | −0.20663 (14) | 0.67321 (13) | −0.17341 (4) | 0.0372 (3) | |
O4 | −0.43858 (14) | 0.83254 (13) | −0.12867 (4) | 0.0375 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0407 (8) | 0.0377 (7) | 0.0246 (7) | −0.0091 (5) | 0.0069 (6) | −0.0012 (5) |
C2 | 0.0509 (9) | 0.0481 (8) | 0.0260 (7) | −0.0077 (7) | 0.0000 (7) | 0.0020 (6) |
C3 | 0.0426 (9) | 0.0416 (7) | 0.0348 (8) | −0.0005 (6) | −0.0047 (7) | 0.0043 (6) |
C4 | 0.0348 (8) | 0.0339 (7) | 0.0344 (8) | −0.0014 (5) | 0.0014 (6) | 0.0030 (5) |
C5 | 0.0301 (7) | 0.0271 (6) | 0.0263 (7) | −0.0030 (4) | 0.0045 (5) | 0.0022 (4) |
C6 | 0.0276 (7) | 0.0285 (6) | 0.0280 (7) | −0.0012 (4) | 0.0078 (5) | 0.0011 (4) |
C7 | 0.0279 (7) | 0.0248 (6) | 0.0237 (7) | −0.0032 (4) | 0.0076 (5) | 0.0012 (4) |
C8 | 0.0283 (7) | 0.0299 (6) | 0.0248 (7) | −0.0030 (4) | 0.0093 (5) | −0.0020 (4) |
C9 | 0.0309 (7) | 0.0327 (6) | 0.0218 (6) | −0.0065 (5) | 0.0073 (5) | −0.0014 (4) |
C10 | 0.0243 (7) | 0.0320 (6) | 0.0283 (7) | −0.0032 (5) | 0.0044 (5) | 0.0026 (5) |
C11 | 0.0276 (7) | 0.0312 (6) | 0.0274 (7) | −0.0003 (4) | 0.0089 (5) | −0.0009 (5) |
C12 | 0.0281 (7) | 0.0265 (6) | 0.0243 (6) | −0.0031 (4) | 0.0073 (5) | 0.0011 (4) |
C13 | 0.0322 (7) | 0.0305 (6) | 0.0256 (7) | −0.0029 (5) | 0.0094 (6) | −0.0017 (4) |
C14 | 0.0333 (7) | 0.0286 (6) | 0.0240 (7) | −0.0065 (5) | 0.0069 (5) | 0.0005 (4) |
C15 | 0.0452 (9) | 0.0650 (9) | 0.0254 (7) | −0.0003 (7) | 0.0114 (6) | −0.0089 (6) |
C16 | 0.0267 (7) | 0.0530 (8) | 0.0431 (9) | 0.0020 (6) | 0.0081 (6) | 0.0042 (6) |
O1 | 0.0507 (7) | 0.0691 (7) | 0.0311 (6) | −0.0053 (5) | 0.0150 (5) | −0.0111 (5) |
O2 | 0.0393 (7) | 0.0647 (7) | 0.0473 (7) | 0.0151 (5) | 0.0029 (5) | −0.0009 (5) |
O3 | 0.0324 (6) | 0.0543 (6) | 0.0226 (5) | −0.0008 (4) | 0.0041 (4) | −0.0040 (4) |
O4 | 0.0275 (6) | 0.0520 (6) | 0.0292 (5) | 0.0027 (4) | 0.0021 (4) | 0.0007 (4) |
C1—O1 | 1.2233 (18) | C9—O3 | 1.3570 (16) |
C1—C14 | 1.4806 (19) | C9—C10 | 1.4356 (19) |
C1—C2 | 1.482 (2) | C10—O4 | 1.3603 (16) |
C2—C3 | 1.328 (2) | C10—C11 | 1.3637 (19) |
C2—H2 | 0.94 | C11—C12 | 1.4213 (19) |
C3—C4 | 1.471 (2) | C11—H11 | 0.94 |
C3—H3 | 0.94 | C12—C13 | 1.4116 (19) |
C4—O2 | 1.2248 (18) | C13—C14 | 1.374 (2) |
C4—C5 | 1.4856 (19) | C13—H13 | 0.94 |
C5—C6 | 1.3755 (19) | C15—O3 | 1.4273 (18) |
C5—C14 | 1.4249 (19) | C15—H15A | 0.97 |
C6—C7 | 1.4078 (18) | C15—H15B | 0.97 |
C6—H6 | 0.94 | C15—H15C | 0.97 |
C7—C8 | 1.4165 (18) | C16—O4 | 1.4231 (18) |
C7—C12 | 1.4262 (19) | C16—H16A | 0.97 |
C8—C9 | 1.3659 (19) | C16—H16B | 0.97 |
C8—H8 | 0.94 | C16—H16C | 0.97 |
O1—C1—C14 | 122.12 (14) | O4—C10—C9 | 113.79 (12) |
O1—C1—C2 | 120.49 (13) | C11—C10—C9 | 120.42 (12) |
C14—C1—C2 | 117.39 (13) | C10—C11—C12 | 120.58 (12) |
C3—C2—C1 | 122.14 (14) | C10—C11—H11 | 119.7 |
C3—C2—H2 | 118.9 | C12—C11—H11 | 119.7 |
C1—C2—H2 | 118.9 | C13—C12—C11 | 122.39 (12) |
C2—C3—C4 | 122.70 (14) | C13—C12—C7 | 118.71 (12) |
C2—C3—H3 | 118.7 | C11—C12—C7 | 118.90 (12) |
C4—C3—H3 | 118.7 | C14—C13—C12 | 121.39 (13) |
O2—C4—C3 | 120.97 (13) | C14—C13—H13 | 119.3 |
O2—C4—C5 | 121.61 (13) | C12—C13—H13 | 119.3 |
C3—C4—C5 | 117.42 (13) | C13—C14—C5 | 119.72 (12) |
C6—C5—C14 | 119.78 (12) | C13—C14—C1 | 120.17 (13) |
C6—C5—C4 | 120.19 (13) | C5—C14—C1 | 120.11 (12) |
C14—C5—C4 | 120.03 (12) | O3—C15—H15A | 109.5 |
C5—C6—C7 | 121.23 (12) | O3—C15—H15B | 109.5 |
C5—C6—H6 | 119.4 | H15A—C15—H15B | 109.5 |
C7—C6—H6 | 119.4 | O3—C15—H15C | 109.5 |
C6—C7—C8 | 121.38 (12) | H15A—C15—H15C | 109.5 |
C6—C7—C12 | 119.13 (11) | H15B—C15—H15C | 109.5 |
C8—C7—C12 | 119.48 (12) | O4—C16—H16A | 109.5 |
C9—C8—C7 | 120.57 (12) | O4—C16—H16B | 109.5 |
C9—C8—H8 | 119.7 | H16A—C16—H16B | 109.5 |
C7—C8—H8 | 119.7 | O4—C16—H16C | 109.5 |
O3—C9—C8 | 125.28 (12) | H16A—C16—H16C | 109.5 |
O3—C9—C10 | 114.65 (12) | H16B—C16—H16C | 109.5 |
C8—C9—C10 | 120.05 (12) | C9—O3—C15 | 116.71 (11) |
O4—C10—C11 | 125.79 (12) | C10—O4—C16 | 116.88 (11) |
O1—C1—C2—C3 | −177.80 (14) | C10—C11—C12—C13 | 178.54 (11) |
C14—C1—C2—C3 | 2.5 (2) | C10—C11—C12—C7 | −0.80 (18) |
C1—C2—C3—C4 | 1.9 (2) | C6—C7—C12—C13 | 1.57 (17) |
C2—C3—C4—O2 | 175.88 (15) | C8—C7—C12—C13 | −179.27 (10) |
C2—C3—C4—C5 | −4.0 (2) | C6—C7—C12—C11 | −179.07 (10) |
O2—C4—C5—C6 | 2.1 (2) | C8—C7—C12—C11 | 0.09 (17) |
C3—C4—C5—C6 | −178.01 (11) | C11—C12—C13—C14 | −179.95 (10) |
O2—C4—C5—C14 | −178.31 (13) | C7—C12—C13—C14 | −0.61 (19) |
C3—C4—C5—C14 | 1.54 (18) | C12—C13—C14—C5 | −1.28 (19) |
C14—C5—C6—C7 | −1.29 (18) | C12—C13—C14—C1 | 178.67 (10) |
C4—C5—C6—C7 | 178.27 (10) | C6—C5—C14—C13 | 2.25 (18) |
C5—C6—C7—C8 | −179.76 (10) | C4—C5—C14—C13 | −177.31 (11) |
C5—C6—C7—C12 | −0.62 (18) | C6—C5—C14—C1 | −177.71 (11) |
C6—C7—C8—C9 | 179.20 (10) | C4—C5—C14—C1 | 2.73 (17) |
C12—C7—C8—C9 | 0.06 (18) | O1—C1—C14—C13 | −4.4 (2) |
C7—C8—C9—O3 | −177.93 (10) | C2—C1—C14—C13 | 175.27 (11) |
C7—C8—C9—C10 | 0.46 (19) | O1—C1—C14—C5 | 175.55 (12) |
O3—C9—C10—O4 | −3.06 (16) | C2—C1—C14—C5 | −4.77 (18) |
C8—C9—C10—O4 | 178.39 (11) | C8—C9—O3—C15 | −10.22 (19) |
O3—C9—C10—C11 | 177.38 (11) | C10—C9—O3—C15 | 171.32 (11) |
C8—C9—C10—C11 | −1.16 (19) | C11—C10—O4—C16 | −6.25 (19) |
O4—C10—C11—C12 | −178.17 (10) | C9—C10—O4—C16 | 174.23 (11) |
C9—C10—C11—C12 | 1.33 (19) |
Experimental details
Crystal data | |
Chemical formula | C16H12O4 |
Mr | 268.26 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 223 |
a, b, c (Å) | 7.478 (3), 7.492 (3), 22.949 (9) |
β (°) | 106.646 (10) |
V (Å3) | 1231.8 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.5 × 0.1 × 0.1 |
Data collection | |
Diffractometer | Rigaku/MSC Mercury CCD area-detector diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.974, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5255, 2705, 2177 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.147, 1.09 |
No. of reflections | 2705 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.17 |
Computer programs: CrystalClear (Rigaku/MSC, 2001), WinGX (Farrugia, 1999), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
Acknowledgements
We thank the Instrument Center of the Institute for Molecular Science for the X-ray structural analysis. This work was supported by a Grant-in-Aid (No. 20550128) for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Kitamura, C., Kawatsuki, N. & Yoneda, A. (2006). Anal. Sci. 22, x293–x294. CAS Google Scholar
McOmie, J. F. W. & Perry, D. H. (1973). Synthesis, pp. 416–417. CrossRef Google Scholar
Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,4-Anthraquinone has a weak dipole moment along the molecular long axis, whose value was estimated to be 2.54 debye by a B3LYP/6–31G(d) DFT calculation (Kitamura et al., 2006). The crystal structure exhibited a herring-bone packing with face-to-face slipped π-overlap along the stacking direction. In addition, the molecules were antiparallel with respect to one another. These charasteristics inspired us to study other 1,4-anthraquinone derivatives. The title compound (I), which was first prepared by McOmie & Perry (1973), has strong electron-donating methoxy groups, and therefore, has a larger dipole moment, compared with 1,4-anthraquinone, which was estimated to be 3.91 debye. This property should affect the intermolecular interactions in the crystal.
The molecular structure of (I) is shown in Fig. 1. The molecule is an almost coplanar conformation. The displacements of atoms O1, O2, O3, O4, C15, and C16 relative to the plane of the anthracene backbone are 0.159 (2), -0.004 (2), -0.039 (2), -0.003 (2), 0.168 (2), and -0.145 (2) Å, respectively. The torsion angles of the two methoxy groups are -6.25 (19)° for C11—C10—O4—C16 and -10.22 (19)° for C8—C9—O3—C15, indicating that the Cmethyl—O bonds are directed along the molecular short axis. As shown in Fig. 2, the molecules adopt a herring-bone arrangement and form face-to-face slipped antiparallel π-π stacking along the direction of the b axis. The interplanar distance is 3.278 (2) Å, whose value is shorter than that (3.423 Å) of 1,4-anthraquinone (Kitamura et al., 2006) and is indicating the existence of strong intermolecular interactions.