organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri-p-tolyl­phosphine

aCollege of Life Sciences And Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bCollege of Science, Nanjing University of Technolgy, Xinmofan Road No.5, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 3 June 2008; accepted 27 July 2008; online 20 August 2008)

In the title compound C21H21P, the P atom is situated on a crystallographic threefold rotatory-inversion axis, resulting in threefold rotation symmetry of the title compound. The dihedral angles between the symmetry-related benzene rings are 87.40 (18)°.

Related literature

For related literature, see: Brown et al. (1988[Brown, S. J., Clark, J. H. & Macquarrie, D. J. (1988). J. Chem. Soc. Dalton Trans. pp. 277-80.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21P

  • Mr = 304.35

  • Trigonal, [R \overline 3]

  • a = 12.6562 (18) Å

  • c = 19.696 (4) Å

  • V = 2732.2 (8) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.958, Tmax = 0.971

  • 3464 measured reflections

  • 1095 independent reflections

  • 790 reflections with I > 2σ(I)

  • Rint = 0.050

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.171

  • S = 1.03

  • 1095 reflections

  • 67 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some organophosphorus derivatives are important chemical materials, which are primarily used as intermediates of organic phosphorus flame retardants and phosphorus ligands in biphasic water soluble catalysts. The P atom is situated on a crystallographic threefold rotatory-inversion axis, resulting in threefold rotation symmetry of the title compound.

The dihedral angles between the symmetry-related benzene rings are 87.40 (18)°.

Related literature top

For related literature, see: Brown et al. (1988).

Experimental top

20 g Sodium (0.870 mol) was added to 125 ml toluene, then the mixture was heated up to 383 K and stirred to form fine particles of sodium, which subsequently melted. Then the temperature was lowered to 323 K. P-chlorotoluene (55.2 g / 0.436 mol) and phosphorus trichloride (19.8 g / 0.144 mol) were added, keeping the temperature between 323 K and 333 K for two hours. The product was concentrated in a vacuum to gain a white solid (35.0 g, 80%) (Brown et al., 1988). The pure title compound was obtained by crystallizing from methanol. Crystals suitable for X-ray diffraction were obtained by slow evaporation of an methanol solution.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.97 Å, and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5 Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. Symmetry codes: (i) 1 - x + y,1 - x,z (ii) 1 - y + 1,x-y,z
(I) top
Crystal data top
C21H21PDx = 1.110 Mg m3
Mr = 304.35Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 25 reflections
Hall symbol: -R 3θ = 10–13°
a = 12.6562 (18) ŵ = 0.15 mm1
c = 19.696 (4) ÅT = 293 K
V = 2732.2 (8) Å3Block, colourless
Z = 60.40 × 0.30 × 0.20 mm
F(000) = 972
Data collection top
Enraf–Nonius CAD-4
diffractometer
790 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 25.2°, θmin = 2.1°
ω/2θ scansh = 157
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.958, Tmax = 0.971l = 023
3464 measured reflections3 standard reflections every 200 reflections
1095 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.05P)2 + 4P]
where P = (Fo2 + 2Fc2)/3
1095 reflections(Δ/σ)max < 0.001
67 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C21H21PZ = 6
Mr = 304.35Mo Kα radiation
Trigonal, R3µ = 0.15 mm1
a = 12.6562 (18) ÅT = 293 K
c = 19.696 (4) Å0.40 × 0.30 × 0.20 mm
V = 2732.2 (8) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
790 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.050
Tmin = 0.958, Tmax = 0.9713 standard reflections every 200 reflections
3464 measured reflections intensity decay: none
1095 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
1095 reflectionsΔρmin = 0.34 e Å3
67 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.66670.33330.01046 (7)0.0705 (5)
C10.8153 (4)0.8316 (3)0.1198 (2)0.0992 (12)
H1A0.77760.86860.09440.149*
H1B0.78820.82090.16610.149*
H1C0.90240.88320.11820.149*
C20.7805 (3)0.7091 (3)0.08924 (18)0.0710 (8)
C30.8232 (3)0.6365 (3)0.11520 (14)0.0647 (8)
H3A0.87520.66360.15250.078*
C40.7903 (3)0.5238 (3)0.08689 (15)0.0644 (7)
H4A0.82050.47680.10580.077*
C50.7147 (3)0.4803 (2)0.03192 (14)0.0609 (7)
C60.6732 (3)0.5549 (3)0.0040 (2)0.0811 (10)
H6A0.62470.53010.03480.097*
C70.7050 (3)0.6663 (3)0.03445 (19)0.0809 (10)
H7A0.67350.71300.01670.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0791 (6)0.0791 (6)0.0533 (8)0.0396 (3)0.0000.000
C10.096 (3)0.076 (2)0.128 (4)0.044 (2)0.000 (2)0.008 (2)
C20.0533 (16)0.0599 (17)0.097 (2)0.0259 (14)0.0093 (15)0.0109 (16)
C30.0609 (16)0.0699 (18)0.0587 (17)0.0294 (14)0.0003 (13)0.0060 (13)
C40.0648 (17)0.0653 (17)0.0666 (18)0.0353 (14)0.0009 (14)0.0129 (14)
C50.0607 (16)0.0677 (17)0.0530 (16)0.0312 (13)0.0028 (12)0.0109 (13)
C60.069 (2)0.083 (2)0.091 (2)0.0377 (17)0.0151 (17)0.0131 (18)
C70.074 (2)0.076 (2)0.100 (3)0.0436 (17)0.0036 (18)0.0164 (18)
Geometric parameters (Å, º) top
P—C5i1.843 (3)C3—C41.388 (4)
P—C5ii1.843 (3)C3—H3A0.9300
P—C51.843 (3)C4—C51.366 (4)
C1—C21.508 (4)C4—H4A0.9300
C1—H1A0.9600C5—C61.401 (4)
C1—H1B0.9600C6—C71.394 (5)
C1—H1C0.9600C6—H6A0.9300
C2—C71.361 (5)C7—H7A0.9300
C2—C31.377 (4)
C5i—P—C5ii101.08 (11)C4—C3—H3A119.3
C5i—P—C5101.08 (11)C5—C4—C3121.5 (3)
C5ii—P—C5101.08 (11)C5—C4—H4A119.3
C2—C1—H1A109.5C3—C4—H4A119.3
C2—C1—H1B109.5C4—C5—C6117.6 (3)
H1A—C1—H1B109.5C4—C5—P125.2 (2)
C2—C1—H1C109.5C6—C5—P117.1 (2)
H1A—C1—H1C109.5C7—C6—C5119.8 (3)
H1B—C1—H1C109.5C7—C6—H6A120.1
C7—C2—C3117.4 (3)C5—C6—H6A120.1
C7—C2—C1120.8 (3)C2—C7—C6122.3 (3)
C3—C2—C1121.8 (3)C2—C7—H7A118.8
C2—C3—C4121.4 (3)C6—C7—H7A118.8
C2—C3—H3A119.3
C7—C2—C3—C40.3 (5)C5i—P—C5—C6169.0 (2)
C1—C2—C3—C4179.8 (3)C5ii—P—C5—C687.2 (3)
C2—C3—C4—C50.3 (5)C4—C5—C6—C73.0 (5)
C3—C4—C5—C61.4 (5)P—C5—C6—C7179.0 (3)
C3—C4—C5—P179.2 (2)C3—C2—C7—C61.5 (5)
C5i—P—C5—C48.8 (3)C1—C2—C7—C6178.4 (3)
C5ii—P—C5—C495.0 (2)C5—C6—C7—C23.2 (5)
Symmetry codes: (i) x+y+1, x+1, z; (ii) y+1, xy, z.

Experimental details

Crystal data
Chemical formulaC21H21P
Mr304.35
Crystal system, space groupTrigonal, R3
Temperature (K)293
a, c (Å)12.6562 (18), 19.696 (4)
V3)2732.2 (8)
Z6
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.958, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
3464, 1095, 790
Rint0.050
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.171, 1.03
No. of reflections1095
No. of parameters67
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.34

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationBrown, S. J., Clark, J. H. & Macquarrie, D. J. (1988). J. Chem. Soc. Dalton Trans. pp. 277–80.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds