metal-organic compounds
Hexaaquazinc(II) dichloride bis(hexamethylenetetramine) tetrahydrate
aDepartment of Chemistry, Zhokou Normal University, Henan 466001, People's Republic of China
*Correspondence e-mail: bookw@126.com
The title compound, [Zn(H2O)6]Cl2·2C6H12N4·4H2O, has been prepared under mild hydrothermal conditions. The ZnII atom, located on a centre of symmetry, is coordinated by six water molecules in a distorted octahedral coordination geometry. The hexamethylenetetramine molecule is not coordinated to ZnII but links the Zn complexes via three O—H⋯N hydrogen bonds. The remaining N atom of the hexamethylenetetramine molecule is hydrogen-bonded to a solvent water molecule. In the intermolecular O—H⋯O, O—H⋯N and O—H⋯Cl hydrogen bonds link the components into a three-dimensional network.
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808024793/kp2186sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808024793/kp2186Isup2.hkl
All the reagents were of AR grade and used without further purification. C6H12N4 (1.401 g, 10 mmol) were dissolved in 50 mL H2O solution, then the resultant solution was added in 10 mL double-distilled water containing ZnCl2 (0.273 g, 2 mmol). The resulting solution was heated at 423 K for 96 h. After cooling to room temperature, block crystals were obtained in a yield up to 21.1%.
H atoms bonded to O atoms were located in a difference map and included in their 'as found' positions with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically with C—H = 0.97 Å and with Uiso(H)=1.2Ueq(C). All H atoms were treated as riding.
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Plot of an asymmetric unit with the 30% probability ellipsoids. | |
Fig. 2. Three-dimensional network of hydrogen-bonding pattern with the motif R44(16) linking the cationic moieties with hexamine which are in turn interwoven with anionic moieties via water molecules. |
[Zn(H2O)6]Cl2·2C6H12N4·4H2O | Z = 1 |
Mr = 596.84 | F(000) = 316 |
Triclinic, P1 | Dx = 1.422 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.345 (3) Å | Cell parameters from 2143 reflections |
b = 9.4176 (15) Å | θ = 2.5–25.5° |
c = 9.4535 (15) Å | µ = 1.13 mm−1 |
α = 119.521 (1)° | T = 291 K |
β = 94.218 (2)° | Block, colorless |
γ = 100.969 (2)° | 0.36 × 0.29 × 0.15 mm |
V = 697.0 (3) Å3 |
Bruker SMART CCD area-detector diffractometer | 2576 independent reflections |
Radiation source: fine-focus sealed tube | 2466 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 0 pixels mm-1 | θmax = 25.5°, θmin = 2.5° |
ϕ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −11→11 |
Tmin = 0.690, Tmax = 0.849 | l = −11→11 |
5184 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0645P)2 + 0.6988P] where P = (Fo2 + 2Fc2)/3 |
2576 reflections | (Δ/σ)max < 0.001 |
151 parameters | Δρmax = 0.51 e Å−3 |
0 restraints | Δρmin = −0.68 e Å−3 |
[Zn(H2O)6]Cl2·2C6H12N4·4H2O | γ = 100.969 (2)° |
Mr = 596.84 | V = 697.0 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.345 (3) Å | Mo Kα radiation |
b = 9.4176 (15) Å | µ = 1.13 mm−1 |
c = 9.4535 (15) Å | T = 291 K |
α = 119.521 (1)° | 0.36 × 0.29 × 0.15 mm |
β = 94.218 (2)° |
Bruker SMART CCD area-detector diffractometer | 2576 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2466 reflections with I > 2σ(I) |
Tmin = 0.690, Tmax = 0.849 | Rint = 0.018 |
5184 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.51 e Å−3 |
2576 reflections | Δρmin = −0.68 e Å−3 |
151 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.5000 | 0.0000 | 0.0000 | 0.02942 (16) | |
Cl1 | 0.18939 (10) | 0.17479 (10) | 0.43496 (10) | 0.0530 (2) | |
O1 | 0.3835 (2) | 0.1347 (2) | −0.0573 (2) | 0.0385 (5) | |
H1W | 0.3888 | 0.2257 | 0.0269 | 0.058* | |
H2W | 0.3035 | 0.0961 | −0.1235 | 0.058* | |
O2 | 0.6192 (2) | 0.2238 (2) | 0.1987 (2) | 0.0445 (5) | |
H3W | 0.6176 | 0.2521 | 0.2964 | 0.067* | |
H4W | 0.6833 | 0.2949 | 0.1930 | 0.067* | |
O3 | 0.3580 (2) | −0.0281 (3) | 0.1463 (3) | 0.0449 (5) | |
H5W | 0.3405 | 0.0629 | 0.2078 | 0.067* | |
H6W | 0.3658 | −0.0839 | 0.1907 | 0.067* | |
O4 | 0.1961 (2) | 0.5028 (3) | 0.7778 (3) | 0.0453 (5) | |
H7W | 0.2082 | 0.4201 | 0.6931 | 0.068* | |
H8W | 0.1053 | 0.4939 | 0.7784 | 0.068* | |
O5 | 0.1487 (3) | 0.0521 (4) | 0.7002 (4) | 0.0734 (8) | |
H9W | 0.1699 | 0.0950 | 0.6431 | 0.110* | |
H10W | 0.0600 | −0.0024 | 0.6715 | 0.110* | |
N1 | 0.3345 (3) | 0.7407 (3) | 0.2554 (3) | 0.0330 (5) | |
N2 | 0.3362 (3) | 0.6543 (3) | 0.4602 (3) | 0.0333 (5) | |
N3 | 0.3418 (3) | 0.4524 (3) | 0.1728 (3) | 0.0321 (5) | |
N4 | 0.1152 (2) | 0.5427 (3) | 0.2441 (3) | 0.0340 (5) | |
C1 | 0.3865 (3) | 0.7935 (3) | 0.4289 (3) | 0.0356 (6) | |
H1A | 0.3492 | 0.8886 | 0.5010 | 0.043* | |
H1B | 0.4942 | 0.8302 | 0.4552 | 0.043* | |
C2 | 0.3944 (3) | 0.5116 (3) | 0.3488 (3) | 0.0342 (6) | |
H2A | 0.3628 | 0.4191 | 0.3677 | 0.041* | |
H2B | 0.5022 | 0.5466 | 0.3743 | 0.041* | |
C3 | 0.1782 (3) | 0.4021 (3) | 0.1376 (3) | 0.0381 (6) | |
H3A | 0.1440 | 0.3088 | 0.1546 | 0.046* | |
H3B | 0.1422 | 0.3632 | 0.0223 | 0.046* | |
C4 | 0.1706 (3) | 0.6838 (4) | 0.2176 (4) | 0.0375 (6) | |
H4A | 0.1348 | 0.6480 | 0.1032 | 0.045* | |
H4B | 0.1311 | 0.7778 | 0.2876 | 0.045* | |
C5 | 0.3925 (3) | 0.5955 (4) | 0.1482 (3) | 0.0353 (6) | |
H5A | 0.3595 | 0.5592 | 0.0331 | 0.042* | |
H5B | 0.5003 | 0.6306 | 0.1729 | 0.042* | |
C6 | 0.1728 (3) | 0.5995 (4) | 0.4186 (3) | 0.0369 (6) | |
H6A | 0.1333 | 0.6925 | 0.4910 | 0.044* | |
H6B | 0.1386 | 0.5076 | 0.4377 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0395 (3) | 0.0233 (2) | 0.0250 (2) | 0.00991 (17) | 0.00711 (17) | 0.01148 (18) |
Cl1 | 0.0591 (5) | 0.0399 (4) | 0.0534 (5) | 0.0135 (3) | 0.0246 (4) | 0.0173 (4) |
O1 | 0.0604 (11) | 0.0278 (9) | 0.0329 (10) | 0.0192 (8) | −0.0009 (8) | 0.0105 (8) |
O2 | 0.0710 (13) | 0.0280 (10) | 0.0220 (9) | −0.0076 (9) | 0.0009 (9) | 0.0081 (8) |
O3 | 0.0675 (14) | 0.0422 (11) | 0.0548 (12) | 0.0327 (10) | 0.0401 (11) | 0.0367 (10) |
O4 | 0.0398 (11) | 0.0386 (11) | 0.0417 (11) | 0.0003 (9) | 0.0055 (9) | 0.0130 (9) |
O5 | 0.0604 (16) | 0.086 (2) | 0.0720 (18) | 0.0027 (14) | −0.0156 (13) | 0.0485 (16) |
N1 | 0.0423 (12) | 0.0298 (11) | 0.0371 (12) | 0.0160 (10) | 0.0161 (10) | 0.0214 (10) |
N2 | 0.0426 (12) | 0.0285 (11) | 0.0242 (10) | 0.0036 (9) | 0.0050 (9) | 0.0125 (9) |
N3 | 0.0407 (12) | 0.0255 (11) | 0.0275 (11) | 0.0144 (9) | 0.0046 (9) | 0.0102 (9) |
N4 | 0.0345 (11) | 0.0289 (11) | 0.0335 (11) | 0.0088 (9) | 0.0063 (9) | 0.0124 (9) |
C1 | 0.0433 (15) | 0.0221 (12) | 0.0348 (14) | 0.0048 (10) | 0.0100 (11) | 0.0110 (11) |
C2 | 0.0432 (15) | 0.0284 (13) | 0.0326 (13) | 0.0090 (11) | 0.0007 (11) | 0.0178 (11) |
C3 | 0.0417 (15) | 0.0264 (13) | 0.0327 (14) | 0.0086 (11) | −0.0005 (11) | 0.0066 (11) |
C4 | 0.0443 (15) | 0.0376 (15) | 0.0404 (15) | 0.0219 (12) | 0.0136 (12) | 0.0226 (12) |
C5 | 0.0452 (15) | 0.0399 (15) | 0.0314 (13) | 0.0217 (12) | 0.0167 (11) | 0.0214 (12) |
C6 | 0.0427 (15) | 0.0337 (14) | 0.0326 (14) | 0.0055 (11) | 0.0128 (11) | 0.0167 (11) |
Zn1—O2i | 2.0269 (18) | N2—C2 | 1.476 (3) |
Zn1—O2 | 2.0269 (18) | N2—C1 | 1.481 (3) |
Zn1—O1 | 2.0507 (17) | N3—C3 | 1.472 (4) |
Zn1—O1i | 2.0507 (17) | N3—C5 | 1.476 (3) |
Zn1—O3i | 2.0595 (18) | N3—C2 | 1.477 (3) |
Zn1—O3 | 2.0595 (18) | N4—C4 | 1.477 (4) |
O1—H1W | 0.8223 | N4—C3 | 1.478 (3) |
O1—H2W | 0.8281 | N4—C6 | 1.479 (4) |
O2—H3W | 0.8279 | C1—H1A | 0.9700 |
O2—H4W | 0.8360 | C1—H1B | 0.9700 |
O3—H5W | 0.8221 | C2—H2A | 0.9700 |
O3—H6W | 0.8267 | C2—H2B | 0.9700 |
O4—H7W | 0.8326 | C3—H3A | 0.9700 |
O4—H8W | 0.8374 | C3—H3B | 0.9700 |
O5—H9W | 0.8338 | C4—H4A | 0.9700 |
O5—H10W | 0.8316 | C4—H4B | 0.9700 |
N1—C1 | 1.470 (4) | C5—H5A | 0.9700 |
N1—C4 | 1.476 (4) | C5—H5B | 0.9700 |
N1—C5 | 1.479 (3) | C6—H6A | 0.9700 |
N2—C6 | 1.471 (4) | C6—H6B | 0.9700 |
O2i—Zn1—O2 | 180.00 (11) | C3—N4—C6 | 107.8 (2) |
O2i—Zn1—O1 | 92.66 (8) | N1—C1—N2 | 111.7 (2) |
O2—Zn1—O1 | 87.34 (8) | N1—C1—H1A | 109.3 |
O2i—Zn1—O1i | 87.34 (8) | N2—C1—H1A | 109.3 |
O2—Zn1—O1i | 92.66 (8) | N1—C1—H1B | 109.3 |
O1—Zn1—O1i | 180.00 (12) | N2—C1—H1B | 109.3 |
O2i—Zn1—O3i | 89.59 (9) | H1A—C1—H1B | 107.9 |
O2—Zn1—O3i | 90.41 (9) | N2—C2—N3 | 111.6 (2) |
O1—Zn1—O3i | 86.57 (8) | N2—C2—H2A | 109.3 |
O1i—Zn1—O3i | 93.43 (8) | N3—C2—H2A | 109.3 |
O2i—Zn1—O3 | 90.41 (9) | N2—C2—H2B | 109.3 |
O2—Zn1—O3 | 89.59 (9) | N3—C2—H2B | 109.3 |
O1—Zn1—O3 | 93.43 (8) | H2A—C2—H2B | 108.0 |
O1i—Zn1—O3 | 86.57 (8) | N3—C3—N4 | 112.2 (2) |
O3i—Zn1—O3 | 180.00 (19) | N3—C3—H3A | 109.2 |
Zn1—O1—H1W | 109.5 | N4—C3—H3A | 109.2 |
Zn1—O1—H2W | 126.6 | N3—C3—H3B | 109.2 |
H1W—O1—H2W | 113.2 | N4—C3—H3B | 109.2 |
Zn1—O2—H3W | 124.5 | H3A—C3—H3B | 107.9 |
Zn1—O2—H4W | 124.2 | N1—C4—N4 | 112.2 (2) |
H3W—O2—H4W | 111.0 | N1—C4—H4A | 109.2 |
Zn1—O3—H5W | 109.6 | N4—C4—H4A | 109.2 |
Zn1—O3—H6W | 123.5 | N1—C4—H4B | 109.2 |
H5W—O3—H6W | 113.5 | N4—C4—H4B | 109.2 |
H7W—O4—H8W | 110.1 | H4A—C4—H4B | 107.9 |
H9W—O5—H10W | 111.5 | N3—C5—N1 | 111.7 (2) |
C1—N1—C4 | 108.4 (2) | N3—C5—H5A | 109.3 |
C1—N1—C5 | 108.2 (2) | N1—C5—H5A | 109.3 |
C4—N1—C5 | 108.3 (2) | N3—C5—H5B | 109.3 |
C6—N2—C2 | 108.5 (2) | N1—C5—H5B | 109.3 |
C6—N2—C1 | 108.5 (2) | H5A—C5—H5B | 108.0 |
C2—N2—C1 | 108.0 (2) | N2—C6—N4 | 112.0 (2) |
C3—N3—C5 | 108.7 (2) | N2—C6—H6A | 109.2 |
C3—N3—C2 | 108.4 (2) | N4—C6—H6A | 109.2 |
C5—N3—C2 | 107.9 (2) | N2—C6—H6B | 109.2 |
C4—N4—C3 | 108.0 (2) | N4—C6—H6B | 109.2 |
C4—N4—C6 | 108.1 (2) | H6A—C6—H6B | 107.9 |
C4—N1—C1—N2 | 58.4 (3) | C1—N1—C4—N4 | −58.6 (3) |
C5—N1—C1—N2 | −58.8 (3) | C5—N1—C4—N4 | 58.6 (3) |
C6—N2—C1—N1 | −58.6 (3) | C3—N4—C4—N1 | −58.3 (3) |
C2—N2—C1—N1 | 58.9 (3) | C6—N4—C4—N1 | 58.1 (3) |
C6—N2—C2—N3 | 58.3 (3) | C3—N3—C5—N1 | 58.1 (3) |
C1—N2—C2—N3 | −59.1 (3) | C2—N3—C5—N1 | −59.2 (3) |
C3—N3—C2—N2 | −58.2 (3) | C1—N1—C5—N3 | 59.2 (3) |
C5—N3—C2—N2 | 59.4 (3) | C4—N1—C5—N3 | −58.1 (3) |
C5—N3—C3—N4 | −58.3 (3) | C2—N2—C6—N4 | −58.8 (3) |
C2—N3—C3—N4 | 58.7 (3) | C1—N2—C6—N4 | 58.4 (3) |
C4—N4—C3—N3 | 58.0 (3) | C4—N4—C6—N2 | −58.0 (3) |
C6—N4—C3—N3 | −58.6 (3) | C3—N4—C6—N2 | 58.5 (3) |
Symmetry code: (i) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···N3 | 0.82 | 2.05 | 2.827 (3) | 158 |
O1—H2W···O5ii | 0.83 | 1.94 | 2.743 (3) | 162 |
O2—H3W···N2iii | 0.83 | 1.99 | 2.804 (3) | 167 |
O2—H4W···O4iii | 0.84 | 1.90 | 2.711 (3) | 165 |
O3—H5W···Cl1 | 0.82 | 2.55 | 3.197 (2) | 137 |
O3—H6W···N1iv | 0.83 | 2.01 | 2.813 (3) | 165 |
O4—H7W···Cl1 | 0.83 | 2.36 | 3.175 (2) | 168 |
O4—H8W···N4v | 0.84 | 2.00 | 2.835 (3) | 174 |
O5—H9W···Cl1 | 0.83 | 2.43 | 3.255 (3) | 168 |
O5—H10W···Cl1vi | 0.83 | 2.38 | 3.213 (3) | 175 |
Symmetry codes: (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) −x, −y+1, −z+1; (vi) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Zn(H2O)6]Cl2·2C6H12N4·4H2O |
Mr | 596.84 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 291 |
a, b, c (Å) | 9.345 (3), 9.4176 (15), 9.4535 (15) |
α, β, γ (°) | 119.521 (1), 94.218 (2), 100.969 (2) |
V (Å3) | 697.0 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.13 |
Crystal size (mm) | 0.36 × 0.29 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.690, 0.849 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5184, 2576, 2466 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.113, 1.05 |
No. of reflections | 2576 |
No. of parameters | 151 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.51, −0.68 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···N3 | 0.82 | 2.05 | 2.827 (3) | 157.6 |
O1—H2W···O5i | 0.83 | 1.94 | 2.743 (3) | 162.0 |
O2—H3W···N2ii | 0.83 | 1.99 | 2.804 (3) | 166.6 |
O2—H4W···O4ii | 0.84 | 1.90 | 2.711 (3) | 164.6 |
O3—H5W···Cl1 | 0.82 | 2.55 | 3.197 (2) | 136.6 |
O3—H6W···N1iii | 0.83 | 2.01 | 2.813 (3) | 164.9 |
O4—H7W···Cl1 | 0.83 | 2.36 | 3.175 (2) | 168.2 |
O4—H8W···N4iv | 0.84 | 2.00 | 2.835 (3) | 174.4 |
O5—H9W···Cl1 | 0.83 | 2.43 | 3.255 (3) | 168.4 |
O5—H10W···Cl1v | 0.83 | 2.38 | 3.213 (3) | 174.8 |
Symmetry codes: (i) x, y, z−1; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z; (iv) −x, −y+1, −z+1; (v) −x, −y, −z+1. |
Acknowledgements
We thank the Natural Science Foundation of Henan Province and the Key Discipline Foundation of Zhoukou Normal University for financial support of this research.
References
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, Y., Li, J., Nishiura, M. & Imamoto, T. (2000). J. Mol. Struct. 523, 257–260. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The asymmetric unit (Fig.1) consists of one half of hexaaua ZnII octahedron, one chloride ion, one uncoordinated neutral hexamethylenetetramine and two molecules of water of crystallization. The hexamethylenetetramine molecule is linked to the [Zn(H2O)6]2+ via three O—H···N hydrogen bonds, while atom N3 of hexamethylenetetramine is hydrogen-bonded to O5 of the solvent water molecule. The Cl- anions link to the [Zn(H2O)6]2+ and water of crystallization via O—H···Cl hydrogen bonding, Hydrogen bonding of these anionic and cationic frameworks results in the formation of a three-dimensional network (Table 1, Fig. 2).