metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­zinc(II) dichloride bis­­(hexa­methyl­ene­tetramine) tetra­hydrate

aDepartment of Chemistry, Zhokou Normal University, Henan 466001, People's Republic of China
*Correspondence e-mail: bookw@126.com

(Received 19 July 2008; accepted 1 August 2008; online 6 August 2008)

The title compound, [Zn(H2O)6]Cl2·2C6H12N4·4H2O, has been prepared under mild hydro­thermal conditions. The ZnII atom, located on a centre of symmetry, is coordinated by six water mol­ecules in a distorted octa­hedral coordination geometry. The hexa­methyl­enetetra­mine mol­ecule is not coordinated to ZnII but links the Zn complexes via three O—H⋯N hydrogen bonds. The remaining N atom of the hexa­methyl­enetetra­mine mol­ecule is hydrogen-bonded to a solvent water mol­ecule. In the crystal structure, inter­molecular O—H⋯O, O—H⋯N and O—H⋯Cl hydrogen bonds link the components into a three-dimensional network.

Related literature

For related compounds, see: Zhang et al. (2000[Zhang, Y., Li, J., Nishiura, M. & Imamoto, T. (2000). J. Mol. Struct. 523, 257-260.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(H2O)6]Cl2·2C6H12N4·4H2O

  • Mr = 596.84

  • Triclinic, [P \overline 1]

  • a = 9.345 (3) Å

  • b = 9.4176 (15) Å

  • c = 9.4535 (15) Å

  • α = 119.521 (1)°

  • β = 94.218 (2)°

  • γ = 100.969 (2)°

  • V = 697.0 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 291 (2) K

  • 0.36 × 0.29 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.690, Tmax = 0.849

  • 5184 measured reflections

  • 2576 independent reflections

  • 2466 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.113

  • S = 1.05

  • 2576 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯N3 0.82 2.05 2.827 (3) 158
O1—H2W⋯O5i 0.83 1.94 2.743 (3) 162
O2—H3W⋯N2ii 0.83 1.99 2.804 (3) 167
O2—H4W⋯O4ii 0.84 1.90 2.711 (3) 165
O3—H5W⋯Cl1 0.82 2.55 3.197 (2) 137
O3—H6W⋯N1iii 0.83 2.01 2.813 (3) 165
O4—H7W⋯Cl1 0.83 2.36 3.175 (2) 168
O4—H8W⋯N4iv 0.84 2.00 2.835 (3) 174
O5—H9W⋯Cl1 0.83 2.43 3.255 (3) 168
O5—H10W⋯Cl1v 0.83 2.38 3.213 (3) 175
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z; (iv) -x, -y+1, -z+1; (v) -x, -y, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The asymmetric unit (Fig.1) consists of one half of hexaaua ZnII octahedron, one chloride ion, one uncoordinated neutral hexamethylenetetramine and two molecules of water of crystallization. The hexamethylenetetramine molecule is linked to the [Zn(H2O)6]2+ via three O—H···N hydrogen bonds, while atom N3 of hexamethylenetetramine is hydrogen-bonded to O5 of the solvent water molecule. The Cl- anions link to the [Zn(H2O)6]2+ and water of crystallization via O—H···Cl hydrogen bonding, Hydrogen bonding of these anionic and cationic frameworks results in the formation of a three-dimensional network (Table 1, Fig. 2).

Related literature top

For related compounds, see: Zhang et al. (2000).

Experimental top

All the reagents were of AR grade and used without further purification. C6H12N4 (1.401 g, 10 mmol) were dissolved in 50 mL H2O solution, then the resultant solution was added in 10 mL double-distilled water containing ZnCl2 (0.273 g, 2 mmol). The resulting solution was heated at 423 K for 96 h. After cooling to room temperature, block crystals were obtained in a yield up to 21.1%.

Refinement top

H atoms bonded to O atoms were located in a difference map and included in their 'as found' positions with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically with C—H = 0.97 Å and with Uiso(H)=1.2Ueq(C). All H atoms were treated as riding.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Plot of an asymmetric unit with the 30% probability ellipsoids.
[Figure 2] Fig. 2. Three-dimensional network of hydrogen-bonding pattern with the motif R44(16) linking the cationic moieties with hexamine which are in turn interwoven with anionic moieties via water molecules.
Hexaaquazinc(II) dichloride bis(hexamethylenetetramine) tetrahydrate top
Crystal data top
[Zn(H2O)6]Cl2·2C6H12N4·4H2OZ = 1
Mr = 596.84F(000) = 316
Triclinic, P1Dx = 1.422 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.345 (3) ÅCell parameters from 2143 reflections
b = 9.4176 (15) Åθ = 2.5–25.5°
c = 9.4535 (15) ŵ = 1.13 mm1
α = 119.521 (1)°T = 291 K
β = 94.218 (2)°Block, colorless
γ = 100.969 (2)°0.36 × 0.29 × 0.15 mm
V = 697.0 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2576 independent reflections
Radiation source: fine-focus sealed tube2466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 0 pixels mm-1θmax = 25.5°, θmin = 2.5°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.690, Tmax = 0.849l = 1111
5184 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.6988P]
where P = (Fo2 + 2Fc2)/3
2576 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Zn(H2O)6]Cl2·2C6H12N4·4H2Oγ = 100.969 (2)°
Mr = 596.84V = 697.0 (3) Å3
Triclinic, P1Z = 1
a = 9.345 (3) ÅMo Kα radiation
b = 9.4176 (15) ŵ = 1.13 mm1
c = 9.4535 (15) ÅT = 291 K
α = 119.521 (1)°0.36 × 0.29 × 0.15 mm
β = 94.218 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2576 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2466 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.849Rint = 0.018
5184 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.05Δρmax = 0.51 e Å3
2576 reflectionsΔρmin = 0.68 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.00000.00000.02942 (16)
Cl10.18939 (10)0.17479 (10)0.43496 (10)0.0530 (2)
O10.3835 (2)0.1347 (2)0.0573 (2)0.0385 (5)
H1W0.38880.22570.02690.058*
H2W0.30350.09610.12350.058*
O20.6192 (2)0.2238 (2)0.1987 (2)0.0445 (5)
H3W0.61760.25210.29640.067*
H4W0.68330.29490.19300.067*
O30.3580 (2)0.0281 (3)0.1463 (3)0.0449 (5)
H5W0.34050.06290.20780.067*
H6W0.36580.08390.19070.067*
O40.1961 (2)0.5028 (3)0.7778 (3)0.0453 (5)
H7W0.20820.42010.69310.068*
H8W0.10530.49390.77840.068*
O50.1487 (3)0.0521 (4)0.7002 (4)0.0734 (8)
H9W0.16990.09500.64310.110*
H10W0.06000.00240.67150.110*
N10.3345 (3)0.7407 (3)0.2554 (3)0.0330 (5)
N20.3362 (3)0.6543 (3)0.4602 (3)0.0333 (5)
N30.3418 (3)0.4524 (3)0.1728 (3)0.0321 (5)
N40.1152 (2)0.5427 (3)0.2441 (3)0.0340 (5)
C10.3865 (3)0.7935 (3)0.4289 (3)0.0356 (6)
H1A0.34920.88860.50100.043*
H1B0.49420.83020.45520.043*
C20.3944 (3)0.5116 (3)0.3488 (3)0.0342 (6)
H2A0.36280.41910.36770.041*
H2B0.50220.54660.37430.041*
C30.1782 (3)0.4021 (3)0.1376 (3)0.0381 (6)
H3A0.14400.30880.15460.046*
H3B0.14220.36320.02230.046*
C40.1706 (3)0.6838 (4)0.2176 (4)0.0375 (6)
H4A0.13480.64800.10320.045*
H4B0.13110.77780.28760.045*
C50.3925 (3)0.5955 (4)0.1482 (3)0.0353 (6)
H5A0.35950.55920.03310.042*
H5B0.50030.63060.17290.042*
C60.1728 (3)0.5995 (4)0.4186 (3)0.0369 (6)
H6A0.13330.69250.49100.044*
H6B0.13860.50760.43770.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0395 (3)0.0233 (2)0.0250 (2)0.00991 (17)0.00711 (17)0.01148 (18)
Cl10.0591 (5)0.0399 (4)0.0534 (5)0.0135 (3)0.0246 (4)0.0173 (4)
O10.0604 (11)0.0278 (9)0.0329 (10)0.0192 (8)0.0009 (8)0.0105 (8)
O20.0710 (13)0.0280 (10)0.0220 (9)0.0076 (9)0.0009 (9)0.0081 (8)
O30.0675 (14)0.0422 (11)0.0548 (12)0.0327 (10)0.0401 (11)0.0367 (10)
O40.0398 (11)0.0386 (11)0.0417 (11)0.0003 (9)0.0055 (9)0.0130 (9)
O50.0604 (16)0.086 (2)0.0720 (18)0.0027 (14)0.0156 (13)0.0485 (16)
N10.0423 (12)0.0298 (11)0.0371 (12)0.0160 (10)0.0161 (10)0.0214 (10)
N20.0426 (12)0.0285 (11)0.0242 (10)0.0036 (9)0.0050 (9)0.0125 (9)
N30.0407 (12)0.0255 (11)0.0275 (11)0.0144 (9)0.0046 (9)0.0102 (9)
N40.0345 (11)0.0289 (11)0.0335 (11)0.0088 (9)0.0063 (9)0.0124 (9)
C10.0433 (15)0.0221 (12)0.0348 (14)0.0048 (10)0.0100 (11)0.0110 (11)
C20.0432 (15)0.0284 (13)0.0326 (13)0.0090 (11)0.0007 (11)0.0178 (11)
C30.0417 (15)0.0264 (13)0.0327 (14)0.0086 (11)0.0005 (11)0.0066 (11)
C40.0443 (15)0.0376 (15)0.0404 (15)0.0219 (12)0.0136 (12)0.0226 (12)
C50.0452 (15)0.0399 (15)0.0314 (13)0.0217 (12)0.0167 (11)0.0214 (12)
C60.0427 (15)0.0337 (14)0.0326 (14)0.0055 (11)0.0128 (11)0.0167 (11)
Geometric parameters (Å, º) top
Zn1—O2i2.0269 (18)N2—C21.476 (3)
Zn1—O22.0269 (18)N2—C11.481 (3)
Zn1—O12.0507 (17)N3—C31.472 (4)
Zn1—O1i2.0507 (17)N3—C51.476 (3)
Zn1—O3i2.0595 (18)N3—C21.477 (3)
Zn1—O32.0595 (18)N4—C41.477 (4)
O1—H1W0.8223N4—C31.478 (3)
O1—H2W0.8281N4—C61.479 (4)
O2—H3W0.8279C1—H1A0.9700
O2—H4W0.8360C1—H1B0.9700
O3—H5W0.8221C2—H2A0.9700
O3—H6W0.8267C2—H2B0.9700
O4—H7W0.8326C3—H3A0.9700
O4—H8W0.8374C3—H3B0.9700
O5—H9W0.8338C4—H4A0.9700
O5—H10W0.8316C4—H4B0.9700
N1—C11.470 (4)C5—H5A0.9700
N1—C41.476 (4)C5—H5B0.9700
N1—C51.479 (3)C6—H6A0.9700
N2—C61.471 (4)C6—H6B0.9700
O2i—Zn1—O2180.00 (11)C3—N4—C6107.8 (2)
O2i—Zn1—O192.66 (8)N1—C1—N2111.7 (2)
O2—Zn1—O187.34 (8)N1—C1—H1A109.3
O2i—Zn1—O1i87.34 (8)N2—C1—H1A109.3
O2—Zn1—O1i92.66 (8)N1—C1—H1B109.3
O1—Zn1—O1i180.00 (12)N2—C1—H1B109.3
O2i—Zn1—O3i89.59 (9)H1A—C1—H1B107.9
O2—Zn1—O3i90.41 (9)N2—C2—N3111.6 (2)
O1—Zn1—O3i86.57 (8)N2—C2—H2A109.3
O1i—Zn1—O3i93.43 (8)N3—C2—H2A109.3
O2i—Zn1—O390.41 (9)N2—C2—H2B109.3
O2—Zn1—O389.59 (9)N3—C2—H2B109.3
O1—Zn1—O393.43 (8)H2A—C2—H2B108.0
O1i—Zn1—O386.57 (8)N3—C3—N4112.2 (2)
O3i—Zn1—O3180.00 (19)N3—C3—H3A109.2
Zn1—O1—H1W109.5N4—C3—H3A109.2
Zn1—O1—H2W126.6N3—C3—H3B109.2
H1W—O1—H2W113.2N4—C3—H3B109.2
Zn1—O2—H3W124.5H3A—C3—H3B107.9
Zn1—O2—H4W124.2N1—C4—N4112.2 (2)
H3W—O2—H4W111.0N1—C4—H4A109.2
Zn1—O3—H5W109.6N4—C4—H4A109.2
Zn1—O3—H6W123.5N1—C4—H4B109.2
H5W—O3—H6W113.5N4—C4—H4B109.2
H7W—O4—H8W110.1H4A—C4—H4B107.9
H9W—O5—H10W111.5N3—C5—N1111.7 (2)
C1—N1—C4108.4 (2)N3—C5—H5A109.3
C1—N1—C5108.2 (2)N1—C5—H5A109.3
C4—N1—C5108.3 (2)N3—C5—H5B109.3
C6—N2—C2108.5 (2)N1—C5—H5B109.3
C6—N2—C1108.5 (2)H5A—C5—H5B108.0
C2—N2—C1108.0 (2)N2—C6—N4112.0 (2)
C3—N3—C5108.7 (2)N2—C6—H6A109.2
C3—N3—C2108.4 (2)N4—C6—H6A109.2
C5—N3—C2107.9 (2)N2—C6—H6B109.2
C4—N4—C3108.0 (2)N4—C6—H6B109.2
C4—N4—C6108.1 (2)H6A—C6—H6B107.9
C4—N1—C1—N258.4 (3)C1—N1—C4—N458.6 (3)
C5—N1—C1—N258.8 (3)C5—N1—C4—N458.6 (3)
C6—N2—C1—N158.6 (3)C3—N4—C4—N158.3 (3)
C2—N2—C1—N158.9 (3)C6—N4—C4—N158.1 (3)
C6—N2—C2—N358.3 (3)C3—N3—C5—N158.1 (3)
C1—N2—C2—N359.1 (3)C2—N3—C5—N159.2 (3)
C3—N3—C2—N258.2 (3)C1—N1—C5—N359.2 (3)
C5—N3—C2—N259.4 (3)C4—N1—C5—N358.1 (3)
C5—N3—C3—N458.3 (3)C2—N2—C6—N458.8 (3)
C2—N3—C3—N458.7 (3)C1—N2—C6—N458.4 (3)
C4—N4—C3—N358.0 (3)C4—N4—C6—N258.0 (3)
C6—N4—C3—N358.6 (3)C3—N4—C6—N258.5 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···N30.822.052.827 (3)158
O1—H2W···O5ii0.831.942.743 (3)162
O2—H3W···N2iii0.831.992.804 (3)167
O2—H4W···O4iii0.841.902.711 (3)165
O3—H5W···Cl10.822.553.197 (2)137
O3—H6W···N1iv0.832.012.813 (3)165
O4—H7W···Cl10.832.363.175 (2)168
O4—H8W···N4v0.842.002.835 (3)174
O5—H9W···Cl10.832.433.255 (3)168
O5—H10W···Cl1vi0.832.383.213 (3)175
Symmetry codes: (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x, y+1, z+1; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(H2O)6]Cl2·2C6H12N4·4H2O
Mr596.84
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.345 (3), 9.4176 (15), 9.4535 (15)
α, β, γ (°)119.521 (1), 94.218 (2), 100.969 (2)
V3)697.0 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.36 × 0.29 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.690, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
5184, 2576, 2466
Rint0.018
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.113, 1.05
No. of reflections2576
No. of parameters151
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.68

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···N30.822.052.827 (3)157.6
O1—H2W···O5i0.831.942.743 (3)162.0
O2—H3W···N2ii0.831.992.804 (3)166.6
O2—H4W···O4ii0.841.902.711 (3)164.6
O3—H5W···Cl10.822.553.197 (2)136.6
O3—H6W···N1iii0.832.012.813 (3)164.9
O4—H7W···Cl10.832.363.175 (2)168.2
O4—H8W···N4iv0.842.002.835 (3)174.4
O5—H9W···Cl10.832.433.255 (3)168.4
O5—H10W···Cl1v0.832.383.213 (3)174.8
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x, y+1, z+1; (v) x, y, z+1.
 

Acknowledgements

We thank the Natural Science Foundation of Henan Province and the Key Discipline Foundation of Zhoukou Normal University for financial support of this research.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Li, J., Nishiura, M. & Imamoto, T. (2000). J. Mol. Struct. 523, 257–260.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds