metal-organic compounds
{4,4′,5,5′-Tetramethyl-2,2′-[1,1′-(ethane-1,2-diyldinitrilo)diethylidyne]diphenolato}nickel(II)–methanol–chloroform (1/1/1)
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title compound, [Ni(C22H26N2O2)]·CH3OH·CHCl3, the NiII ion is in a slightly distorted square-planar geometry involving an N2O2 atom set of the tetradentate Schiff base ligand. The contains one molecule of the complex and one molecule each of chloroform and methanol. The methanol molecule is hydrogen bonded to the phenolate O atoms. In the short intermolecular distances between the centroids of six-membered chelate rings [3.7002 (9) Å] indicate the presence of π–π interactions, which link the molecules into stacks along the a axis. In addition, there are Ni⋯Ni distances which are shorter than the sum of the van der Waals radii of two Ni atoms. The is further stabilized by intermolecular O—H⋯O and C—H⋯O hydrogen bonds, and weak intermolecular C—H⋯π interactions linking molecules into extended one-dimensional chains along the c axis.
Related literature
For bond-length data, see Allen et al. (1987). For related structures see, for example: Clark et al. (1968, 1969, 1970). For applications and bioactivities see, for example: Elmali et al. (2000); Blower (1998); Granovski et al. (1993); Li & Chang (1991); Shahrokhian et al. (2000).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808024306/lh2659sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808024306/lh2659Isup2.hkl
A chloroform solution (40 ml) of the ligand (1 mmol, 354 mg) was added to a methanol solution (20) of NiCl2.6H2O (1.05 mmol, 237 mg). The mixture was refluxed for 30 min and then filtered. After keeping the filtrate in air for 4 d, pink block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.
The H-atom attached to O3 was located in a difference Fourier map and refined as riding with the parent atom with an isotropic thermal parameter 1.5 times that of the parent atom. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.93–97 Å] and refind using a riding model. A rotating-group model was used for the methyl groups.
Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intermolecular hydrogen bonds are drawn as dashed lines. | |
Fig. 2. The crystal packing of (I), showing stacks viewed down the a axis. Intermolecular interactions are drawn as dashed lines. |
[Ni(C22H26N2O2)]·CH4O·CHCl3 | Z = 2 |
Mr = 560.59 | F(000) = 584 |
Triclinic, P1 | Dx = 1.495 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5473 (1) Å | Cell parameters from 7819 reflections |
b = 12.3899 (2) Å | θ = 2.5–29.3° |
c = 14.2481 (2) Å | µ = 1.13 mm−1 |
α = 75.949 (1)° | T = 100 K |
β = 83.761 (1)° | Block, pink |
γ = 74.693 (1)° | 0.36 × 0.17 × 0.11 mm |
V = 1245.21 (3) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 7348 independent reflections |
Radiation source: fine-focus sealed tube | 5851 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
ϕ and ω scans | θmax = 30.2°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −10→10 |
Tmin = 0.684, Tmax = 0.882 | k = −16→17 |
29477 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0463P)2 + 0.6625P] where P = (Fo2 + 2Fc2)/3 |
7348 reflections | (Δ/σ)max = 0.001 |
305 parameters | Δρmax = 0.71 e Å−3 |
0 restraints | Δρmin = −0.80 e Å−3 |
[Ni(C22H26N2O2)]·CH4O·CHCl3 | γ = 74.693 (1)° |
Mr = 560.59 | V = 1245.21 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.5473 (1) Å | Mo Kα radiation |
b = 12.3899 (2) Å | µ = 1.13 mm−1 |
c = 14.2481 (2) Å | T = 100 K |
α = 75.949 (1)° | 0.36 × 0.17 × 0.11 mm |
β = 83.761 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 7348 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 5851 reflections with I > 2σ(I) |
Tmin = 0.684, Tmax = 0.882 | Rint = 0.038 |
29477 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.71 e Å−3 |
7348 reflections | Δρmin = −0.80 e Å−3 |
305 parameters |
Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.73830 (3) | 0.02552 (2) | 0.422240 (16) | 0.01582 (7) | |
O1 | 0.59273 (18) | 0.16632 (11) | 0.43248 (9) | 0.0194 (3) | |
O2 | 0.72158 (19) | 0.08848 (11) | 0.29250 (9) | 0.0221 (3) | |
N1 | 0.7520 (2) | −0.03073 (13) | 0.55493 (11) | 0.0168 (3) | |
N2 | 0.8874 (2) | −0.11446 (13) | 0.40463 (11) | 0.0169 (3) | |
C1 | 0.5369 (2) | 0.20434 (16) | 0.51176 (13) | 0.0173 (3) | |
C2 | 0.4308 (3) | 0.31894 (16) | 0.49954 (13) | 0.0192 (4) | |
H2A | 0.4036 | 0.3612 | 0.4371 | 0.023* | |
C3 | 0.3656 (3) | 0.37099 (16) | 0.57621 (14) | 0.0198 (4) | |
C4 | 0.4074 (2) | 0.30783 (17) | 0.67159 (13) | 0.0199 (4) | |
C5 | 0.5071 (2) | 0.19556 (17) | 0.68422 (13) | 0.0195 (4) | |
H5A | 0.5317 | 0.1539 | 0.7471 | 0.023* | |
C6 | 0.5749 (2) | 0.13932 (16) | 0.60716 (13) | 0.0175 (3) | |
C7 | 0.6784 (2) | 0.01988 (16) | 0.62568 (13) | 0.0179 (3) | |
C8 | 0.8448 (3) | −0.15402 (16) | 0.58025 (13) | 0.0194 (4) | |
H8A | 0.7540 | −0.1991 | 0.5959 | 0.023* | |
H8B | 0.9172 | −0.1700 | 0.6365 | 0.023* | |
C9 | 0.9685 (3) | −0.18622 (16) | 0.49521 (13) | 0.0193 (4) | |
H9A | 1.0894 | −0.1747 | 0.4995 | 0.023* | |
H9B | 0.9822 | −0.2666 | 0.4963 | 0.023* | |
C10 | 0.9362 (2) | −0.15019 (16) | 0.32411 (13) | 0.0176 (3) | |
C11 | 0.8610 (2) | −0.08203 (16) | 0.23219 (13) | 0.0175 (3) | |
C12 | 0.8869 (2) | −0.13058 (16) | 0.14945 (13) | 0.0187 (4) | |
H12A | 0.9530 | −0.2066 | 0.1556 | 0.022* | |
C14 | 0.7214 (2) | 0.04489 (17) | 0.05063 (13) | 0.0187 (4) | |
C15 | 0.6937 (3) | 0.09445 (16) | 0.12986 (13) | 0.0195 (4) | |
H15A | 0.6291 | 0.1709 | 0.1224 | 0.023* | |
C16 | 0.7598 (3) | 0.03323 (16) | 0.22177 (13) | 0.0185 (4) | |
C17 | 0.2529 (3) | 0.49346 (17) | 0.55849 (15) | 0.0256 (4) | |
H17A | 0.2465 | 0.5250 | 0.4900 | 0.038* | |
H17B | 0.3094 | 0.5377 | 0.5873 | 0.038* | |
H17C | 0.1311 | 0.4957 | 0.5869 | 0.038* | |
C18 | 0.3461 (3) | 0.36271 (18) | 0.75716 (14) | 0.0263 (4) | |
H18A | 0.3831 | 0.3070 | 0.8158 | 0.039* | |
H18B | 0.2147 | 0.3904 | 0.7593 | 0.039* | |
H18C | 0.4016 | 0.4257 | 0.7508 | 0.039* | |
C19 | 0.7027 (3) | −0.04867 (18) | 0.72865 (14) | 0.0252 (4) | |
H19A | 0.6730 | −0.1209 | 0.7348 | 0.038* | |
H19B | 0.6226 | −0.0067 | 0.7717 | 0.038* | |
H19C | 0.8280 | −0.0621 | 0.7449 | 0.038* | |
C20 | 1.0714 (3) | −0.26399 (16) | 0.32619 (14) | 0.0210 (4) | |
H20A | 1.1643 | −0.2748 | 0.3709 | 0.031* | |
H20B | 1.1278 | −0.2655 | 0.2626 | 0.031* | |
H20C | 1.0084 | −0.3244 | 0.3464 | 0.031* | |
C21 | 0.8500 (3) | −0.12856 (18) | −0.02354 (14) | 0.0242 (4) | |
H21A | 0.9156 | −0.2074 | −0.0029 | 0.036* | |
H21B | 0.9204 | −0.0900 | −0.0746 | 0.036* | |
H21C | 0.7333 | −0.1251 | −0.0467 | 0.036* | |
C22 | 0.6465 (3) | 0.11405 (17) | −0.04537 (13) | 0.0224 (4) | |
H22A | 0.5839 | 0.1905 | −0.0394 | 0.034* | |
H22B | 0.5618 | 0.0786 | −0.0646 | 0.034* | |
H22C | 0.7458 | 0.1172 | −0.0933 | 0.034* | |
Cl1 | 0.24264 (10) | 0.37079 (6) | 0.07683 (6) | 0.05382 (19) | |
Cl2 | 0.28123 (13) | 0.59955 (6) | 0.06488 (7) | 0.0640 (2) | |
C13 | 0.8193 (2) | −0.07080 (17) | 0.06089 (13) | 0.0197 (4) | |
Cl3 | 0.18264 (9) | 0.46457 (7) | 0.24800 (5) | 0.05064 (18) | |
C23 | 0.3093 (3) | 0.4605 (2) | 0.13651 (18) | 0.0350 (5) | |
H23A | 0.4398 | 0.4293 | 0.1499 | 0.042* | |
O3 | 0.6398 (2) | 0.33720 (14) | 0.25019 (13) | 0.0431 (4) | |
H1O3 | 0.6568 | 0.2655 | 0.2858 | 0.065* | |
C24 | 0.8172 (3) | 0.3341 (2) | 0.20835 (19) | 0.0389 (5) | |
H24A | 0.8137 | 0.4002 | 0.1561 | 0.058* | |
H24B | 0.8625 | 0.2657 | 0.1839 | 0.058* | |
H24C | 0.8971 | 0.3343 | 0.2563 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01784 (12) | 0.01479 (12) | 0.01401 (11) | −0.00247 (8) | −0.00203 (8) | −0.00282 (8) |
O1 | 0.0229 (7) | 0.0177 (6) | 0.0157 (6) | −0.0012 (5) | −0.0018 (5) | −0.0041 (5) |
O2 | 0.0332 (8) | 0.0167 (7) | 0.0146 (6) | −0.0019 (6) | −0.0026 (5) | −0.0038 (5) |
N1 | 0.0164 (7) | 0.0154 (7) | 0.0180 (7) | −0.0030 (6) | −0.0023 (6) | −0.0030 (6) |
N2 | 0.0164 (7) | 0.0164 (7) | 0.0171 (7) | −0.0036 (6) | −0.0023 (5) | −0.0019 (6) |
C1 | 0.0160 (8) | 0.0185 (9) | 0.0183 (8) | −0.0049 (7) | −0.0010 (6) | −0.0050 (7) |
C2 | 0.0204 (9) | 0.0185 (9) | 0.0178 (8) | −0.0042 (7) | −0.0025 (7) | −0.0022 (7) |
C3 | 0.0179 (8) | 0.0187 (9) | 0.0231 (9) | −0.0053 (7) | −0.0001 (7) | −0.0051 (7) |
C4 | 0.0172 (9) | 0.0225 (9) | 0.0205 (9) | −0.0041 (7) | 0.0005 (7) | −0.0075 (7) |
C5 | 0.0173 (8) | 0.0230 (9) | 0.0174 (8) | −0.0036 (7) | −0.0010 (6) | −0.0047 (7) |
C6 | 0.0163 (8) | 0.0184 (9) | 0.0179 (8) | −0.0039 (7) | −0.0010 (6) | −0.0043 (7) |
C7 | 0.0154 (8) | 0.0203 (9) | 0.0172 (8) | −0.0046 (7) | −0.0011 (6) | −0.0022 (7) |
C8 | 0.0217 (9) | 0.0168 (9) | 0.0179 (8) | −0.0025 (7) | −0.0034 (7) | −0.0017 (7) |
C9 | 0.0207 (9) | 0.0181 (9) | 0.0172 (8) | −0.0019 (7) | −0.0037 (7) | −0.0023 (7) |
C10 | 0.0166 (8) | 0.0176 (9) | 0.0195 (8) | −0.0055 (7) | −0.0005 (6) | −0.0047 (7) |
C11 | 0.0190 (9) | 0.0177 (9) | 0.0170 (8) | −0.0065 (7) | −0.0009 (6) | −0.0039 (7) |
C12 | 0.0184 (9) | 0.0181 (9) | 0.0202 (9) | −0.0041 (7) | −0.0002 (7) | −0.0065 (7) |
C14 | 0.0161 (8) | 0.0227 (9) | 0.0178 (8) | −0.0067 (7) | −0.0001 (6) | −0.0035 (7) |
C15 | 0.0215 (9) | 0.0177 (9) | 0.0187 (8) | −0.0033 (7) | −0.0007 (7) | −0.0050 (7) |
C16 | 0.0205 (9) | 0.0187 (9) | 0.0170 (8) | −0.0061 (7) | 0.0006 (6) | −0.0046 (7) |
C17 | 0.0286 (10) | 0.0197 (10) | 0.0259 (10) | −0.0024 (8) | 0.0010 (8) | −0.0053 (8) |
C18 | 0.0299 (11) | 0.0255 (10) | 0.0226 (9) | −0.0013 (8) | −0.0010 (8) | −0.0100 (8) |
C19 | 0.0293 (10) | 0.0242 (10) | 0.0171 (9) | −0.0005 (8) | −0.0014 (7) | −0.0019 (7) |
C20 | 0.0204 (9) | 0.0182 (9) | 0.0228 (9) | −0.0007 (7) | −0.0011 (7) | −0.0061 (7) |
C21 | 0.0245 (10) | 0.0292 (11) | 0.0207 (9) | −0.0048 (8) | −0.0021 (7) | −0.0107 (8) |
C22 | 0.0237 (9) | 0.0260 (10) | 0.0179 (9) | −0.0068 (8) | −0.0010 (7) | −0.0048 (7) |
Cl1 | 0.0519 (4) | 0.0516 (4) | 0.0728 (5) | −0.0196 (3) | 0.0068 (3) | −0.0386 (4) |
Cl2 | 0.0768 (6) | 0.0307 (4) | 0.0800 (6) | −0.0115 (3) | −0.0152 (4) | −0.0009 (4) |
C13 | 0.0176 (8) | 0.0250 (10) | 0.0189 (8) | −0.0074 (7) | 0.0020 (7) | −0.0085 (7) |
Cl3 | 0.0402 (4) | 0.0571 (4) | 0.0579 (4) | −0.0051 (3) | 0.0034 (3) | −0.0290 (3) |
C23 | 0.0320 (12) | 0.0268 (11) | 0.0483 (14) | −0.0049 (9) | −0.0056 (10) | −0.0131 (10) |
O3 | 0.0401 (10) | 0.0246 (8) | 0.0521 (11) | −0.0019 (7) | −0.0001 (8) | 0.0073 (7) |
C24 | 0.0369 (13) | 0.0270 (12) | 0.0498 (15) | −0.0053 (10) | −0.0087 (11) | −0.0028 (11) |
Ni1—O2 | 1.8276 (13) | C14—C15 | 1.383 (3) |
Ni1—O1 | 1.8298 (13) | C14—C13 | 1.409 (3) |
Ni1—N1 | 1.8534 (15) | C14—C22 | 1.506 (3) |
Ni1—N2 | 1.8592 (16) | C15—C16 | 1.414 (3) |
O1—C1 | 1.314 (2) | C15—H15A | 0.9300 |
O2—C16 | 1.317 (2) | C17—H17A | 0.9600 |
N1—C7 | 1.311 (2) | C17—H17B | 0.9600 |
N1—C8 | 1.475 (2) | C17—H17C | 0.9600 |
N2—C10 | 1.310 (2) | C18—H18A | 0.9600 |
N2—C9 | 1.469 (2) | C18—H18B | 0.9600 |
C1—C2 | 1.413 (3) | C18—H18C | 0.9600 |
C1—C6 | 1.418 (2) | C19—H19A | 0.9600 |
C2—C3 | 1.382 (3) | C19—H19B | 0.9600 |
C2—H2A | 0.9300 | C19—H19C | 0.9600 |
C3—C4 | 1.416 (3) | C20—H20A | 0.9600 |
C3—C17 | 1.506 (3) | C20—H20B | 0.9600 |
C4—C5 | 1.374 (3) | C20—H20C | 0.9600 |
C4—C18 | 1.509 (3) | C21—C13 | 1.511 (3) |
C5—C6 | 1.419 (3) | C21—H21A | 0.9600 |
C5—H5A | 0.9300 | C21—H21B | 0.9600 |
C6—C7 | 1.454 (3) | C21—H21C | 0.9600 |
C7—C19 | 1.510 (2) | C22—H22A | 0.9600 |
C8—C9 | 1.514 (3) | C22—H22B | 0.9600 |
C8—H8A | 0.9700 | C22—H22C | 0.9600 |
C8—H8B | 0.9700 | Cl1—C23 | 1.749 (2) |
C9—H9A | 0.9700 | Cl2—C23 | 1.748 (3) |
C9—H9B | 0.9700 | Cl3—C23 | 1.767 (3) |
C10—C11 | 1.457 (3) | C23—H23A | 0.9800 |
C10—C20 | 1.502 (3) | O3—C24 | 1.400 (3) |
C11—C16 | 1.411 (3) | O3—H1O3 | 0.8931 |
C11—C12 | 1.422 (2) | C24—H24A | 0.9600 |
C12—C13 | 1.374 (3) | C24—H24B | 0.9600 |
C12—H12A | 0.9300 | C24—H24C | 0.9600 |
Ni1···Ni1i | 4.1276 (3) | Ni1···Ni1ii | 4.5626 (3) |
O2—Ni1—O1 | 82.98 (6) | C14—C15—C16 | 122.47 (18) |
O2—Ni1—N1 | 177.05 (6) | C14—C15—H15A | 118.8 |
O1—Ni1—N1 | 94.26 (6) | C16—C15—H15A | 118.8 |
O2—Ni1—N2 | 93.94 (6) | O2—C16—C11 | 124.29 (16) |
O1—Ni1—N2 | 176.90 (6) | O2—C16—C15 | 117.16 (17) |
N1—Ni1—N2 | 88.82 (7) | C11—C16—C15 | 118.55 (17) |
C1—O1—Ni1 | 127.77 (12) | C3—C17—H17A | 109.5 |
C16—O2—Ni1 | 126.95 (12) | C3—C17—H17B | 109.5 |
C7—N1—C8 | 117.97 (15) | H17A—C17—H17B | 109.5 |
C7—N1—Ni1 | 129.48 (13) | C3—C17—H17C | 109.5 |
C8—N1—Ni1 | 112.23 (11) | H17A—C17—H17C | 109.5 |
C10—N2—C9 | 119.07 (16) | H17B—C17—H17C | 109.5 |
C10—N2—Ni1 | 128.89 (13) | C4—C18—H18A | 109.5 |
C9—N2—Ni1 | 111.81 (12) | C4—C18—H18B | 109.5 |
O1—C1—C2 | 116.60 (16) | H18A—C18—H18B | 109.5 |
O1—C1—C6 | 124.99 (17) | C4—C18—H18C | 109.5 |
C2—C1—C6 | 118.41 (16) | H18A—C18—H18C | 109.5 |
C3—C2—C1 | 122.95 (17) | H18B—C18—H18C | 109.5 |
C3—C2—H2A | 118.5 | C7—C19—H19A | 109.5 |
C1—C2—H2A | 118.5 | C7—C19—H19B | 109.5 |
C2—C3—C4 | 119.06 (18) | H19A—C19—H19B | 109.5 |
C2—C3—C17 | 120.45 (17) | C7—C19—H19C | 109.5 |
C4—C3—C17 | 120.50 (17) | H19A—C19—H19C | 109.5 |
C5—C4—C3 | 118.32 (17) | H19B—C19—H19C | 109.5 |
C5—C4—C18 | 120.77 (17) | C10—C20—H20A | 109.5 |
C3—C4—C18 | 120.90 (17) | C10—C20—H20B | 109.5 |
C4—C5—C6 | 124.01 (17) | H20A—C20—H20B | 109.5 |
C4—C5—H5A | 118.0 | C10—C20—H20C | 109.5 |
C6—C5—H5A | 118.0 | H20A—C20—H20C | 109.5 |
C1—C6—C5 | 117.21 (17) | H20B—C20—H20C | 109.5 |
C1—C6—C7 | 121.60 (16) | C13—C21—H21A | 109.5 |
C5—C6—C7 | 121.19 (16) | C13—C21—H21B | 109.5 |
N1—C7—C6 | 121.70 (16) | H21A—C21—H21B | 109.5 |
N1—C7—C19 | 118.56 (17) | C13—C21—H21C | 109.5 |
C6—C7—C19 | 119.73 (16) | H21A—C21—H21C | 109.5 |
N1—C8—C9 | 109.21 (15) | H21B—C21—H21C | 109.5 |
N1—C8—H8A | 109.8 | C14—C22—H22A | 109.5 |
C9—C8—H8A | 109.8 | C14—C22—H22B | 109.5 |
N1—C8—H8B | 109.8 | H22A—C22—H22B | 109.5 |
C9—C8—H8B | 109.8 | C14—C22—H22C | 109.5 |
H8A—C8—H8B | 108.3 | H22A—C22—H22C | 109.5 |
N2—C9—C8 | 109.27 (15) | H22B—C22—H22C | 109.5 |
N2—C9—H9A | 109.8 | C12—C13—C14 | 118.70 (17) |
C8—C9—H9A | 109.8 | C12—C13—C21 | 120.37 (18) |
N2—C9—H9B | 109.8 | C14—C13—C21 | 120.92 (17) |
C8—C9—H9B | 109.8 | Cl2—C23—Cl1 | 111.33 (14) |
H9A—C9—H9B | 108.3 | Cl2—C23—Cl3 | 109.86 (13) |
N2—C10—C11 | 121.32 (17) | Cl1—C23—Cl3 | 110.63 (13) |
N2—C10—C20 | 119.63 (16) | Cl2—C23—H23A | 108.3 |
C11—C10—C20 | 119.06 (16) | Cl1—C23—H23A | 108.3 |
C16—C11—C12 | 117.64 (16) | Cl3—C23—H23A | 108.3 |
C16—C11—C10 | 121.81 (16) | C24—O3—H1O3 | 100.3 |
C12—C11—C10 | 120.55 (17) | O3—C24—H24A | 109.5 |
C13—C12—C11 | 123.29 (18) | O3—C24—H24B | 109.5 |
C13—C12—H12A | 118.4 | H24A—C24—H24B | 109.5 |
C11—C12—H12A | 118.4 | O3—C24—H24C | 109.5 |
C15—C14—C13 | 119.34 (17) | H24A—C24—H24C | 109.5 |
C15—C14—C22 | 120.14 (18) | H24B—C24—H24C | 109.5 |
C13—C14—C22 | 120.52 (17) | ||
O2—Ni1—O1—C1 | −175.67 (15) | C5—C6—C7—N1 | −175.42 (17) |
N1—Ni1—O1—C1 | 3.28 (15) | C1—C6—C7—C19 | −175.21 (17) |
O1—Ni1—O2—C16 | −163.17 (16) | C5—C6—C7—C19 | 4.6 (3) |
N2—Ni1—O2—C16 | 17.21 (16) | C7—N1—C8—C9 | −162.36 (16) |
O1—Ni1—N1—C7 | −0.21 (17) | Ni1—N1—C8—C9 | 23.57 (18) |
N2—Ni1—N1—C7 | 179.36 (16) | C10—N2—C9—C8 | −158.37 (16) |
O1—Ni1—N1—C8 | 173.00 (12) | Ni1—N2—C9—C8 | 26.54 (18) |
N2—Ni1—N1—C8 | −7.43 (12) | N1—C8—C9—N2 | −31.8 (2) |
O2—Ni1—N2—C10 | −6.81 (16) | C9—N2—C10—C11 | −179.55 (15) |
N1—Ni1—N2—C10 | 174.26 (16) | Ni1—N2—C10—C11 | −5.4 (3) |
O2—Ni1—N2—C9 | 167.68 (12) | C9—N2—C10—C20 | 0.9 (2) |
N1—Ni1—N2—C9 | −11.26 (12) | Ni1—N2—C10—C20 | 175.00 (12) |
Ni1—O1—C1—C2 | 177.47 (12) | N2—C10—C11—C16 | 11.8 (3) |
Ni1—O1—C1—C6 | −2.7 (3) | C20—C10—C11—C16 | −168.63 (16) |
O1—C1—C2—C3 | −178.80 (16) | N2—C10—C11—C12 | −167.88 (16) |
C6—C1—C2—C3 | 1.3 (3) | C20—C10—C11—C12 | 11.7 (2) |
C1—C2—C3—C4 | 0.5 (3) | C16—C11—C12—C13 | 0.3 (3) |
C1—C2—C3—C17 | −179.93 (17) | C10—C11—C12—C13 | 179.94 (17) |
C2—C3—C4—C5 | −1.9 (3) | C13—C14—C15—C16 | −0.1 (3) |
C17—C3—C4—C5 | 178.57 (17) | C22—C14—C15—C16 | 179.49 (17) |
C2—C3—C4—C18 | 177.35 (17) | Ni1—O2—C16—C11 | −15.6 (3) |
C17—C3—C4—C18 | −2.2 (3) | Ni1—O2—C16—C15 | 164.22 (13) |
C3—C4—C5—C6 | 1.5 (3) | C12—C11—C16—O2 | 178.46 (16) |
C18—C4—C5—C6 | −177.74 (17) | C10—C11—C16—O2 | −1.2 (3) |
O1—C1—C6—C5 | 178.44 (16) | C12—C11—C16—C15 | −1.4 (3) |
C2—C1—C6—C5 | −1.7 (2) | C10—C11—C16—C15 | 178.98 (16) |
O1—C1—C6—C7 | −1.8 (3) | C14—C15—C16—O2 | −178.51 (17) |
C2—C1—C6—C7 | 178.11 (16) | C14—C15—C16—C11 | 1.3 (3) |
C4—C5—C6—C1 | 0.3 (3) | C11—C12—C13—C14 | 0.9 (3) |
C4—C5—C6—C7 | −179.48 (17) | C11—C12—C13—C21 | −179.10 (17) |
C8—N1—C7—C6 | −176.32 (15) | C15—C14—C13—C12 | −1.0 (3) |
Ni1—N1—C7—C6 | −3.4 (3) | C22—C14—C13—C12 | 179.41 (16) |
C8—N1—C7—C19 | 3.7 (2) | C15—C14—C13—C21 | 179.03 (17) |
Ni1—N1—C7—C19 | 176.56 (13) | C22—C14—C13—C21 | −0.6 (3) |
C1—C6—C7—N1 | 4.8 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···O1 | 0.89 | 2.23 | 2.980 (2) | 142 |
O3—H1O3···O2 | 0.89 | 2.10 | 2.901 (2) | 149 |
C23—H23A···O3 | 0.98 | 2.10 | 2.974 (3) | 148 |
C9—H9A···Cg1ii | 0.97 | 2.47 | 3.404 (2) | 162 |
C20—H20A···Cg2ii | 0.96 | 2.94 | 3.801 (2) | 150 |
C21—H21B···Cg3iii | 0.96 | 2.82 | 3.691 (2) | 152 |
Symmetry codes: (ii) −x+2, −y, −z+1; (iii) −x+2, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C22H26N2O2)]·CH4O·CHCl3 |
Mr | 560.59 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.5473 (1), 12.3899 (2), 14.2481 (2) |
α, β, γ (°) | 75.949 (1), 83.761 (1), 74.693 (1) |
V (Å3) | 1245.21 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.13 |
Crystal size (mm) | 0.36 × 0.17 × 0.11 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.684, 0.882 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 29477, 7348, 5851 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.707 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.103, 1.04 |
No. of reflections | 7348 |
No. of parameters | 305 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.71, −0.80 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
Ni1—O2 | 1.8276 (13) | Ni1—N1 | 1.8534 (15) |
Ni1—O1 | 1.8298 (13) | Ni1—N2 | 1.8592 (16) |
Ni1···Ni1i | 4.1276 (3) | Ni1···Ni1ii | 4.5626 (3) |
O2—Ni1—O1 | 82.98 (6) | O2—Ni1—N2 | 93.94 (6) |
O2—Ni1—N1 | 177.05 (6) | O1—Ni1—N2 | 176.90 (6) |
O1—Ni1—N1 | 94.26 (6) | N1—Ni1—N2 | 88.82 (7) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···O1 | 0.8900 | 2.2300 | 2.980 (2) | 142.00 |
O3—H1O3···O2 | 0.8900 | 2.1000 | 2.901 (2) | 149.00 |
C23—H23A···O3 | 0.9800 | 2.1000 | 2.974 (3) | 148.00 |
C9—H9A···Cg1ii | 0.9700 | 2.47 | 3.404 (2) | 162 |
C20—H20A···Cg2ii | 0.9600 | 2.94 | 3.801 (2) | 150 |
C21—H21B···Cg3iii | 0.9600 | 2.82 | 3.691 (2) | 152 |
Symmetry codes: (ii) −x+2, −y, −z+1; (iii) −x+2, −y, −z. |
Footnotes
‡Additional correspondance author, e-mail: zsrkk@yahoo.com.
Acknowledgements
HKF and RK thank the Malaysian Government and Universiti sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Blower, P. J. (1998). Transition Met. Chem. 23, 109–112. CrossRef CAS Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, 223–226. CrossRef Google Scholar
Clark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, 823–829. CrossRef Google Scholar
Clark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, 396–399. Google Scholar
Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424. CSD CrossRef CAS IUCr Journals Google Scholar
Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69. Google Scholar
Li, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35–39. CrossRef CAS Web of Science Google Scholar
Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956–962. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff base complexes are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of Schiff bases have been studied extensively, and copper(II) and Ni(II) complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Blower, 1998; Granovski et al., 1993; Li & Chang, 1991; Shahrokhian et al., 2000). Tetradentate Schiff base metal complexes may form trans or cis planar or tetrahedral structures (Elmali et al., 2000).
In the title compound (I, Fig. 1), the NiII ion shows a sligthly distorted square-planar geometry which is coordinated by two imine N atoms and two phenol O atoms of the tetradentate Schiff base ligand. The bond lenghts and angles are within the normal ranges (Allen et al., 1987). The asymmetric unit of the compound contains one molecule of the complex, and a molecule each of the chloroform and the methanol solvents. The methanol molecule is H-bonded to the phenolato oxygen atoms of the complex. Atoms C8 and C9 are significantly out of the plane, as indicated by the torsion angle N1–C8–C9–N2, which is -31.8 (2)°. The dihedral angle between two benzene rings is 11.11 (9)°. The planar molecules are stacked into columns along the a axis, with Ni···Ni [(i) 1 - x, -y, 1 - z and (ii) 2 - x, -y, 1 - z] separations of 4.1276 (3) to 4.5626 (3) Å are shorter than the sum of the van der Waals radii of two Ni atoms (4.60 Å). The short intermolecular distances between the centroids of six-membered rings [3.7002 (9) Å] prove an existence of π-π interactions, which link the molecules into one-dimensional extended chains along the a axis (Fig. 2). The crystal packing is further stabilized by intermolecular O—H···O, C—H···O hydrogen bonds and weak intermolecular C—H···π interactions..