metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1116-m1117

{4,4′,5,5′-Tetra­methyl-2,2′-[1,1′-(ethane-1,2-diyldi­nitrilo)di­ethyl­­idyne]diphenolato}nickel(II)–methanol–chloro­form (1/1/1)

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 10 July 2008; accepted 30 July 2008; online 6 August 2008)

In the title compound, [Ni(C22H26N2O2)]·CH3OH·CHCl3, the NiII ion is in a slightly distorted square-planar geometry involving an N2O2 atom set of the tetra­dentate Schiff base ligand. The asymmetric unit contains one mol­ecule of the complex and one mol­ecule each of chloro­form and methanol. The methanol mol­ecule is hydrogen bonded to the phenolate O atoms. In the crystal structure, short inter­molecular distances between the centroids of six-membered chelate rings [3.7002 (9) Å] indicate the presence of ππ inter­actions, which link the mol­ecules into stacks along the a axis. In addition, there are Ni⋯Ni distances which are shorter than the sum of the van der Waals radii of two Ni atoms. The crystal structure is further stabilized by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds, and weak inter­molecular C—H⋯π inter­actions linking mol­ecules into extended one-dimensional chains along the c axis.

Related literature

For bond-length data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures see, for example: Clark et al. (1968[Clark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, 223-226.], 1969[Clark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, 823-829.], 1970[Clark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, 396-399.]). For applications and bioactivities see, for example: Elmali et al. (2000[Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423-424.]); Blower (1998[Blower, P. J. (1998). Transition Met. Chem. 23, 109-112. ]); Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Li & Chang (1991[Li, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35-39.]); Shahrokhian et al. (2000[Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956-962.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C22H26N2O2)]·CH4O·CHCl3

  • Mr = 560.59

  • Triclinic, [P \overline 1]

  • a = 7.5473 (1) Å

  • b = 12.3899 (2) Å

  • c = 14.2481 (2) Å

  • α = 75.949 (1)°

  • β = 83.761 (1)°

  • γ = 74.693 (1)°

  • V = 1245.21 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 100.0 (1) K

  • 0.36 × 0.17 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.684, Tmax = 0.882

  • 29477 measured reflections

  • 7348 independent reflections

  • 5851 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.103

  • S = 1.04

  • 7348 reflections

  • 305 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O2 1.8276 (13)
Ni1—O1 1.8298 (13)
Ni1—N1 1.8534 (15)
Ni1—N2 1.8592 (16)
Ni1⋯Ni1i 4.1276 (3)
Ni1⋯Ni1ii 4.5626 (3)
O2—Ni1—O1 82.98 (6)
O2—Ni1—N1 177.05 (6)
O1—Ni1—N1 94.26 (6)
O2—Ni1—N2 93.94 (6)
O1—Ni1—N2 176.90 (6)
N1—Ni1—N2 88.82 (7)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O1 0.89 2.23 2.980 (2) 142
O3—H1O3⋯O2 0.89 2.10 2.901 (2) 149
C23—H23A⋯O3 0.98 2.10 2.974 (3) 148
C9—H9ACg1ii 0.97 2.47 3.404 (2) 162
C20—H20ACg2ii 0.96 2.94 3.801 (2) 150
C21—H21BCg3iii 0.96 2.82 3.691 (2) 152
Symmetry codes: (ii) -x+2, -y, -z+1; (iii) -x+2, -y, -z. Cg1, Cg2 and Cg3 are the centroids of the Ni1/O1/C1/C6/C7/N1, C1–C6, and C11–C16 rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff base complexes are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of Schiff bases have been studied extensively, and copper(II) and Ni(II) complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Blower, 1998; Granovski et al., 1993; Li & Chang, 1991; Shahrokhian et al., 2000). Tetradentate Schiff base metal complexes may form trans or cis planar or tetrahedral structures (Elmali et al., 2000).

In the title compound (I, Fig. 1), the NiII ion shows a sligthly distorted square-planar geometry which is coordinated by two imine N atoms and two phenol O atoms of the tetradentate Schiff base ligand. The bond lenghts and angles are within the normal ranges (Allen et al., 1987). The asymmetric unit of the compound contains one molecule of the complex, and a molecule each of the chloroform and the methanol solvents. The methanol molecule is H-bonded to the phenolato oxygen atoms of the complex. Atoms C8 and C9 are significantly out of the plane, as indicated by the torsion angle N1–C8–C9–N2, which is -31.8 (2)°. The dihedral angle between two benzene rings is 11.11 (9)°. The planar molecules are stacked into columns along the a axis, with Ni···Ni [(i) 1 - x, -y, 1 - z and (ii) 2 - x, -y, 1 - z] separations of 4.1276 (3) to 4.5626 (3) Å are shorter than the sum of the van der Waals radii of two Ni atoms (4.60 Å). The short intermolecular distances between the centroids of six-membered rings [3.7002 (9) Å] prove an existence of π-π interactions, which link the molecules into one-dimensional extended chains along the a axis (Fig. 2). The crystal packing is further stabilized by intermolecular O—H···O, C—H···O hydrogen bonds and weak intermolecular C—H···π interactions..

Related literature top

For bond-length data, see Allen et al. (1987). For related structures see, for example: Clark et al. (1968, 1969, 1970). For applications and bioactivities see, for example: Elmali et al. (2000); Blower (1998); Granovski et al. (1993); Li & Chang (1991); Shahrokhian et al. (2000).

Experimental top

A chloroform solution (40 ml) of the ligand (1 mmol, 354 mg) was added to a methanol solution (20) of NiCl2.6H2O (1.05 mmol, 237 mg). The mixture was refluxed for 30 min and then filtered. After keeping the filtrate in air for 4 d, pink block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement top

The H-atom attached to O3 was located in a difference Fourier map and refined as riding with the parent atom with an isotropic thermal parameter 1.5 times that of the parent atom. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.93–97 Å] and refind using a riding model. A rotating-group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intermolecular hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), showing stacks viewed down the a axis. Intermolecular interactions are drawn as dashed lines.
{4,4',5,5'-Tetramethyl-2,2'-[1,1'-(ethane-1,2- diyldinitrilo)diethylidyne]diphenolato}nickel(II)–methanol–chloroform (1/1/1) top
Crystal data top
[Ni(C22H26N2O2)]·CH4O·CHCl3Z = 2
Mr = 560.59F(000) = 584
Triclinic, P1Dx = 1.495 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5473 (1) ÅCell parameters from 7819 reflections
b = 12.3899 (2) Åθ = 2.5–29.3°
c = 14.2481 (2) ŵ = 1.13 mm1
α = 75.949 (1)°T = 100 K
β = 83.761 (1)°Block, pink
γ = 74.693 (1)°0.36 × 0.17 × 0.11 mm
V = 1245.21 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7348 independent reflections
Radiation source: fine-focus sealed tube5851 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 30.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.684, Tmax = 0.882k = 1617
29477 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.6625P]
where P = (Fo2 + 2Fc2)/3
7348 reflections(Δ/σ)max = 0.001
305 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Ni(C22H26N2O2)]·CH4O·CHCl3γ = 74.693 (1)°
Mr = 560.59V = 1245.21 (3) Å3
Triclinic, P1Z = 2
a = 7.5473 (1) ÅMo Kα radiation
b = 12.3899 (2) ŵ = 1.13 mm1
c = 14.2481 (2) ÅT = 100 K
α = 75.949 (1)°0.36 × 0.17 × 0.11 mm
β = 83.761 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7348 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5851 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 0.882Rint = 0.038
29477 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.04Δρmax = 0.71 e Å3
7348 reflectionsΔρmin = 0.80 e Å3
305 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.73830 (3)0.02552 (2)0.422240 (16)0.01582 (7)
O10.59273 (18)0.16632 (11)0.43248 (9)0.0194 (3)
O20.72158 (19)0.08848 (11)0.29250 (9)0.0221 (3)
N10.7520 (2)0.03073 (13)0.55493 (11)0.0168 (3)
N20.8874 (2)0.11446 (13)0.40463 (11)0.0169 (3)
C10.5369 (2)0.20434 (16)0.51176 (13)0.0173 (3)
C20.4308 (3)0.31894 (16)0.49954 (13)0.0192 (4)
H2A0.40360.36120.43710.023*
C30.3656 (3)0.37099 (16)0.57621 (14)0.0198 (4)
C40.4074 (2)0.30783 (17)0.67159 (13)0.0199 (4)
C50.5071 (2)0.19556 (17)0.68422 (13)0.0195 (4)
H5A0.53170.15390.74710.023*
C60.5749 (2)0.13932 (16)0.60716 (13)0.0175 (3)
C70.6784 (2)0.01988 (16)0.62568 (13)0.0179 (3)
C80.8448 (3)0.15402 (16)0.58025 (13)0.0194 (4)
H8A0.75400.19910.59590.023*
H8B0.91720.17000.63650.023*
C90.9685 (3)0.18622 (16)0.49521 (13)0.0193 (4)
H9A1.08940.17470.49950.023*
H9B0.98220.26660.49630.023*
C100.9362 (2)0.15019 (16)0.32411 (13)0.0176 (3)
C110.8610 (2)0.08203 (16)0.23219 (13)0.0175 (3)
C120.8869 (2)0.13058 (16)0.14945 (13)0.0187 (4)
H12A0.95300.20660.15560.022*
C140.7214 (2)0.04489 (17)0.05063 (13)0.0187 (4)
C150.6937 (3)0.09445 (16)0.12986 (13)0.0195 (4)
H15A0.62910.17090.12240.023*
C160.7598 (3)0.03323 (16)0.22177 (13)0.0185 (4)
C170.2529 (3)0.49346 (17)0.55849 (15)0.0256 (4)
H17A0.24650.52500.49000.038*
H17B0.30940.53770.58730.038*
H17C0.13110.49570.58690.038*
C180.3461 (3)0.36271 (18)0.75716 (14)0.0263 (4)
H18A0.38310.30700.81580.039*
H18B0.21470.39040.75930.039*
H18C0.40160.42570.75080.039*
C190.7027 (3)0.04867 (18)0.72865 (14)0.0252 (4)
H19A0.67300.12090.73480.038*
H19B0.62260.00670.77170.038*
H19C0.82800.06210.74490.038*
C201.0714 (3)0.26399 (16)0.32619 (14)0.0210 (4)
H20A1.16430.27480.37090.031*
H20B1.12780.26550.26260.031*
H20C1.00840.32440.34640.031*
C210.8500 (3)0.12856 (18)0.02354 (14)0.0242 (4)
H21A0.91560.20740.00290.036*
H21B0.92040.09000.07460.036*
H21C0.73330.12510.04670.036*
C220.6465 (3)0.11405 (17)0.04537 (13)0.0224 (4)
H22A0.58390.19050.03940.034*
H22B0.56180.07860.06460.034*
H22C0.74580.11720.09330.034*
Cl10.24264 (10)0.37079 (6)0.07683 (6)0.05382 (19)
Cl20.28123 (13)0.59955 (6)0.06488 (7)0.0640 (2)
C130.8193 (2)0.07080 (17)0.06089 (13)0.0197 (4)
Cl30.18264 (9)0.46457 (7)0.24800 (5)0.05064 (18)
C230.3093 (3)0.4605 (2)0.13651 (18)0.0350 (5)
H23A0.43980.42930.14990.042*
O30.6398 (2)0.33720 (14)0.25019 (13)0.0431 (4)
H1O30.65680.26550.28580.065*
C240.8172 (3)0.3341 (2)0.20835 (19)0.0389 (5)
H24A0.81370.40020.15610.058*
H24B0.86250.26570.18390.058*
H24C0.89710.33430.25630.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01784 (12)0.01479 (12)0.01401 (11)0.00247 (8)0.00203 (8)0.00282 (8)
O10.0229 (7)0.0177 (6)0.0157 (6)0.0012 (5)0.0018 (5)0.0041 (5)
O20.0332 (8)0.0167 (7)0.0146 (6)0.0019 (6)0.0026 (5)0.0038 (5)
N10.0164 (7)0.0154 (7)0.0180 (7)0.0030 (6)0.0023 (6)0.0030 (6)
N20.0164 (7)0.0164 (7)0.0171 (7)0.0036 (6)0.0023 (5)0.0019 (6)
C10.0160 (8)0.0185 (9)0.0183 (8)0.0049 (7)0.0010 (6)0.0050 (7)
C20.0204 (9)0.0185 (9)0.0178 (8)0.0042 (7)0.0025 (7)0.0022 (7)
C30.0179 (8)0.0187 (9)0.0231 (9)0.0053 (7)0.0001 (7)0.0051 (7)
C40.0172 (9)0.0225 (9)0.0205 (9)0.0041 (7)0.0005 (7)0.0075 (7)
C50.0173 (8)0.0230 (9)0.0174 (8)0.0036 (7)0.0010 (6)0.0047 (7)
C60.0163 (8)0.0184 (9)0.0179 (8)0.0039 (7)0.0010 (6)0.0043 (7)
C70.0154 (8)0.0203 (9)0.0172 (8)0.0046 (7)0.0011 (6)0.0022 (7)
C80.0217 (9)0.0168 (9)0.0179 (8)0.0025 (7)0.0034 (7)0.0017 (7)
C90.0207 (9)0.0181 (9)0.0172 (8)0.0019 (7)0.0037 (7)0.0023 (7)
C100.0166 (8)0.0176 (9)0.0195 (8)0.0055 (7)0.0005 (6)0.0047 (7)
C110.0190 (9)0.0177 (9)0.0170 (8)0.0065 (7)0.0009 (6)0.0039 (7)
C120.0184 (9)0.0181 (9)0.0202 (9)0.0041 (7)0.0002 (7)0.0065 (7)
C140.0161 (8)0.0227 (9)0.0178 (8)0.0067 (7)0.0001 (6)0.0035 (7)
C150.0215 (9)0.0177 (9)0.0187 (8)0.0033 (7)0.0007 (7)0.0050 (7)
C160.0205 (9)0.0187 (9)0.0170 (8)0.0061 (7)0.0006 (6)0.0046 (7)
C170.0286 (10)0.0197 (10)0.0259 (10)0.0024 (8)0.0010 (8)0.0053 (8)
C180.0299 (11)0.0255 (10)0.0226 (9)0.0013 (8)0.0010 (8)0.0100 (8)
C190.0293 (10)0.0242 (10)0.0171 (9)0.0005 (8)0.0014 (7)0.0019 (7)
C200.0204 (9)0.0182 (9)0.0228 (9)0.0007 (7)0.0011 (7)0.0061 (7)
C210.0245 (10)0.0292 (11)0.0207 (9)0.0048 (8)0.0021 (7)0.0107 (8)
C220.0237 (9)0.0260 (10)0.0179 (9)0.0068 (8)0.0010 (7)0.0048 (7)
Cl10.0519 (4)0.0516 (4)0.0728 (5)0.0196 (3)0.0068 (3)0.0386 (4)
Cl20.0768 (6)0.0307 (4)0.0800 (6)0.0115 (3)0.0152 (4)0.0009 (4)
C130.0176 (8)0.0250 (10)0.0189 (8)0.0074 (7)0.0020 (7)0.0085 (7)
Cl30.0402 (4)0.0571 (4)0.0579 (4)0.0051 (3)0.0034 (3)0.0290 (3)
C230.0320 (12)0.0268 (11)0.0483 (14)0.0049 (9)0.0056 (10)0.0131 (10)
O30.0401 (10)0.0246 (8)0.0521 (11)0.0019 (7)0.0001 (8)0.0073 (7)
C240.0369 (13)0.0270 (12)0.0498 (15)0.0053 (10)0.0087 (11)0.0028 (11)
Geometric parameters (Å, º) top
Ni1—O21.8276 (13)C14—C151.383 (3)
Ni1—O11.8298 (13)C14—C131.409 (3)
Ni1—N11.8534 (15)C14—C221.506 (3)
Ni1—N21.8592 (16)C15—C161.414 (3)
O1—C11.314 (2)C15—H15A0.9300
O2—C161.317 (2)C17—H17A0.9600
N1—C71.311 (2)C17—H17B0.9600
N1—C81.475 (2)C17—H17C0.9600
N2—C101.310 (2)C18—H18A0.9600
N2—C91.469 (2)C18—H18B0.9600
C1—C21.413 (3)C18—H18C0.9600
C1—C61.418 (2)C19—H19A0.9600
C2—C31.382 (3)C19—H19B0.9600
C2—H2A0.9300C19—H19C0.9600
C3—C41.416 (3)C20—H20A0.9600
C3—C171.506 (3)C20—H20B0.9600
C4—C51.374 (3)C20—H20C0.9600
C4—C181.509 (3)C21—C131.511 (3)
C5—C61.419 (3)C21—H21A0.9600
C5—H5A0.9300C21—H21B0.9600
C6—C71.454 (3)C21—H21C0.9600
C7—C191.510 (2)C22—H22A0.9600
C8—C91.514 (3)C22—H22B0.9600
C8—H8A0.9700C22—H22C0.9600
C8—H8B0.9700Cl1—C231.749 (2)
C9—H9A0.9700Cl2—C231.748 (3)
C9—H9B0.9700Cl3—C231.767 (3)
C10—C111.457 (3)C23—H23A0.9800
C10—C201.502 (3)O3—C241.400 (3)
C11—C161.411 (3)O3—H1O30.8931
C11—C121.422 (2)C24—H24A0.9600
C12—C131.374 (3)C24—H24B0.9600
C12—H12A0.9300C24—H24C0.9600
Ni1···Ni1i4.1276 (3)Ni1···Ni1ii4.5626 (3)
O2—Ni1—O182.98 (6)C14—C15—C16122.47 (18)
O2—Ni1—N1177.05 (6)C14—C15—H15A118.8
O1—Ni1—N194.26 (6)C16—C15—H15A118.8
O2—Ni1—N293.94 (6)O2—C16—C11124.29 (16)
O1—Ni1—N2176.90 (6)O2—C16—C15117.16 (17)
N1—Ni1—N288.82 (7)C11—C16—C15118.55 (17)
C1—O1—Ni1127.77 (12)C3—C17—H17A109.5
C16—O2—Ni1126.95 (12)C3—C17—H17B109.5
C7—N1—C8117.97 (15)H17A—C17—H17B109.5
C7—N1—Ni1129.48 (13)C3—C17—H17C109.5
C8—N1—Ni1112.23 (11)H17A—C17—H17C109.5
C10—N2—C9119.07 (16)H17B—C17—H17C109.5
C10—N2—Ni1128.89 (13)C4—C18—H18A109.5
C9—N2—Ni1111.81 (12)C4—C18—H18B109.5
O1—C1—C2116.60 (16)H18A—C18—H18B109.5
O1—C1—C6124.99 (17)C4—C18—H18C109.5
C2—C1—C6118.41 (16)H18A—C18—H18C109.5
C3—C2—C1122.95 (17)H18B—C18—H18C109.5
C3—C2—H2A118.5C7—C19—H19A109.5
C1—C2—H2A118.5C7—C19—H19B109.5
C2—C3—C4119.06 (18)H19A—C19—H19B109.5
C2—C3—C17120.45 (17)C7—C19—H19C109.5
C4—C3—C17120.50 (17)H19A—C19—H19C109.5
C5—C4—C3118.32 (17)H19B—C19—H19C109.5
C5—C4—C18120.77 (17)C10—C20—H20A109.5
C3—C4—C18120.90 (17)C10—C20—H20B109.5
C4—C5—C6124.01 (17)H20A—C20—H20B109.5
C4—C5—H5A118.0C10—C20—H20C109.5
C6—C5—H5A118.0H20A—C20—H20C109.5
C1—C6—C5117.21 (17)H20B—C20—H20C109.5
C1—C6—C7121.60 (16)C13—C21—H21A109.5
C5—C6—C7121.19 (16)C13—C21—H21B109.5
N1—C7—C6121.70 (16)H21A—C21—H21B109.5
N1—C7—C19118.56 (17)C13—C21—H21C109.5
C6—C7—C19119.73 (16)H21A—C21—H21C109.5
N1—C8—C9109.21 (15)H21B—C21—H21C109.5
N1—C8—H8A109.8C14—C22—H22A109.5
C9—C8—H8A109.8C14—C22—H22B109.5
N1—C8—H8B109.8H22A—C22—H22B109.5
C9—C8—H8B109.8C14—C22—H22C109.5
H8A—C8—H8B108.3H22A—C22—H22C109.5
N2—C9—C8109.27 (15)H22B—C22—H22C109.5
N2—C9—H9A109.8C12—C13—C14118.70 (17)
C8—C9—H9A109.8C12—C13—C21120.37 (18)
N2—C9—H9B109.8C14—C13—C21120.92 (17)
C8—C9—H9B109.8Cl2—C23—Cl1111.33 (14)
H9A—C9—H9B108.3Cl2—C23—Cl3109.86 (13)
N2—C10—C11121.32 (17)Cl1—C23—Cl3110.63 (13)
N2—C10—C20119.63 (16)Cl2—C23—H23A108.3
C11—C10—C20119.06 (16)Cl1—C23—H23A108.3
C16—C11—C12117.64 (16)Cl3—C23—H23A108.3
C16—C11—C10121.81 (16)C24—O3—H1O3100.3
C12—C11—C10120.55 (17)O3—C24—H24A109.5
C13—C12—C11123.29 (18)O3—C24—H24B109.5
C13—C12—H12A118.4H24A—C24—H24B109.5
C11—C12—H12A118.4O3—C24—H24C109.5
C15—C14—C13119.34 (17)H24A—C24—H24C109.5
C15—C14—C22120.14 (18)H24B—C24—H24C109.5
C13—C14—C22120.52 (17)
O2—Ni1—O1—C1175.67 (15)C5—C6—C7—N1175.42 (17)
N1—Ni1—O1—C13.28 (15)C1—C6—C7—C19175.21 (17)
O1—Ni1—O2—C16163.17 (16)C5—C6—C7—C194.6 (3)
N2—Ni1—O2—C1617.21 (16)C7—N1—C8—C9162.36 (16)
O1—Ni1—N1—C70.21 (17)Ni1—N1—C8—C923.57 (18)
N2—Ni1—N1—C7179.36 (16)C10—N2—C9—C8158.37 (16)
O1—Ni1—N1—C8173.00 (12)Ni1—N2—C9—C826.54 (18)
N2—Ni1—N1—C87.43 (12)N1—C8—C9—N231.8 (2)
O2—Ni1—N2—C106.81 (16)C9—N2—C10—C11179.55 (15)
N1—Ni1—N2—C10174.26 (16)Ni1—N2—C10—C115.4 (3)
O2—Ni1—N2—C9167.68 (12)C9—N2—C10—C200.9 (2)
N1—Ni1—N2—C911.26 (12)Ni1—N2—C10—C20175.00 (12)
Ni1—O1—C1—C2177.47 (12)N2—C10—C11—C1611.8 (3)
Ni1—O1—C1—C62.7 (3)C20—C10—C11—C16168.63 (16)
O1—C1—C2—C3178.80 (16)N2—C10—C11—C12167.88 (16)
C6—C1—C2—C31.3 (3)C20—C10—C11—C1211.7 (2)
C1—C2—C3—C40.5 (3)C16—C11—C12—C130.3 (3)
C1—C2—C3—C17179.93 (17)C10—C11—C12—C13179.94 (17)
C2—C3—C4—C51.9 (3)C13—C14—C15—C160.1 (3)
C17—C3—C4—C5178.57 (17)C22—C14—C15—C16179.49 (17)
C2—C3—C4—C18177.35 (17)Ni1—O2—C16—C1115.6 (3)
C17—C3—C4—C182.2 (3)Ni1—O2—C16—C15164.22 (13)
C3—C4—C5—C61.5 (3)C12—C11—C16—O2178.46 (16)
C18—C4—C5—C6177.74 (17)C10—C11—C16—O21.2 (3)
O1—C1—C6—C5178.44 (16)C12—C11—C16—C151.4 (3)
C2—C1—C6—C51.7 (2)C10—C11—C16—C15178.98 (16)
O1—C1—C6—C71.8 (3)C14—C15—C16—O2178.51 (17)
C2—C1—C6—C7178.11 (16)C14—C15—C16—C111.3 (3)
C4—C5—C6—C10.3 (3)C11—C12—C13—C140.9 (3)
C4—C5—C6—C7179.48 (17)C11—C12—C13—C21179.10 (17)
C8—N1—C7—C6176.32 (15)C15—C14—C13—C121.0 (3)
Ni1—N1—C7—C63.4 (3)C22—C14—C13—C12179.41 (16)
C8—N1—C7—C193.7 (2)C15—C14—C13—C21179.03 (17)
Ni1—N1—C7—C19176.56 (13)C22—C14—C13—C210.6 (3)
C1—C6—C7—N14.8 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O10.892.232.980 (2)142
O3—H1O3···O20.892.102.901 (2)149
C23—H23A···O30.982.102.974 (3)148
C9—H9A···Cg1ii0.972.473.404 (2)162
C20—H20A···Cg2ii0.962.943.801 (2)150
C21—H21B···Cg3iii0.962.823.691 (2)152
Symmetry codes: (ii) x+2, y, z+1; (iii) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C22H26N2O2)]·CH4O·CHCl3
Mr560.59
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.5473 (1), 12.3899 (2), 14.2481 (2)
α, β, γ (°)75.949 (1), 83.761 (1), 74.693 (1)
V3)1245.21 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.36 × 0.17 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.684, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
29477, 7348, 5851
Rint0.038
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.103, 1.04
No. of reflections7348
No. of parameters305
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.80

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Ni1—O21.8276 (13)Ni1—N11.8534 (15)
Ni1—O11.8298 (13)Ni1—N21.8592 (16)
Ni1···Ni1i4.1276 (3)Ni1···Ni1ii4.5626 (3)
O2—Ni1—O182.98 (6)O2—Ni1—N293.94 (6)
O2—Ni1—N1177.05 (6)O1—Ni1—N2176.90 (6)
O1—Ni1—N194.26 (6)N1—Ni1—N288.82 (7)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O10.89002.23002.980 (2)142.00
O3—H1O3···O20.89002.10002.901 (2)149.00
C23—H23A···O30.98002.10002.974 (3)148.00
C9—H9A···Cg1ii0.97002.473.404 (2)162
C20—H20A···Cg2ii0.96002.943.801 (2)150
C21—H21B···Cg3iii0.96002.823.691 (2)152
Symmetry codes: (ii) x+2, y, z+1; (iii) x+2, y, z.
 

Footnotes

Additional correspondance author, e-mail: zsrkk@yahoo.com.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem. 23, 109–112.   CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, 223–226.  CrossRef Google Scholar
First citationClark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, 823–829.  CrossRef Google Scholar
First citationClark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, 396–399.  Google Scholar
First citationElmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationLi, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35–39.  CrossRef CAS Web of Science Google Scholar
First citationShahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956–962.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1116-m1117
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds