organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{3-Cyano-5,5-di­methyl-4-[4-(pyrrol­idin-1-yl)buta-1,3-dien­yl]-2,5-di­hydro­furan-2-yl­­idene}malono­nitrile di­chloro­methane solvate

aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand, and bDepartment of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 15 July 2008; accepted 1 August 2008; online 6 August 2008)

The structure of the title compound, C18H18N4O·CH2Cl2, was solved using data collected from a multiple crystal (note high R factors). The crystal structure is dominated by two bifurcated attractive C—H⋯N(cyano) inter­actions.

Related literature

For the synthesis, see Kay et al. (2004[Kay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 14, 1321-1330.]). For background, see Gainsford et al. (2007[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633-o637.], 2008a[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008a). Acta Cryst. C64, o195-o198.],b[Gainsford, G. J., Bhuiyan, M. D. H., Kay, A. J. & Spek, A. L. (2008b). Acta Cryst. E64, o503.],c[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008c). In preparation.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N4O·CH2Cl2

  • Mr = 391.29

  • Monoclinic, P 21 /c

  • a = 6.8755 (8) Å

  • b = 16.8913 (17) Å

  • c = 16.6677 (18) Å

  • β = 93.482 (8)°

  • V = 1932.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 120 (2) K

  • 0.30 × 0.15 × 0.13 mm

Data collection
  • Bruker–Nonius APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.570, Tmax = 0.955

  • 4280 measured reflections

  • 4280 independent reflections

  • 2517 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.095

  • wR(F2) = 0.270

  • S = 0.99

  • 4280 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 1.36 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N1i 0.95 2.52 3.378 (5) 150
C18—H18B⋯N1i 0.99 2.56 3.400 (5) 142
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: RLATT (Bruker, 2004[Bruker (2004). RLATT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SADABS (Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

We have previously reported on the synthesis of a number of high figure of merit chromophores for nonlinear optics (Kay et al., 2004), and the X-ray crystallographic and structural properties of crucial dye precursors used (Gainsford et al., 2007, 2008a,b). A closely related compound 2-[3-Cyano-5,5-dimethyl-4-(6-pyrrolidin-1-yl-hexa -1,3,5-trienyl)-5H-furan-2-ylidene]-malononitrile will be reported shortly (Gainsford et al., 2008c).

In the crystal structure, the molecules (Fig. 1) are bound into planar dimer units via a polyene C–H and pyrollidine C–H bifurcated interaction with one cyano nitrogen atom (N1, Table 1). Other very weak intermolecular interactions providing inter-plane or solvent links, such as the one between the dichloromethane H19A and N1 (2.70 Å), are consistent with the difficulty found in obtaining a good single-crystal of this compound.

Related literature top

For the synthesis, see Kay et al. (2004). For background, see Gainsford et al. (2007, 2008a,b,c).

Experimental top

To a solution of 5.8 mmole of {4-(4-Acetanilido-trans-1,3-butadienyl) -3-cyano-5,5-dimethyl-2(5H)-furanylidene}propanedinitrile (Compound 11b, Kay et al., 2004) in 30 ml of ethanol was added an equimolar quantity of pyrrolidine. The solution was refluxed 1 h, cooled and the product collected by filtration and washed with ethanol. λmax 530 nm (pyridine); 530 nm (DMF) log10ε 5.22. Final crystallization was from a 1:1 dichloromethane/ ethyl acetate mixture.

Refinement top

Diffraction data was extracted from the major of multiple intersecting lattices using RLATT (Bruker, 2004). The structure was solved by direct methods but refinement halted at R 0.20 for 3731 data with I>2σ(I). Inspection of data showed a large number with Fo>>Fc indicating coincidental contributions from the other contributing lattice(s). A total of 943 reflections which met the two criteria (1) I(obs)/I(calc) > 1.50 and (2) (I(obs)-I(calc)) > 2σ(I(obs)) were then excluded from the dataset. The conventional R for these rejected data was 0.47. The ratio criteria (1) was varied down to values of 1.05: although the agreement factors converged at around a ratio of 1.2 (R 0.078, for 2252 I>2σ(I) data) no signifcant changes occurred in final su values or parameters compared with the larger dataset. On the basis that another analysis of the data would be possible if the larger dataset was presented, the refinement was continued with the (ratio 1.5) 4280 independent remaining data within the limit of 29° theta. All methyl and tertiary H atoms were refined with Uiso 1.5 & 1.2 times respectively that of the Ueq of their parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: RLATT (Bruker, 2004), SAINT (Bruker, 2005) and SADABS (Sheldrick, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of the asymmetic unit (Farrugia, 1997); displacement ellipsoids are shown at the 50% probability level.
2-{3-Cyano-5,5-dimethyl-4-[4-(pyrrolidin-1-yl)buta-1,3-dienyl]-2,5- dihydrofuran-2-ylidene}malononitrile dichloromethane solvate top
Crystal data top
C18H18N4O·CH2Cl2F(000) = 816
Mr = 391.29Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5595 reflections
a = 6.8755 (8) Åθ = 2.4–29.2°
b = 16.8913 (17) ŵ = 0.35 mm1
c = 16.6677 (18) ÅT = 120 K
β = 93.482 (8)°Block, red
V = 1932.1 (4) Å30.30 × 0.15 × 0.13 mm
Z = 4
Data collection top
Bruker–Nonius APEXII CCD area-detector
diffractometer
4280 independent reflections
Radiation source: fine-focus sealed tube2517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
Detector resolution: 8.192 pixels mm-1θmax = 29.0°, θmin = 2.7°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(Blessing, 1995)
k = 023
Tmin = 0.570, Tmax = 0.955l = 022
4280 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.095Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.270H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1824P)2]
where P = (Fo2 + 2Fc2)/3
4280 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 1.36 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C18H18N4O·CH2Cl2V = 1932.1 (4) Å3
Mr = 391.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.8755 (8) ŵ = 0.35 mm1
b = 16.8913 (17) ÅT = 120 K
c = 16.6677 (18) Å0.30 × 0.15 × 0.13 mm
β = 93.482 (8)°
Data collection top
Bruker–Nonius APEXII CCD area-detector
diffractometer
4280 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2517 reflections with I > 2σ(I)
Tmin = 0.570, Tmax = 0.955Rint = 0.099
4280 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0950 restraints
wR(F2) = 0.270H-atom parameters constrained
S = 0.99Δρmax = 1.36 e Å3
4280 reflectionsΔρmin = 0.47 e Å3
237 parameters
Special details top

Experimental. There were 36108 reflections measured in the data collection (43242 of which 7061 were rejected to 2theta 58 degrees & 73 were systematic absence violations)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Four low theta angle reflections affected by the backstop were omitted.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.2744 (2)0.45770 (7)0.31788 (7)0.0405 (4)
Cl20.2711 (3)0.62862 (7)0.30173 (9)0.0578 (5)
O10.7615 (4)0.90197 (14)0.42000 (15)0.0176 (6)
N10.7450 (8)1.0058 (2)0.6850 (2)0.0461 (13)
N20.7371 (6)1.1047 (2)0.4400 (2)0.0308 (9)
N30.8028 (7)0.8020 (2)0.6872 (2)0.0382 (10)
N40.7736 (5)0.41968 (17)0.40006 (18)0.0175 (7)
C10.7496 (7)0.9959 (2)0.6163 (3)0.0250 (9)
C20.7542 (6)0.9836 (2)0.5329 (2)0.0187 (8)
C30.7462 (6)1.0505 (2)0.4810 (2)0.0218 (8)
C40.7730 (5)0.7750 (2)0.4757 (2)0.0149 (7)
C50.7705 (6)0.8175 (2)0.3964 (2)0.0160 (7)
C60.7637 (5)0.9082 (2)0.5002 (2)0.0148 (7)
C70.7736 (6)0.8325 (2)0.5364 (2)0.0156 (7)
C80.9567 (6)0.8083 (2)0.3533 (2)0.0234 (8)
H8A0.96040.84820.31070.035*
H8B0.96110.75530.32950.035*
H8C1.06910.81540.39160.035*
C90.5876 (7)0.8032 (2)0.3437 (2)0.0248 (9)
H9A0.47330.81020.37540.037*
H9B0.58910.74920.32240.037*
H9C0.58150.84100.29900.037*
C100.7885 (6)0.8171 (2)0.6203 (2)0.0226 (8)
C110.7752 (6)0.6928 (2)0.4885 (2)0.0186 (8)
H110.77240.67560.54270.022*
C120.7811 (6)0.6338 (2)0.4301 (2)0.0194 (8)
H120.78960.64920.37560.023*
C130.7752 (6)0.5539 (2)0.4481 (2)0.0189 (8)
H130.76440.53770.50220.023*
C140.7848 (6)0.4965 (2)0.3880 (2)0.0174 (7)
H140.80060.51430.33470.021*
C150.7243 (6)0.3835 (2)0.4769 (2)0.0187 (8)
H15A0.59820.40370.49400.022*
H15B0.82680.39440.51980.022*
C160.7121 (6)0.2948 (2)0.4578 (2)0.0179 (8)
H16A0.83810.26820.47160.021*
H16B0.60910.26900.48740.021*
C170.6631 (7)0.2927 (2)0.3685 (3)0.0273 (10)
H17A0.52220.30170.35620.033*
H17B0.70030.24130.34540.033*
C180.7825 (7)0.3595 (2)0.3367 (2)0.0243 (9)
H18A0.91840.34260.32980.029*
H18B0.72450.37930.28470.029*
C190.2652 (9)0.5381 (3)0.2501 (3)0.0406 (12)
H19A0.37740.53520.21570.049*
H19B0.14420.53490.21490.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0591 (9)0.0256 (6)0.0371 (7)0.0013 (5)0.0050 (5)0.0016 (5)
Cl20.1031 (14)0.0237 (6)0.0465 (8)0.0009 (7)0.0047 (8)0.0022 (5)
O10.0335 (16)0.0064 (11)0.0131 (12)0.0004 (10)0.0044 (10)0.0004 (9)
N10.091 (4)0.024 (2)0.023 (2)0.006 (2)0.009 (2)0.0102 (16)
N20.047 (2)0.0151 (16)0.030 (2)0.0001 (16)0.0008 (16)0.0014 (15)
N30.063 (3)0.028 (2)0.023 (2)0.005 (2)0.0010 (18)0.0067 (16)
N40.0282 (18)0.0089 (14)0.0157 (15)0.0017 (12)0.0042 (12)0.0002 (11)
C10.041 (3)0.0099 (17)0.024 (2)0.0014 (16)0.0028 (18)0.0020 (14)
C20.028 (2)0.0070 (15)0.0210 (19)0.0003 (14)0.0015 (15)0.0024 (13)
C30.030 (2)0.0104 (17)0.025 (2)0.0013 (14)0.0018 (16)0.0033 (14)
C40.0151 (18)0.0083 (15)0.0213 (18)0.0007 (12)0.0004 (13)0.0016 (13)
C50.024 (2)0.0063 (15)0.0175 (17)0.0030 (13)0.0010 (14)0.0038 (12)
C60.0200 (18)0.0115 (16)0.0129 (16)0.0021 (13)0.0007 (12)0.0012 (12)
C70.0216 (19)0.0112 (15)0.0141 (16)0.0020 (13)0.0009 (13)0.0010 (13)
C80.033 (2)0.0152 (17)0.0230 (19)0.0004 (16)0.0060 (16)0.0006 (15)
C90.042 (3)0.0128 (17)0.0189 (19)0.0034 (16)0.0066 (16)0.0003 (14)
C100.031 (2)0.0120 (17)0.024 (2)0.0043 (15)0.0023 (16)0.0018 (14)
C110.023 (2)0.0105 (16)0.0226 (18)0.0010 (14)0.0026 (14)0.0036 (14)
C120.024 (2)0.0100 (16)0.0238 (19)0.0005 (14)0.0004 (15)0.0002 (14)
C130.028 (2)0.0072 (15)0.0219 (19)0.0015 (13)0.0034 (15)0.0007 (13)
C140.0207 (19)0.0081 (16)0.0233 (19)0.0021 (13)0.0020 (14)0.0019 (13)
C150.026 (2)0.0129 (17)0.0173 (18)0.0016 (14)0.0023 (14)0.0008 (13)
C160.0220 (19)0.0093 (16)0.0221 (18)0.0018 (13)0.0011 (14)0.0022 (13)
C170.040 (3)0.0142 (18)0.027 (2)0.0056 (17)0.0036 (18)0.0025 (15)
C180.045 (3)0.0084 (16)0.0198 (19)0.0029 (16)0.0033 (16)0.0041 (14)
C190.064 (4)0.036 (3)0.022 (2)0.001 (2)0.003 (2)0.0043 (18)
Geometric parameters (Å, º) top
Cl1—C191.766 (5)C9—H9A0.9800
Cl2—C191.753 (5)C9—H9B0.9800
O1—C61.341 (4)C9—H9C0.9800
O1—C51.482 (4)C11—C121.397 (5)
N1—C11.160 (6)C11—H110.9500
N2—C31.141 (5)C12—C131.384 (5)
N3—C101.142 (5)C12—H120.9500
N4—C141.317 (4)C13—C141.397 (5)
N4—C181.471 (5)C13—H130.9500
N4—C151.477 (5)C14—H140.9500
C1—C21.408 (5)C15—C161.533 (5)
C2—C61.388 (5)C15—H15A0.9900
C2—C31.423 (5)C15—H15B0.9900
C4—C71.402 (5)C16—C171.505 (5)
C4—C111.405 (5)C16—H16A0.9900
C4—C51.503 (5)C16—H16B0.9900
C5—C91.510 (5)C17—C181.510 (6)
C5—C81.514 (6)C17—H17A0.9900
C6—C71.412 (5)C17—H17B0.9900
C7—C101.421 (5)C18—H18A0.9900
C8—H8A0.9800C18—H18B0.9900
C8—H8B0.9800C19—H19A0.9900
C8—H8C0.9800C19—H19B0.9900
C6—O1—C5110.0 (3)C13—C12—C11122.9 (4)
C14—N4—C18124.5 (3)C13—C12—H12118.6
C14—N4—C15124.0 (3)C11—C12—H12118.6
C18—N4—C15111.0 (3)C12—C13—C14121.2 (4)
N1—C1—C2179.6 (5)C12—C13—H13119.4
C6—C2—C1121.8 (3)C14—C13—H13119.4
C6—C2—C3119.5 (3)N4—C14—C13124.7 (4)
C1—C2—C3118.7 (3)N4—C14—H14117.7
N2—C3—C2178.8 (5)C13—C14—H14117.7
C7—C4—C11125.2 (3)N4—C15—C16103.7 (3)
C7—C4—C5107.6 (3)N4—C15—H15A111.0
C11—C4—C5127.2 (3)C16—C15—H15A111.0
O1—C5—C4103.0 (3)N4—C15—H15B111.0
O1—C5—C9105.2 (3)C16—C15—H15B111.0
C4—C5—C9113.6 (3)H15A—C15—H15B109.0
O1—C5—C8106.0 (3)C17—C16—C15103.6 (3)
C4—C5—C8113.8 (3)C17—C16—H16A111.0
C9—C5—C8113.9 (3)C15—C16—H16A111.0
O1—C6—C2117.7 (3)C17—C16—H16B111.0
O1—C6—C7110.6 (3)C15—C16—H16B111.0
C2—C6—C7131.7 (3)H16A—C16—H16B109.0
C4—C7—C6108.7 (3)C16—C17—C18103.7 (3)
C4—C7—C10125.4 (3)C16—C17—H17A111.0
C6—C7—C10125.8 (3)C18—C17—H17A111.0
C5—C8—H8A109.5C16—C17—H17B111.0
C5—C8—H8B109.5C18—C17—H17B111.0
H8A—C8—H8B109.5H17A—C17—H17B109.0
C5—C8—H8C109.5N4—C18—C17102.5 (3)
H8A—C8—H8C109.5N4—C18—H18A111.3
H8B—C8—H8C109.5C17—C18—H18A111.3
C5—C9—H9A109.5N4—C18—H18B111.3
C5—C9—H9B109.5C17—C18—H18B111.3
H9A—C9—H9B109.5H18A—C18—H18B109.2
C5—C9—H9C109.5Cl2—C19—Cl1111.0 (3)
H9A—C9—H9C109.5Cl2—C19—H19A109.4
H9B—C9—H9C109.5Cl1—C19—H19A109.4
N3—C10—C7177.6 (4)Cl2—C19—H19B109.4
C12—C11—C4126.9 (4)Cl1—C19—H19B109.4
C12—C11—H11116.6H19A—C19—H19B108.0
C4—C11—H11116.6
C6—O1—C5—C41.4 (4)O1—C6—C7—C41.5 (4)
C6—O1—C5—C9120.7 (3)C2—C6—C7—C4177.8 (4)
C6—O1—C5—C8118.4 (3)O1—C6—C7—C10176.5 (4)
C7—C4—C5—O12.3 (4)C2—C6—C7—C104.2 (7)
C11—C4—C5—O1178.0 (4)C7—C4—C11—C12177.7 (4)
C7—C4—C5—C9115.5 (3)C5—C4—C11—C122.0 (6)
C11—C4—C5—C964.8 (5)C4—C11—C12—C13177.4 (4)
C7—C4—C5—C8112.0 (3)C11—C12—C13—C14178.9 (4)
C11—C4—C5—C867.8 (5)C18—N4—C14—C13179.6 (4)
C5—O1—C6—C2179.4 (3)C15—N4—C14—C138.1 (6)
C5—O1—C6—C70.0 (4)C12—C13—C14—N4177.6 (4)
C1—C2—C6—O1178.0 (4)C14—N4—C15—C16175.1 (4)
C3—C2—C6—O11.1 (6)C18—N4—C15—C162.5 (4)
C1—C2—C6—C71.2 (7)N4—C15—C16—C1725.4 (4)
C3—C2—C6—C7179.7 (4)C15—C16—C17—C1838.8 (4)
C11—C4—C7—C6177.9 (4)C14—N4—C18—C17151.3 (4)
C5—C4—C7—C62.3 (4)C15—N4—C18—C1721.1 (4)
C11—C4—C7—C104.1 (6)C16—C17—C18—N436.7 (4)
C5—C4—C7—C10175.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N1i0.952.523.378 (5)150
C18—H18B···N1i0.992.563.400 (5)142
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H18N4O·CH2Cl2
Mr391.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)6.8755 (8), 16.8913 (17), 16.6677 (18)
β (°) 93.482 (8)
V3)1932.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.30 × 0.15 × 0.13
Data collection
DiffractometerBruker–Nonius APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.570, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
4280, 4280, 2517
Rint0.099
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.095, 0.270, 0.99
No. of reflections4280
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.36, 0.47

Computer programs: APEX2 (Bruker, 2005), RLATT (Bruker, 2004), SAINT (Bruker, 2005) and SADABS (Sheldrick, 2003), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N1i0.952.523.378 (5)150
C18—H18B···N1i0.992.563.400 (5)142
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

We thank Dr J. Wikaira of the University of Canterbury, New Zealand, for her assistance in the data collection.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). RLATT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633–o637.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008a). Acta Cryst. C64, o195-o198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H., Kay, A. J. & Spek, A. L. (2008b). Acta Cryst. E64, o503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008c). In preparation.  Google Scholar
First citationKay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 14, 1321–1330.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds