organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1673-o1674

4-[(3-Formyl-4-hy­droxy­phen­yl)diazen­yl]-N-(pyrimidin-2-yl)benzene­sulfonamide

aDepartment of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt, and bDepartment of Chemistry, Faculty of Science, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
*Correspondence e-mail: helghamrymo@yahoo.com

(Received 24 July 2008; accepted 30 July 2008; online 6 August 2008)

The title mol­ecule, C17H13N5O4S, has a trans configuration with respect to the diazenyl (azo) group. The pyrimidine ring and the terminal benzene ring are inclined at angles of 89.38 (4) and 1.6 (6)°, respectively, with respect to the central benzene ring. The conformation of the mol­ecule is in part stabilized by an intra­molecular O—H⋯O hydrogen bond. In the crystal structure, mol­ecules related through inversion centers form hydrogen-bonded dimers involving the sulfon­amide N—H group and the N atom of the pyrimidine ring.

Related literature

For related literature, see: Gaber et al. (2008[Gaber, M., El-Baradie, K. & El-Sayed, Y. (2008). Spectrochim. Acta (A), 69, 543-541.] and references therein); Kakoti et al. (1993[Kakoti, M., Choudhury, S., Deb, A. K. & Goswami, S. (1993). Polyhedron, 12, 783-789.]); La Roche & Co (1967a,b); Misra et al. (1998[Misra, T. K., Das, D., Sinha, C., Ghosh, P. & Pal, C. K. (1998). Inorg. Chem. 37, 8, 1672-1678.]); Mubarak et al. (2007[Mubarak, A. T., El-Sonbati, A. Z. & Ahmed, S. M. (2007). J. Coord. Chem. 60, 17, 1877-1890.]); Nagaraja et al. (2002[Nagaraja, P., Sunith, K., Vasantha, R. & Yathirajan, H. (2002). Eur. J. Pharm. Biopharm. 53, 187-192.]); Santra & Lahiri (1997[Santra, B. K. & Lahiri, G. K. (1997). J. Chem. Soc. Dalton Trans. pp. 1883-1888.]); Vaichulis (1977[Vaichulis, A. J. (1977). US Patent 8 273 352 .]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Open, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13N5O4S

  • Mr = 383.39

  • Monoclinic, P 21 /c

  • a = 18.579 (2) Å

  • b = 5.7731 (7) Å

  • c = 17.372 (2) Å

  • β = 115.99 (1)°

  • V = 1674.73 Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.934, Tmax = 0.977

  • 17304 measured reflections

  • 3560 independent reflections

  • 3277 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.05

  • 3560 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1⋯O1 0.84 1.90 2.6269 (17) 145
N3—H10⋯N5i 0.88 1.98 2.8574 (17) 179
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: KENX (Sakai, 2004[Sakai, K. (2004). KENX. Kyushu University, Japan.]); software used to prepare material for publication: SHELXL97, TEXSAN (Molecular Structure Corporation, 2001[Molecular Structure Corporation (2001). TEXSAN. MSC, The Woodlands, Texas, USA.]), KENX and ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]).

Supporting information


Comment top

Sulfa-drugs are widely used in the treatment of infections, especially for patients intolerant to antibiotics (Nagaraja et al., 2002). The vast commercial success of these medical agents has made the chemistry of sulfonamides become a major area of research and an important branch of commercial importance in pharmaceutical sciences (Nagaraja et al., 2002). Heterocyclic azo compounds are also considered very important class of compounds. The importance of these compounds may stem from its biological activity and analytical investigations (Gaber et al., 2008). Also, it is well known that heterocyclic azo compounds have been used to establish the low oxidation states of different metal ions (Kakoti et al., 1993; Santra & Lahiri, 1997; Misra et al., 1998). What appears more important is that sulfonamide and azo-sulfonamide derivatives have been found to be biologically versatile anticancer (La Roche & Co, 1967a,b) and antitubercular (Vaichulis, 1977) drugs.

In the title compound (I), C17H13N5O4S, the two aromatic groups attached to the azo double bond are oriented in a trans fashion. All the bond lengths are found to be within the normal values (Allen et al., 1987). An intramolecular hydrogen bond is formed between the O—H (hydroxyl) group and the oxygen atom of the carbonyl group (O2—H1···O1; Table 1), stabilizing the coformation of the molecule. Moreover, the molecule is further correlated with an adjacent molecule through an inversion center, where the intermolecular interaction is stabilized with two hydrogen bonds formed between the NH(sulfonamide) group and the nitrogen atom of pyrimidine ring, N3—H···N5i hydrogen bond [symmetry code: (i) 1 - x, 2 - y, 1 - z] (see Fig. 2 and Table 1). There is an unusually short intermolecular contact between the C (carbonyl) and the O (sulfonamide) atoms, i.e., C1···O3ii = 2.91 (2) Å [symmetry code: (ii) 2 - x, 1/2 + y, 3/2 - z]. Although the rotation about the C10—S1 bond axis is essentially allowed, the rotation at this geometry is fixed as a result of strong intermolecular hydrogen bonds formed at the peripheral pyrimidine attached to the sulfonamide unit. This must be the major cause of the short contact found for one of the sulfonamide oxygen atoms, i.e., O3.

The pyrimidine ring and both the central and terminal benzene rings are found to have a planar geometry (r.m.s deviations are 0.0136, 0.0106 and 0.0225 Å, respectively). Both the pyrimidine and the terminal phenyl rings are canted with respect to the central phenyl ring at angle of 89.38 (4) and 1.6 (6)°, respectively.

Related literature top

For related literature, see: Gaber et al. (2008 and references therein); Kakoti et al. (1993); La Roche & Co (1967a,b); Misra et al. (1998); Mubarak et al. (2007); Nagaraja et al. (2002); Santra & Lahiri (1997); Vaichulis (1977). For bond-length dtata, see: Allen et al. (1987).

Experimental top

Compound (I) was prepared by the previously reported method in the literature (Mubarak et al., 2007) in which 2.5 g m (0.01 mol) of sulfadiazine was dissolved in 25 ml of distilled water containing 2.5 ml (12M, 2.5 ml, 0.03 mol) of conc. HCl. The resulting solution was then cooled under stirring to 273 K. A cold solution containing 0.69 g m (0.01 mol) of sodium nitrite was drop wisely added to the previous solution to form the diazonium chloride. This solution was then added to a solution containing 1.06 ml of salicylaldehyde (0.01 mol) dissolved in 10 ml of water containing 0.4 g m (0.01 mol) of NaOH. The orange dye, which separated out, was kept in an ice bath under stirring for 30 minutes. The precipitate was then filtered off, washed by distilled water, and finally air_dried (yield: 80%). Analysis calculated for C17H13N5O4S: C, 53.26; H, 3.39; N, 18.27; S, 8.35% found: C, 53.44; H, 3.34; N, 18.38; S, 8.25%. IR (ν, cm-1): 3424(w), 3358(w), 3082(w), 3041(w), 2944(w), 2814(w), 2727(w), 1652(s), 1621(m), 1581(s), 1496(s), 1443(s), 1410(s), 1384(m), 1339(s), 1305(m), 1289(s), 1269(m), 1206(m), 1166(s), 1154(s), 1141(w), 1001(m), 952(s), 902(m), 840(s), 797(s), 772(w), 750(s), 729(s), 669(s), 640(s), 606(s), 582(s), 564(s), 540(w), 531(w), 521(m), 509(m), 455(s), 432(m), 424(w), 403(m). A good crystal suitable for x-ray measurement was prepared by vapour diffusion method in which compound (I) was dissolved in the least possible amount of DMF and then the solution was left at room temperature in the presence of water pool outside. The outside water slowly diffused by vapour and gradually mixed with DMF of the dye. After 7 days, dark orange crystals suitable for X-ray diffraction analysis was separated out.

Refinement top

All H atoms were placed in idealized positions, (C—H = 0.95 Å, O—H = 0.84 Å, and N—H = 0.88 Å), and included in the refinement in a riding-model approximation, with Uiso(H) = 1.2Ueq (C and N) and Uiso(H) = 1.5Ueq (O). In the final difference Fourier map, the highest peak was located 0.83 Å from atom C10. The deepest hole was located 0.64 Å from atom S1.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: KENX (Sakai, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), TEXSAN (Molecular Structure Corporation, 2001), KENX (Sakai, 2004) and ORTEPII (Johnson, 1976).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing a pair of molecules [symmetry code: (i)1 - x, 2 - y, 1 - z] stabilized by intra- and intermolecular hydrogen bonds (dashed lines).
4-[(3-Formyl-4-hydroxyphenyl)diazenyl]-N-(pyrimidin-2- yl)benzenesulfonamide top
Crystal data top
C17H13N5O4SF(000) = 792
Mr = 383.39? # Insert any comments here.
Monoclinic, P21/cDx = 1.521 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 18.579 (2) ÅCell parameters from 9950 reflections
b = 5.7731 (7) Åθ = 2.4–28.3°
c = 17.372 (2) ŵ = 0.23 mm1
β = 115.99 (1)°T = 100 K
V = 1674.73 Å3Block, dark orange
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3560 independent reflections
Radiation source: fine-focus sealed tube3277 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 26.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2323
Tmin = 0.934, Tmax = 0.977k = 77
17304 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.9337P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3560 reflectionsΔρmax = 0.42 e Å3
245 parametersΔρmin = 0.37 e Å3
0 restraints
Crystal data top
C17H13N5O4SV = 1674.73 Å3
Mr = 383.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.579 (2) ŵ = 0.23 mm1
b = 5.7731 (7) ÅT = 100 K
c = 17.372 (2) Å0.30 × 0.20 × 0.10 mm
β = 115.99 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3560 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3277 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.977Rint = 0.017
17304 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.05Δρmax = 0.42 e Å3
3560 reflectionsΔρmin = 0.37 e Å3
245 parameters
Special details top

Experimental. The first 50 frames were rescanned at the end of data collection to evaluate any possible decay phenomenon. Since it was judged to be negligible, no decay correction was applied to the data.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

13.7836 (0.0041) x + 2.4391 (0.0022) y - 13.7785 (0.0036) z = 4.2437 (0.0052)

* 0.0258 (0.0010) O1 * -0.0309 (0.0010) O2 * 0.0133 (0.0012) C1 * -0.0188 (0.0013) C2 * -0.0067 (0.0012) C3 * 0.0010 (0.0012) C4 * 0.0430 (0.0013) C5 * 0.0139 (0.0012) C6 * -0.0207 (0.0013) C7 * -0.0198 (0.0009) N1 - 0.1255 (0.0017) N2 - 0.2396 (0.0024) C9 - 0.2576 (0.0024) C10 - 0.2407 (0.0024) C11 - 0.2117 (0.0022) C12 - 0.1607 (0.0019) C13

Rms deviation of fitted atoms = 0.0225

13.5655 (0.0045) x + 2.3850 (0.0032) y - 14.0573 (0.0043) z = 3.6030 (0.0035)

Angle to previous plane (with approximate e.s.d.) = 1.60 (0.06)

* 0.0132 (0.0011) N2 * -0.0021 (0.0008) C9 * -0.0021 (0.0012) C10 * -0.0053 (0.0012) C11 * -0.0149 (0.0012) C12 * 0.0178 (0.0013) C13 * -0.0066 (0.0004) O1 - 0.0637 (0.0021) O2 0.0152 (0.0018) C1 0.0043 (0.0016) C2 0.0555 (0.0016) C3 0.0836 (0.0016) C4 0.1066 (0.0021) C5 0.0390 (0.0023) C6 - 0.0162 (0.0020) C7 0.1025 (0.0013) N1

Rms deviation of fitted atoms = 0.0106

2.8895 (0.0099) x + 3.8287 (0.0026) y + 10.2469 (0.0065) z = 10.3651 (0.0036)

Angle to previous plane (with approximate e.s.d.) = 89.38 (0.04)

* -0.0192 (0.0009) N3 * 0.0179 (0.0011) N4 * 0.0136 (0.0010) N5 * 0.0038 (0.0012) C14 * -0.0009 (0.0012) C15 * -0.0197 (0.0013) C16 * 0.0045 (0.0011) C17

Rms deviation of fitted atoms = 0.0136

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.67904 (2)0.77281 (6)0.52372 (2)0.02455 (11)
O11.32533 (7)0.9734 (2)1.18827 (7)0.0366 (3)
N50.49729 (7)0.7981 (2)0.57442 (7)0.0246 (3)
O40.67616 (6)0.9243 (2)0.45700 (6)0.0301 (2)
O30.68746 (6)0.52911 (19)0.51537 (7)0.0297 (2)
C170.46694 (9)0.6915 (3)0.62192 (9)0.0289 (3)
H130.41690.74180.61830.035*
N20.94619 (7)1.1123 (2)0.84456 (8)0.0282 (3)
N30.59631 (7)0.8311 (2)0.53095 (8)0.0280 (3)
H100.56680.94460.49870.034*
N11.00856 (7)0.9914 (2)0.87789 (8)0.0280 (3)
O21.24471 (7)1.3545 (2)1.17919 (7)0.0332 (3)
H11.28351.26241.20130.050*
C150.57921 (10)0.4485 (3)0.68056 (10)0.0357 (4)
H110.60790.32620.71810.043*
C160.50602 (9)0.5108 (3)0.67607 (10)0.0338 (3)
H120.48350.43320.70860.041*
C11.26947 (9)0.9081 (3)1.12173 (10)0.0310 (3)
H21.27360.76161.09910.037*
C51.06241 (9)1.3131 (3)0.98413 (10)0.0297 (3)
H41.01711.40670.95180.036*
C61.12111 (9)1.3967 (3)1.05977 (10)0.0299 (3)
H51.11551.54511.08020.036*
C120.81694 (9)1.1545 (3)0.72898 (9)0.0288 (3)
H90.81451.29980.75340.035*
C110.75308 (9)1.0818 (3)0.65434 (9)0.0286 (3)
H80.70741.17770.62620.034*
C80.88818 (9)0.7981 (3)0.73479 (9)0.0279 (3)
H60.93430.70340.76210.034*
C71.18899 (9)1.2628 (3)1.10648 (9)0.0269 (3)
C41.06845 (9)1.0915 (3)0.95400 (9)0.0265 (3)
C31.13632 (9)0.9607 (3)0.99930 (9)0.0266 (3)
H31.14170.81290.97830.032*
C90.82375 (9)0.7222 (3)0.66129 (9)0.0264 (3)
H70.82490.57370.63830.032*
C130.88463 (9)1.0158 (3)0.76846 (9)0.0266 (3)
C21.19719 (9)1.0441 (3)1.07584 (9)0.0266 (3)
N40.61192 (8)0.5519 (2)0.63453 (8)0.0328 (3)
C140.56803 (8)0.7196 (2)0.58287 (9)0.0246 (3)
C100.75726 (8)0.8652 (3)0.62140 (9)0.0242 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02184 (18)0.0280 (2)0.02274 (19)0.00350 (13)0.00873 (14)0.00169 (13)
O10.0312 (6)0.0394 (6)0.0338 (6)0.0059 (5)0.0091 (5)0.0096 (5)
N50.0208 (6)0.0265 (6)0.0224 (6)0.0000 (5)0.0057 (5)0.0021 (5)
O40.0290 (5)0.0365 (6)0.0256 (5)0.0041 (4)0.0127 (4)0.0044 (4)
O30.0266 (5)0.0294 (6)0.0289 (5)0.0017 (4)0.0083 (4)0.0033 (4)
C170.0238 (7)0.0335 (8)0.0269 (7)0.0013 (6)0.0090 (6)0.0028 (6)
N20.0279 (6)0.0288 (6)0.0271 (6)0.0006 (5)0.0114 (5)0.0006 (5)
N30.0231 (6)0.0318 (7)0.0284 (6)0.0076 (5)0.0107 (5)0.0102 (5)
N10.0277 (6)0.0293 (6)0.0275 (6)0.0005 (5)0.0127 (5)0.0003 (5)
O20.0292 (6)0.0361 (6)0.0280 (5)0.0013 (5)0.0066 (4)0.0008 (5)
C150.0342 (8)0.0351 (8)0.0319 (8)0.0044 (7)0.0091 (6)0.0127 (7)
C160.0312 (8)0.0368 (8)0.0310 (7)0.0031 (6)0.0115 (6)0.0091 (6)
C10.0311 (7)0.0297 (8)0.0333 (8)0.0039 (6)0.0150 (6)0.0073 (6)
C50.0255 (7)0.0300 (8)0.0311 (8)0.0052 (6)0.0100 (6)0.0016 (6)
C60.0301 (7)0.0261 (7)0.0323 (8)0.0024 (6)0.0127 (6)0.0017 (6)
C120.0341 (8)0.0228 (7)0.0294 (7)0.0023 (6)0.0139 (6)0.0011 (6)
C110.0295 (7)0.0258 (7)0.0289 (7)0.0065 (6)0.0114 (6)0.0034 (6)
C80.0245 (7)0.0319 (8)0.0267 (7)0.0056 (6)0.0105 (6)0.0004 (6)
C70.0256 (7)0.0298 (7)0.0257 (7)0.0016 (6)0.0116 (6)0.0022 (6)
C40.0264 (7)0.0287 (7)0.0256 (7)0.0005 (6)0.0126 (6)0.0003 (6)
C30.0297 (7)0.0240 (7)0.0296 (7)0.0006 (6)0.0162 (6)0.0016 (6)
C90.0272 (7)0.0264 (7)0.0266 (7)0.0044 (6)0.0129 (6)0.0010 (6)
C130.0272 (7)0.0289 (7)0.0243 (7)0.0008 (6)0.0118 (6)0.0002 (6)
C20.0265 (7)0.0272 (7)0.0280 (7)0.0011 (6)0.0138 (6)0.0057 (6)
N40.0275 (6)0.0359 (7)0.0309 (7)0.0074 (5)0.0091 (5)0.0113 (6)
C140.0220 (6)0.0261 (7)0.0220 (6)0.0002 (5)0.0064 (5)0.0011 (5)
C100.0236 (7)0.0276 (7)0.0214 (6)0.0013 (5)0.0099 (5)0.0012 (5)
Geometric parameters (Å, º) top
S1—O31.4299 (11)C11—C101.391 (2)
S1—O41.4343 (11)C8—C91.384 (2)
S1—N31.6311 (12)C8—C131.400 (2)
S1—C101.7647 (15)C7—C21.404 (2)
O1—C11.226 (2)C4—C31.382 (2)
N5—C141.3362 (19)C3—C21.400 (2)
N5—C171.3362 (19)C9—C101.392 (2)
C17—C161.379 (2)C1—O3i2.9106 (19)
N2—N11.2558 (18)C5—H40.9500
N2—C131.4285 (19)N3—H100.8800
N3—C141.3857 (19)C1—H20.9500
N4—C141.3289 (19)C6—H50.9500
N1—C41.4250 (19)C8—H60.9500
O2—C71.3420 (18)C15—H110.9500
C15—N41.338 (2)C16—H120.9500
C15—C161.375 (2)C12—H90.9500
C1—C21.455 (2)O2—H10.8400
C5—C61.376 (2)C11—H80.9500
C5—C41.405 (2)C3—H30.9500
C6—C71.396 (2)C17—H130.9500
C12—C111.384 (2)C9—H70.9500
C12—C131.392 (2)
O3—S1—O4119.02 (7)C13—C12—H9119.8
O3—S1—N3111.08 (7)C12—C11—C10118.57 (13)
O4—S1—N3103.51 (6)C12—C11—H8120.7
O3—S1—C10108.31 (7)C10—C11—H8120.7
O4—S1—C10108.42 (7)C9—C8—C13119.32 (13)
N3—S1—C10105.68 (7)C9—C8—H6120.3
C14—N5—C17115.89 (13)C13—C8—H6120.3
N5—C17—C16122.09 (14)O2—C7—C6117.16 (14)
N5—C17—H13119.0O2—C7—C2122.97 (13)
C16—C17—H13119.0C6—C7—C2119.87 (14)
N1—N2—C13114.37 (13)C3—C4—C5119.16 (14)
C14—N3—S1126.38 (10)C3—C4—N1116.95 (13)
C14—N3—H10116.8C5—C4—N1123.89 (13)
S1—N3—H10116.8C4—C3—C2120.56 (14)
N2—N1—C4112.94 (13)C4—C3—H3119.7
C7—O2—H1109.5C2—C3—H3119.7
N4—C15—C16123.09 (15)C8—C9—C10119.44 (14)
N4—C15—H11118.5C8—C9—H7120.3
C16—C15—H11118.5C10—C9—H7120.3
C15—C16—C17116.64 (14)C12—C13—C8120.55 (14)
C15—C16—H12121.7C12—C13—N2114.57 (13)
C17—C16—H12121.7C8—C13—N2124.86 (13)
O1—C1—C2123.15 (15)C3—C2—C7119.50 (13)
O1—C1—H2118.4C3—C2—C1120.14 (14)
C2—C1—H2118.4C7—C2—C1120.34 (14)
C6—C5—C4121.07 (14)C14—N4—C15115.06 (13)
C6—C5—H4119.5N4—C14—N5127.19 (14)
C4—C5—H4119.5N4—C14—N3118.86 (13)
C5—C6—C7119.78 (14)N5—C14—N3113.95 (12)
C5—C6—H5120.1C11—C10—C9121.71 (13)
C7—C6—H5120.1C11—C10—S1119.74 (11)
C11—C12—C13120.37 (14)C9—C10—S1118.47 (11)
C11—C12—H9119.8
C14—N5—C17—C160.3 (2)C4—C3—C2—C1178.17 (13)
O3—S1—N3—C1446.71 (15)O2—C7—C2—C3179.94 (13)
O4—S1—N3—C14175.57 (13)C6—C7—C2—C31.2 (2)
C10—S1—N3—C1470.55 (14)O2—C7—C2—C11.9 (2)
C13—N2—N1—C4179.50 (12)C6—C7—C2—C1176.90 (14)
N4—C15—C16—C171.1 (3)O1—C1—C2—C3178.82 (14)
N5—C17—C16—C151.6 (2)O1—C1—C2—C70.8 (2)
C4—C5—C6—C71.8 (2)C16—C15—N4—C140.6 (2)
C13—C12—C11—C101.9 (2)C15—N4—C14—N52.2 (2)
C5—C6—C7—O2179.17 (13)C15—N4—C14—N3178.08 (14)
C5—C6—C7—C20.3 (2)C17—N5—C14—N41.7 (2)
C6—C5—C4—C33.0 (2)C17—N5—C14—N3178.51 (13)
C6—C5—C4—N1177.69 (14)S1—N3—C14—N42.0 (2)
N2—N1—C4—C3174.33 (13)S1—N3—C14—N5178.19 (11)
N2—N1—C4—C56.4 (2)C12—C11—C10—C90.3 (2)
C5—C4—C3—C22.2 (2)C12—C11—C10—S1177.03 (11)
N1—C4—C3—C2178.51 (12)C8—C9—C10—C111.2 (2)
C13—C8—C9—C101.1 (2)C8—C9—C10—S1175.57 (11)
C11—C12—C13—C82.0 (2)O3—S1—C10—C11165.58 (11)
C11—C12—C13—N2179.57 (13)O4—S1—C10—C1163.96 (13)
C9—C8—C13—C120.4 (2)N3—S1—C10—C1146.48 (13)
C9—C8—C13—N2178.74 (14)O3—S1—C10—C917.59 (14)
N1—N2—C13—C12177.01 (13)O4—S1—C10—C9112.87 (12)
N1—N2—C13—C84.6 (2)N3—S1—C10—C9136.69 (12)
C4—C3—C2—C70.1 (2)
Symmetry code: (i) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O10.841.902.6269 (17)145
N3—H10···N5ii0.881.982.8574 (17)179
Symmetry code: (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC17H13N5O4S
Mr383.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)18.579 (2), 5.7731 (7), 17.372 (2)
β (°) 115.99 (1)
V3)1674.73
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.934, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
17304, 3560, 3277
Rint0.017
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.05
No. of reflections3560
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.37

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), TEXSAN (Molecular Structure Corporation, 2001), KENX (Sakai, 2004) and ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O10.841.902.6269 (17)144.8
N3—H10···N5i0.881.982.8574 (17)178.5
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Specially Promoted Research (No. 18002016) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. HE acknowledges the Egyptian Channel System for financial support to promote the joint research project between Tanta and Kyushu Universities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Open, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGaber, M., El-Baradie, K. & El-Sayed, Y. (2008). Spectrochim. Acta (A), 69, 543–541.  CrossRef Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKakoti, M., Choudhury, S., Deb, A. K. & Goswami, S. (1993). Polyhedron, 12, 783–789.  CrossRef CAS Web of Science Google Scholar
First citationLa Roche, H. & Co, A. G. (1967a). Chem. Abstr. 67, 73323r.  Google Scholar
First citationLa Roche, H. & Co, A. G. (1967b). Swiss Patent, Neth. Apt. 66610, 566 (Cl. CO 7d). 31.  Google Scholar
First citationMisra, T. K., Das, D., Sinha, C., Ghosh, P. & Pal, C. K. (1998). Inorg. Chem. 37, 8, 1672–1678.  Google Scholar
First citationMolecular Structure Corporation (2001). TEXSAN. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationMubarak, A. T., El-Sonbati, A. Z. & Ahmed, S. M. (2007). J. Coord. Chem. 60, 17, 1877–1890.  Google Scholar
First citationNagaraja, P., Sunith, K., Vasantha, R. & Yathirajan, H. (2002). Eur. J. Pharm. Biopharm. 53, 187–192.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSakai, K. (2004). KENX. Kyushu University, Japan.  Google Scholar
First citationSantra, B. K. & Lahiri, G. K. (1997). J. Chem. Soc. Dalton Trans. pp. 1883–1888.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaichulis, A. J. (1977). US Patent 8 273 352 .  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1673-o1674
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds