organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

S-Benzyl­iso­thio­uronium nitrate

aDepartment of Physics, PSG College of Technology, Coimbatore 641 004, TamilNadu, India, and bDepartment of Physics, PSG College of Arts and Science, Coimbatore 641 014, TamilNadu, India
*Correspondence e-mail: vv_vazhuthi@rediffmail.com

(Received 25 July 2008; accepted 18 August 2008; online 23 August 2008)

In the crystal structure of the title compound, C8H11N2S+·NO3, cations and anions are linked by inter­molecular N—H⋯O hydrogen bonds, forming one-dimensional chains along [110].

Related literature

For related literature, see: Barker & Powell (1998[Barker, J. & Powell, H. R. (1998). Acta Cryst. C54, 2019-2021.]); Boyd (1989[Boyd, G. T. (1989). J. Opt. Soc. Am. B6, 685-688.]); Hemalatha et al. (2006[Hemalatha, P., Veeravazhuthi, V., Mallika, J., Narayanadass, S. K. & Mangalaraj, D. (2006). Cry. Res. Tec. 41, 775-779.]); Zaccaro et al. (1999[Zaccaro, J., Lorutet, F. & Ibanez, A. (1999). J. Mater. Chem. 9, 1091-1094.]); Zyss et al. (1984[Zyss, J., Nicoud, J. F. & Koquillay, M. (1984). J. Chem. Phys. 81, 4160-4162.]).

[Scheme 1]

Experimental

Crystal data
  • C8H11N2S+·NO3

  • Mr = 229.26

  • Monoclinic, P 21 /c

  • a = 5.8569 (4) Å

  • b = 7.5931 (5) Å

  • c = 23.9488 (16) Å

  • β = 93.304 (1)°

  • V = 1063.28 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 (2) K

  • 0.25 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 11620 measured reflections

  • 2492 independent reflections

  • 2282 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.229

  • S = 1.00

  • 2492 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 1.98 2.803 (4) 160
N1—H1B⋯O3i 0.86 2.23 3.009 (4) 151
N2—H2A⋯O1 0.86 2.21 3.040 (5) 164
N2—H2A⋯O2 0.86 2.56 3.240 (4) 136
N2—H2B⋯O1ii 0.86 2.12 2.913 (4) 152
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Organic molecular materials have many potential applications in integrated optics, and one of the most attractive applications is diode laser frequency doublers (Boyd, 1989). In the last two decades, extensive research has shown that organic crystals can exhibit nonlinear optical [NLO] efficiencies higher than those of inorganic materials (Zyss et al., 1984 & Zaccaro et al., 1999). Organic nonlinear optical materials are often formed by weak Vander Waals and hydrogen bonds and hence posses high degree of delocalization. Organic materials are molecular materials that offer unique opportunities for fundamental research as well as for technological applications. The title compound (I) is potentially in the above category of materials, therefore we have undertaken its crystal structure determination.

The title molecule is shown in Fig. 1. The C—N, S—C bond lengths and C—S—C and N—C—N bond angles are comparable with the similar structure reported earlier (Barker & Powell, 1998). The bond angles for O1—N3—O3 is 128.7 (4); O1—N3—O2 is 116.7 (4); O3—N3—O2 is 114.6 (3), indicating slight deviations in the bond angle from the expected 120° in terms of the sp2 hybridization. In the title crystal structure, C8H11N2S, NO3, cations and anions are linked by intermolecular N—H···O hydrogen bonds to form one-dimensional chains along [110] (Fig. 2).

Related literature top

For related literature, see: Barker & Powell (1998); Boyd (1989); Hemalatha et al. (2006); Zaccaro et al. (1999); Zyss et al. (1984).

Experimental top

S-benzylisothiouronium chloride (SBTC) was synthesized as reported earlier (Hemalatha et al., 2006). The solutions of SBTC (5 g m) and potassium nitrate (5 g m) were prepared in water separately. These solutions were mixed together, and then stirred for 1 hr at room temperature. The precipitate was filtered off and washed with triple distilled water and the product was recrystallized from 0.2 M nitric acid. Single crystals were grown by slow evaporation of a solution of the title compound in water.

Refinement top

All H-atoms were refined using a riding-model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic, 0.97 Å, Uiso = 1.2Ueq (C) for CH2 and 0.86Å for N-H with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing hydrogen bonds as dashed lines.
S-Benzylisothiouronium nitrate top
Crystal data top
C8H11N2S+·NO3F(000) = 480
Mr = 229.26Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1296 reflections
a = 5.8569 (4) Åθ = 1.7–28.0°
b = 7.5931 (5) ŵ = 0.30 mm1
c = 23.9488 (16) ÅT = 293 K
β = 93.304 (1)°Needle, colorless
V = 1063.28 (12) Å30.25 × 0.21 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXCCD area-detector
diffractometer
2282 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 28.0°, θmin = 1.7°
ω scansh = 77
11620 measured reflectionsk = 109
2492 independent reflectionsl = 3130
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.229H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1605P)2 + 0.7215P],
where P = (Fo2 + 2Fc2)/3
2492 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
C8H11N2S+·NO3V = 1063.28 (12) Å3
Mr = 229.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8569 (4) ŵ = 0.30 mm1
b = 7.5931 (5) ÅT = 293 K
c = 23.9488 (16) Å0.25 × 0.21 × 0.20 mm
β = 93.304 (1)°
Data collection top
Bruker SMART APEXCCD area-detector
diffractometer
2282 reflections with I > 2σ(I)
11620 measured reflectionsRint = 0.021
2492 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.229H-atom parameters constrained
S = 1.00Δρmax = 1.08 e Å3
2492 reflectionsΔρmin = 0.79 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4484 (5)0.0528 (3)0.25594 (13)0.0508 (6)
H10.58780.00530.25470.061*
C20.3462 (6)0.0682 (4)0.30628 (13)0.0593 (7)
H20.41730.02160.33870.071*
C30.1385 (6)0.1527 (4)0.30829 (13)0.0604 (7)
H30.06830.16170.34200.072*
C40.0359 (5)0.2230 (4)0.26081 (14)0.0582 (7)
H40.10300.28150.26260.070*
C50.1357 (4)0.2085 (3)0.21013 (12)0.0498 (6)
H50.06320.25550.17790.060*
C60.3459 (4)0.1230 (3)0.20739 (11)0.0429 (5)
C70.4602 (5)0.1054 (4)0.15294 (12)0.0552 (7)
H7A0.44310.21350.13160.066*
H7B0.62220.08210.16000.066*
C80.5290 (4)0.1362 (3)0.06841 (10)0.0436 (5)
N10.7023 (4)0.0351 (3)0.05812 (10)0.0574 (6)
H1A0.80170.06990.03550.069*
H1B0.71680.06620.07400.069*
N20.5046 (4)0.2908 (3)0.04458 (10)0.0563 (6)
H2A0.60310.32680.02190.068*
H2B0.39000.35630.05160.068*
N30.9654 (5)0.3266 (4)0.04824 (12)0.0660 (7)
O10.7787 (6)0.3965 (5)0.05407 (17)0.1137 (13)
O21.0010 (6)0.2296 (5)0.00529 (14)0.0993 (10)
O31.1270 (5)0.3341 (4)0.07925 (11)0.0832 (8)
S10.32436 (11)0.07656 (10)0.11423 (3)0.0538 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0463 (13)0.0418 (12)0.0640 (15)0.0041 (10)0.0002 (11)0.0033 (11)
C20.0728 (19)0.0505 (15)0.0540 (15)0.0015 (13)0.0025 (13)0.0016 (11)
C30.0714 (19)0.0498 (15)0.0619 (16)0.0045 (13)0.0204 (14)0.0105 (12)
C40.0469 (14)0.0474 (14)0.0814 (19)0.0040 (10)0.0136 (13)0.0093 (13)
C50.0441 (12)0.0435 (12)0.0613 (14)0.0011 (10)0.0015 (11)0.0005 (11)
C60.0398 (11)0.0346 (10)0.0547 (13)0.0050 (8)0.0067 (9)0.0049 (9)
C70.0588 (16)0.0471 (13)0.0612 (15)0.0176 (11)0.0168 (12)0.0101 (11)
C80.0415 (12)0.0452 (12)0.0444 (11)0.0058 (9)0.0048 (9)0.0018 (9)
N10.0560 (14)0.0561 (13)0.0625 (13)0.0195 (11)0.0231 (11)0.0085 (11)
N20.0581 (14)0.0493 (12)0.0632 (13)0.0138 (10)0.0174 (11)0.0117 (10)
N30.0584 (14)0.0686 (16)0.0700 (16)0.0209 (12)0.0037 (12)0.0270 (13)
O10.089 (2)0.104 (2)0.146 (3)0.0491 (18)0.008 (2)0.031 (2)
O20.0851 (19)0.126 (3)0.0893 (18)0.0035 (19)0.0280 (15)0.0245 (19)
O30.0965 (19)0.0875 (18)0.0691 (14)0.0096 (15)0.0337 (13)0.0199 (13)
S10.0424 (4)0.0579 (5)0.0624 (5)0.0142 (2)0.0143 (3)0.0142 (3)
Geometric parameters (Å, º) top
C1—C21.381 (4)C7—H7A0.9700
C1—C61.384 (4)C7—H7B0.9700
C1—H10.9300C8—N11.307 (3)
C2—C31.379 (5)C8—N21.309 (3)
C2—H20.9300C8—S11.731 (3)
C3—C41.364 (5)N1—H1A0.8600
C3—H30.9300N1—H1B0.8600
C4—C51.382 (4)N2—H2A0.8600
C4—H40.9300N2—H2B0.8600
C5—C61.396 (3)N3—O11.217 (4)
C5—H50.9300N3—O31.237 (4)
C6—C71.506 (4)N3—O21.273 (4)
C7—S11.821 (3)
C2—C1—C6120.8 (3)C6—C7—H7A110.2
C2—C1—H1119.6S1—C7—H7A110.2
C6—C1—H1119.6C6—C7—H7B110.2
C1—C2—C3119.8 (3)S1—C7—H7B110.2
C1—C2—H2120.1H7A—C7—H7B108.5
C3—C2—H2120.1N1—C8—N2120.7 (2)
C4—C3—C2120.0 (3)N1—C8—S1122.6 (2)
C4—C3—H3120.0N2—C8—S1116.66 (19)
C2—C3—H3120.0C8—N1—H1A120.0
C3—C4—C5120.8 (3)C8—N1—H1B120.0
C3—C4—H4119.6H1A—N1—H1B120.0
C5—C4—H4119.6C8—N2—H2A120.0
C4—C5—C6119.8 (3)C8—N2—H2B120.0
C4—C5—H5120.1H2A—N2—H2B120.0
C6—C5—H5120.1O1—N3—O3128.7 (4)
C1—C6—C5118.7 (2)O1—N3—O2116.7 (4)
C1—C6—C7120.0 (2)O3—N3—O2114.6 (3)
C5—C6—C7121.3 (3)C8—S1—C7102.89 (12)
C6—C7—S1107.78 (17)
C6—C1—C2—C30.7 (4)C4—C5—C6—C7179.7 (2)
C1—C2—C3—C40.9 (5)C1—C6—C7—S199.7 (3)
C2—C3—C4—C51.0 (5)C5—C6—C7—S179.9 (3)
C3—C4—C5—C60.9 (4)N1—C8—S1—C715.6 (3)
C2—C1—C6—C50.6 (4)N2—C8—S1—C7163.5 (2)
C2—C1—C6—C7179.8 (2)C6—C7—S1—C8158.3 (2)
C4—C5—C6—C10.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.861.982.803 (4)160
N1—H1B···O3i0.862.233.009 (4)151
N2—H2A···O10.862.213.040 (5)164
N2—H2A···O20.862.563.240 (4)136
N2—H2B···O1ii0.862.122.913 (4)152
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H11N2S+·NO3
Mr229.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.8569 (4), 7.5931 (5), 23.9488 (16)
β (°) 93.304 (1)
V3)1063.28 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.25 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART APEXCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11620, 2492, 2282
Rint0.021
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.229, 1.00
No. of reflections2492
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 0.79

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.861.982.803 (4)160.0
N1—H1B···O3i0.862.233.009 (4)150.5
N2—H2A···O10.862.213.040 (5)163.7
N2—H2A···O20.862.563.240 (4)136.2
N2—H2B···O1ii0.862.122.913 (4)152.4
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z.
 

References

First citationBarker, J. & Powell, H. R. (1998). Acta Cryst. C54, 2019–2021.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBoyd, G. T. (1989). J. Opt. Soc. Am. B6, 685–688.  CrossRef Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHemalatha, P., Veeravazhuthi, V., Mallika, J., Narayanadass, S. K. & Mangalaraj, D. (2006). Cry. Res. Tec. 41, 775–779.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaccaro, J., Lorutet, F. & Ibanez, A. (1999). J. Mater. Chem. 9, 1091–1094.  Web of Science CrossRef CAS Google Scholar
First citationZyss, J., Nicoud, J. F. & Koquillay, M. (1984). J. Chem. Phys. 81, 4160–4162.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds