organic compounds
S-Benzylisothiouronium nitrate
aDepartment of Physics, PSG College of Technology, Coimbatore 641 004, TamilNadu, India, and bDepartment of Physics, PSG College of Arts and Science, Coimbatore 641 014, TamilNadu, India
*Correspondence e-mail: vv_vazhuthi@rediffmail.com
In the 8H11N2S+·NO3−, cations and anions are linked by intermolecular N—H⋯O hydrogen bonds, forming one-dimensional chains along [110].
of the title compound, CRelated literature
For related literature, see: Barker & Powell (1998); Boyd (1989); Hemalatha et al. (2006); Zaccaro et al. (1999); Zyss et al. (1984).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).
Supporting information
10.1107/S1600536808026512/lh2669sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808026512/lh2669Isup2.hkl
S-benzylisothiouronium chloride (SBTC) was synthesized as reported earlier (Hemalatha et al., 2006). The solutions of SBTC (5 g m) and potassium nitrate (5 g m) were prepared in water separately. These solutions were mixed together, and then stirred for 1 hr at room temperature. The precipitate was filtered off and washed with triple distilled water and the product was recrystallized from 0.2 M nitric acid. Single crystals were grown by slow evaporation of a solution of the title compound in water.
All H-atoms were refined using a riding-model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic, 0.97 Å, Uiso = 1.2Ueq (C) for CH2 and 0.86Å for N-H with Uiso(H) = 1.2Ueq(N).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids. | |
Fig. 2. Part of the crystal structure of (I) showing hydrogen bonds as dashed lines. |
C8H11N2S+·NO3− | F(000) = 480 |
Mr = 229.26 | Dx = 1.432 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1296 reflections |
a = 5.8569 (4) Å | θ = 1.7–28.0° |
b = 7.5931 (5) Å | µ = 0.30 mm−1 |
c = 23.9488 (16) Å | T = 293 K |
β = 93.304 (1)° | Needle, colorless |
V = 1063.28 (12) Å3 | 0.25 × 0.21 × 0.20 mm |
Z = 4 |
Bruker SMART APEXCCD area-detector diffractometer | 2282 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.021 |
Graphite monochromator | θmax = 28.0°, θmin = 1.7° |
ω scans | h = −7→7 |
11620 measured reflections | k = −10→9 |
2492 independent reflections | l = −31→30 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.074 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.229 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.1605P)2 + 0.7215P], where P = (Fo2 + 2Fc2)/3 |
2492 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 1.08 e Å−3 |
0 restraints | Δρmin = −0.79 e Å−3 |
C8H11N2S+·NO3− | V = 1063.28 (12) Å3 |
Mr = 229.26 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.8569 (4) Å | µ = 0.30 mm−1 |
b = 7.5931 (5) Å | T = 293 K |
c = 23.9488 (16) Å | 0.25 × 0.21 × 0.20 mm |
β = 93.304 (1)° |
Bruker SMART APEXCCD area-detector diffractometer | 2282 reflections with I > 2σ(I) |
11620 measured reflections | Rint = 0.021 |
2492 independent reflections |
R[F2 > 2σ(F2)] = 0.074 | 0 restraints |
wR(F2) = 0.229 | H-atom parameters constrained |
S = 1.00 | Δρmax = 1.08 e Å−3 |
2492 reflections | Δρmin = −0.79 e Å−3 |
136 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4484 (5) | −0.0528 (3) | 0.25594 (13) | 0.0508 (6) | |
H1 | 0.5878 | 0.0053 | 0.2547 | 0.061* | |
C2 | 0.3462 (6) | −0.0682 (4) | 0.30628 (13) | 0.0593 (7) | |
H2 | 0.4173 | −0.0216 | 0.3387 | 0.071* | |
C3 | 0.1385 (6) | −0.1527 (4) | 0.30829 (13) | 0.0604 (7) | |
H3 | 0.0683 | −0.1617 | 0.3420 | 0.072* | |
C4 | 0.0359 (5) | −0.2230 (4) | 0.26081 (14) | 0.0582 (7) | |
H4 | −0.1030 | −0.2815 | 0.2626 | 0.070* | |
C5 | 0.1357 (4) | −0.2085 (3) | 0.21013 (12) | 0.0498 (6) | |
H5 | 0.0632 | −0.2555 | 0.1779 | 0.060* | |
C6 | 0.3459 (4) | −0.1230 (3) | 0.20739 (11) | 0.0429 (5) | |
C7 | 0.4602 (5) | −0.1054 (4) | 0.15294 (12) | 0.0552 (7) | |
H7A | 0.4431 | −0.2135 | 0.1316 | 0.066* | |
H7B | 0.6222 | −0.0821 | 0.1600 | 0.066* | |
C8 | 0.5290 (4) | 0.1362 (3) | 0.06841 (10) | 0.0436 (5) | |
N1 | 0.7023 (4) | 0.0351 (3) | 0.05812 (10) | 0.0574 (6) | |
H1A | 0.8017 | 0.0699 | 0.0355 | 0.069* | |
H1B | 0.7168 | −0.0662 | 0.0740 | 0.069* | |
N2 | 0.5046 (4) | 0.2908 (3) | 0.04458 (10) | 0.0563 (6) | |
H2A | 0.6031 | 0.3268 | 0.0219 | 0.068* | |
H2B | 0.3900 | 0.3563 | 0.0516 | 0.068* | |
N3 | 0.9654 (5) | 0.3266 (4) | −0.04824 (12) | 0.0660 (7) | |
O1 | 0.7787 (6) | 0.3965 (5) | −0.05407 (17) | 0.1137 (13) | |
O2 | 1.0010 (6) | 0.2296 (5) | −0.00529 (14) | 0.0993 (10) | |
O3 | 1.1270 (5) | 0.3341 (4) | −0.07925 (11) | 0.0832 (8) | |
S1 | 0.32436 (11) | 0.07656 (10) | 0.11423 (3) | 0.0538 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0463 (13) | 0.0418 (12) | 0.0640 (15) | −0.0041 (10) | 0.0002 (11) | 0.0033 (11) |
C2 | 0.0728 (19) | 0.0505 (15) | 0.0540 (15) | −0.0015 (13) | −0.0025 (13) | −0.0016 (11) |
C3 | 0.0714 (19) | 0.0498 (15) | 0.0619 (16) | 0.0045 (13) | 0.0204 (14) | 0.0105 (12) |
C4 | 0.0469 (14) | 0.0474 (14) | 0.0814 (19) | −0.0040 (10) | 0.0136 (13) | 0.0093 (13) |
C5 | 0.0441 (12) | 0.0435 (12) | 0.0613 (14) | −0.0011 (10) | −0.0015 (11) | −0.0005 (11) |
C6 | 0.0398 (11) | 0.0346 (10) | 0.0547 (13) | 0.0050 (8) | 0.0067 (9) | 0.0049 (9) |
C7 | 0.0588 (16) | 0.0471 (13) | 0.0612 (15) | 0.0176 (11) | 0.0168 (12) | 0.0101 (11) |
C8 | 0.0415 (12) | 0.0452 (12) | 0.0444 (11) | 0.0058 (9) | 0.0048 (9) | −0.0018 (9) |
N1 | 0.0560 (14) | 0.0561 (13) | 0.0625 (13) | 0.0195 (11) | 0.0231 (11) | 0.0085 (11) |
N2 | 0.0581 (14) | 0.0493 (12) | 0.0632 (13) | 0.0138 (10) | 0.0174 (11) | 0.0117 (10) |
N3 | 0.0584 (14) | 0.0686 (16) | 0.0700 (16) | 0.0209 (12) | −0.0037 (12) | −0.0270 (13) |
O1 | 0.089 (2) | 0.104 (2) | 0.146 (3) | 0.0491 (18) | −0.008 (2) | −0.031 (2) |
O2 | 0.0851 (19) | 0.126 (3) | 0.0893 (18) | −0.0035 (19) | 0.0280 (15) | 0.0245 (19) |
O3 | 0.0965 (19) | 0.0875 (18) | 0.0691 (14) | 0.0096 (15) | 0.0337 (13) | 0.0199 (13) |
S1 | 0.0424 (4) | 0.0579 (5) | 0.0624 (5) | 0.0142 (2) | 0.0143 (3) | 0.0142 (3) |
C1—C2 | 1.381 (4) | C7—H7A | 0.9700 |
C1—C6 | 1.384 (4) | C7—H7B | 0.9700 |
C1—H1 | 0.9300 | C8—N1 | 1.307 (3) |
C2—C3 | 1.379 (5) | C8—N2 | 1.309 (3) |
C2—H2 | 0.9300 | C8—S1 | 1.731 (3) |
C3—C4 | 1.364 (5) | N1—H1A | 0.8600 |
C3—H3 | 0.9300 | N1—H1B | 0.8600 |
C4—C5 | 1.382 (4) | N2—H2A | 0.8600 |
C4—H4 | 0.9300 | N2—H2B | 0.8600 |
C5—C6 | 1.396 (3) | N3—O1 | 1.217 (4) |
C5—H5 | 0.9300 | N3—O3 | 1.237 (4) |
C6—C7 | 1.506 (4) | N3—O2 | 1.273 (4) |
C7—S1 | 1.821 (3) | ||
C2—C1—C6 | 120.8 (3) | C6—C7—H7A | 110.2 |
C2—C1—H1 | 119.6 | S1—C7—H7A | 110.2 |
C6—C1—H1 | 119.6 | C6—C7—H7B | 110.2 |
C1—C2—C3 | 119.8 (3) | S1—C7—H7B | 110.2 |
C1—C2—H2 | 120.1 | H7A—C7—H7B | 108.5 |
C3—C2—H2 | 120.1 | N1—C8—N2 | 120.7 (2) |
C4—C3—C2 | 120.0 (3) | N1—C8—S1 | 122.6 (2) |
C4—C3—H3 | 120.0 | N2—C8—S1 | 116.66 (19) |
C2—C3—H3 | 120.0 | C8—N1—H1A | 120.0 |
C3—C4—C5 | 120.8 (3) | C8—N1—H1B | 120.0 |
C3—C4—H4 | 119.6 | H1A—N1—H1B | 120.0 |
C5—C4—H4 | 119.6 | C8—N2—H2A | 120.0 |
C4—C5—C6 | 119.8 (3) | C8—N2—H2B | 120.0 |
C4—C5—H5 | 120.1 | H2A—N2—H2B | 120.0 |
C6—C5—H5 | 120.1 | O1—N3—O3 | 128.7 (4) |
C1—C6—C5 | 118.7 (2) | O1—N3—O2 | 116.7 (4) |
C1—C6—C7 | 120.0 (2) | O3—N3—O2 | 114.6 (3) |
C5—C6—C7 | 121.3 (3) | C8—S1—C7 | 102.89 (12) |
C6—C7—S1 | 107.78 (17) | ||
C6—C1—C2—C3 | −0.7 (4) | C4—C5—C6—C7 | 179.7 (2) |
C1—C2—C3—C4 | 0.9 (5) | C1—C6—C7—S1 | −99.7 (3) |
C2—C3—C4—C5 | −1.0 (5) | C5—C6—C7—S1 | 79.9 (3) |
C3—C4—C5—C6 | 0.9 (4) | N1—C8—S1—C7 | 15.6 (3) |
C2—C1—C6—C5 | 0.6 (4) | N2—C8—S1—C7 | −163.5 (2) |
C2—C1—C6—C7 | −179.8 (2) | C6—C7—S1—C8 | 158.3 (2) |
C4—C5—C6—C1 | −0.7 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2 | 0.86 | 1.98 | 2.803 (4) | 160 |
N1—H1B···O3i | 0.86 | 2.23 | 3.009 (4) | 151 |
N2—H2A···O1 | 0.86 | 2.21 | 3.040 (5) | 164 |
N2—H2A···O2 | 0.86 | 2.56 | 3.240 (4) | 136 |
N2—H2B···O1ii | 0.86 | 2.12 | 2.913 (4) | 152 |
Symmetry codes: (i) −x+2, −y, −z; (ii) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C8H11N2S+·NO3− |
Mr | 229.26 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 5.8569 (4), 7.5931 (5), 23.9488 (16) |
β (°) | 93.304 (1) |
V (Å3) | 1063.28 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.25 × 0.21 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART APEXCCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11620, 2492, 2282 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.660 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.074, 0.229, 1.00 |
No. of reflections | 2492 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.08, −0.79 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2 | 0.86 | 1.98 | 2.803 (4) | 160.0 |
N1—H1B···O3i | 0.86 | 2.23 | 3.009 (4) | 150.5 |
N2—H2A···O1 | 0.86 | 2.21 | 3.040 (5) | 163.7 |
N2—H2A···O2 | 0.86 | 2.56 | 3.240 (4) | 136.2 |
N2—H2B···O1ii | 0.86 | 2.12 | 2.913 (4) | 152.4 |
Symmetry codes: (i) −x+2, −y, −z; (ii) −x+1, −y+1, −z. |
References
Barker, J. & Powell, H. R. (1998). Acta Cryst. C54, 2019–2021. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Boyd, G. T. (1989). J. Opt. Soc. Am. B6, 685–688. CrossRef Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hemalatha, P., Veeravazhuthi, V., Mallika, J., Narayanadass, S. K. & Mangalaraj, D. (2006). Cry. Res. Tec. 41, 775–779. Web of Science CrossRef CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zaccaro, J., Lorutet, F. & Ibanez, A. (1999). J. Mater. Chem. 9, 1091–1094. Web of Science CrossRef CAS Google Scholar
Zyss, J., Nicoud, J. F. & Koquillay, M. (1984). J. Chem. Phys. 81, 4160–4162. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organic molecular materials have many potential applications in integrated optics, and one of the most attractive applications is diode laser frequency doublers (Boyd, 1989). In the last two decades, extensive research has shown that organic crystals can exhibit nonlinear optical [NLO] efficiencies higher than those of inorganic materials (Zyss et al., 1984 & Zaccaro et al., 1999). Organic nonlinear optical materials are often formed by weak Vander Waals and hydrogen bonds and hence posses high degree of delocalization. Organic materials are molecular materials that offer unique opportunities for fundamental research as well as for technological applications. The title compound (I) is potentially in the above category of materials, therefore we have undertaken its crystal structure determination.
The title molecule is shown in Fig. 1. The C—N, S—C bond lengths and C—S—C and N—C—N bond angles are comparable with the similar structure reported earlier (Barker & Powell, 1998). The bond angles for O1—N3—O3 is 128.7 (4); O1—N3—O2 is 116.7 (4); O3—N3—O2 is 114.6 (3), indicating slight deviations in the bond angle from the expected 120° in terms of the sp2 hybridization. In the title crystal structure, C8H11N2S, NO3, cations and anions are linked by intermolecular N—H···O hydrogen bonds to form one-dimensional chains along [110] (Fig. 2).