organic compounds
1-Deoxy-L-mannitol (6-deoxy-L-mannitol or L-rhamnitol)
aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, bRare Sugar Research Centre, Kagawa University, 2393 Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and cDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: victoria.booth@chem.ox.ac.uk
The crystalline form of 1-deoxy-L-mannitol, C6H14O5, exists as an extensively hydrogen-bonded structure with each molecule acting as a donor and acceptor for five hydrogen bonds. There are no unusual crystal-packing features; the was determined from the use of 6-deoxy-L-mannose (L-rhamnose) as the starting material.
Related literature
For related literature see: Jenkinson et al. (2008); Gullapalli et al. (2007); Izumori (2002, 2006); Granstrom et al. (2004); Beadle et al. (1992); Skytte (2002); Sui et al. (2005); Levin (2002); Howling & Callagan (2000); Bertelsen et al. (1999); Takata et al. (2005); Menavuvu et al. (2006); Hossain et al. (2006); Donner et al. (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536808024586/lh2670sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808024586/lh2670Isup2.hkl
1-Deoxy-L-mannitol was recrystallized from methanol: m.p. 390K, [α]D20 +1.4 (c, 1.4 in H2O).
In the absence of significant
Friedel pairs were merged and the was determined from the starting material.The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Data collection: COLLECT (Nonius, 2001); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C6H14O5 | F(000) = 360 |
Mr = 166.17 | Dx = 1.427 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1002 reflections |
a = 7.3650 (3) Å | θ = 5–27° |
b = 7.6272 (3) Å | µ = 0.12 mm−1 |
c = 13.7676 (5) Å | T = 150 K |
V = 773.39 (5) Å3 | Plate, colourless |
Z = 4 | 0.40 × 0.40 × 0.10 mm |
Nonius KappaCCD diffractometer | 974 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ω scans | θmax = 27.5°, θmin = 5.2° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −9→9 |
Tmin = 0.89, Tmax = 0.99 | k = −9→9 |
5170 measured reflections | l = −17→17 |
1033 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.072 | w = 1/[σ2(F2) + (0.04P)2 + 0.19P], where P = [max(Fo2,0) + 2Fc2]/3 |
S = 0.97 | (Δ/σ)max = 0.000327 |
1033 reflections | Δρmax = 0.24 e Å−3 |
100 parameters | Δρmin = −0.19 e Å−3 |
0 restraints |
C6H14O5 | V = 773.39 (5) Å3 |
Mr = 166.17 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.3650 (3) Å | µ = 0.12 mm−1 |
b = 7.6272 (3) Å | T = 150 K |
c = 13.7676 (5) Å | 0.40 × 0.40 × 0.10 mm |
Nonius KappaCCD diffractometer | 1033 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 974 reflections with I > 2σ(I) |
Tmin = 0.89, Tmax = 0.99 | Rint = 0.024 |
5170 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 0.97 | Δρmax = 0.24 e Å−3 |
1033 reflections | Δρmin = −0.19 e Å−3 |
100 parameters |
x | y | z | Uiso*/Ueq | ||
O1 | 0.45760 (15) | 0.66827 (14) | 0.58528 (7) | 0.0158 | |
C2 | 0.5038 (2) | 0.53406 (18) | 0.51734 (10) | 0.0121 | |
C3 | 0.4654 (2) | 0.35710 (19) | 0.56608 (11) | 0.0129 | |
O4 | 0.51432 (16) | 0.21669 (13) | 0.50177 (8) | 0.0180 | |
C5 | 0.5694 (2) | 0.3334 (2) | 0.65961 (11) | 0.0160 | |
O6 | 0.76010 (15) | 0.34756 (16) | 0.64310 (8) | 0.0190 | |
C7 | 0.3954 (2) | 0.55797 (19) | 0.42326 (11) | 0.0125 | |
O8 | 0.20579 (15) | 0.57629 (14) | 0.44513 (8) | 0.0163 | |
C9 | 0.4543 (2) | 0.7196 (2) | 0.36498 (10) | 0.0140 | |
O10 | 0.63971 (16) | 0.69611 (16) | 0.33563 (8) | 0.0188 | |
C11 | 0.3428 (3) | 0.7388 (2) | 0.27300 (11) | 0.0195 | |
H21 | 0.6338 | 0.5422 | 0.5017 | 0.0146* | |
H31 | 0.3366 | 0.3507 | 0.5836 | 0.0149* | |
H51 | 0.5258 | 0.4239 | 0.7048 | 0.0180* | |
H52 | 0.5424 | 0.2171 | 0.6890 | 0.0191* | |
H71 | 0.4147 | 0.4569 | 0.3816 | 0.0137* | |
H91 | 0.4402 | 0.8236 | 0.4059 | 0.0171* | |
H111 | 0.3791 | 0.8390 | 0.2343 | 0.0290* | |
H112 | 0.2112 | 0.7500 | 0.2863 | 0.0299* | |
H113 | 0.3580 | 0.6334 | 0.2330 | 0.0284* | |
H1 | 0.7159 | 0.7532 | 0.3689 | 0.0319* | |
H2 | 0.4249 | 0.1898 | 0.4627 | 0.0307* | |
H3 | 0.1795 | 0.4708 | 0.4542 | 0.0290* | |
H4 | 0.8002 | 0.3523 | 0.7025 | 0.0312* | |
H5 | 0.5310 | 0.7560 | 0.5771 | 0.0285* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0168 (6) | 0.0130 (5) | 0.0175 (5) | −0.0022 (4) | 0.0027 (5) | −0.0036 (4) |
C2 | 0.0103 (7) | 0.0137 (6) | 0.0122 (6) | 0.0004 (6) | 0.0007 (6) | −0.0009 (5) |
C3 | 0.0118 (7) | 0.0125 (6) | 0.0145 (7) | 0.0011 (6) | 0.0000 (6) | 0.0014 (5) |
O4 | 0.0207 (6) | 0.0137 (5) | 0.0198 (5) | 0.0040 (5) | −0.0064 (5) | −0.0030 (4) |
C5 | 0.0146 (8) | 0.0191 (7) | 0.0144 (7) | 0.0011 (6) | 0.0020 (6) | 0.0022 (6) |
O6 | 0.0144 (6) | 0.0283 (6) | 0.0142 (5) | 0.0026 (5) | −0.0015 (4) | −0.0002 (4) |
C7 | 0.0103 (7) | 0.0127 (7) | 0.0146 (7) | 0.0004 (5) | 0.0003 (6) | −0.0003 (6) |
O8 | 0.0102 (5) | 0.0128 (5) | 0.0259 (6) | 0.0000 (4) | −0.0005 (4) | 0.0033 (4) |
C9 | 0.0130 (7) | 0.0143 (6) | 0.0148 (7) | −0.0010 (6) | 0.0003 (6) | 0.0017 (6) |
O10 | 0.0120 (6) | 0.0284 (6) | 0.0160 (5) | −0.0049 (5) | 0.0009 (4) | −0.0020 (5) |
C11 | 0.0173 (8) | 0.0250 (8) | 0.0163 (7) | 0.0002 (7) | −0.0017 (6) | 0.0065 (6) |
O1—C2 | 1.4277 (17) | O6—H4 | 0.870 |
O1—H5 | 0.868 | C7—O8 | 1.4354 (18) |
C2—C3 | 1.5335 (19) | C7—C9 | 1.533 (2) |
C2—C7 | 1.5323 (19) | C7—H71 | 0.971 |
C2—H21 | 0.983 | O8—H3 | 0.837 |
C3—O4 | 1.4354 (18) | C9—O10 | 1.4352 (19) |
C3—C5 | 1.509 (2) | C9—C11 | 1.516 (2) |
C3—H31 | 0.980 | C9—H91 | 0.979 |
O4—H2 | 0.875 | O10—H1 | 0.845 |
C5—O6 | 1.4269 (18) | C11—H111 | 0.969 |
C5—H51 | 0.983 | C11—H112 | 0.991 |
C5—H52 | 0.995 | C11—H113 | 0.981 |
C2—O1—H5 | 108.6 | C2—C7—O8 | 109.94 (12) |
O1—C2—C3 | 107.49 (11) | C2—C7—C9 | 112.99 (12) |
O1—C2—C7 | 110.15 (12) | O8—C7—C9 | 107.87 (12) |
C3—C2—C7 | 112.26 (12) | C2—C7—H71 | 109.2 |
O1—C2—H21 | 109.3 | O8—C7—H71 | 110.1 |
C3—C2—H21 | 109.3 | C9—C7—H71 | 106.7 |
C7—C2—H21 | 108.4 | C7—O8—H3 | 99.4 |
C2—C3—O4 | 109.91 (11) | C7—C9—O10 | 108.44 (13) |
C2—C3—C5 | 112.67 (12) | C7—C9—C11 | 111.20 (12) |
O4—C3—C5 | 108.04 (12) | O10—C9—C11 | 106.98 (12) |
C2—C3—H31 | 109.3 | C7—C9—H91 | 108.7 |
O4—C3—H31 | 111.0 | O10—C9—H91 | 111.4 |
C5—C3—H31 | 105.9 | C11—C9—H91 | 110.2 |
C3—O4—H2 | 111.5 | C9—O10—H1 | 114.5 |
C3—C5—O6 | 110.76 (12) | C9—C11—H111 | 112.7 |
C3—C5—H51 | 106.9 | C9—C11—H112 | 112.6 |
O6—C5—H51 | 111.7 | H111—C11—H112 | 107.7 |
C3—C5—H52 | 110.6 | C9—C11—H113 | 109.2 |
O6—C5—H52 | 109.2 | H111—C11—H113 | 107.8 |
H51—C5—H52 | 107.6 | H112—C11—H113 | 106.6 |
C5—O6—H4 | 100.8 |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H1···O1i | 0.85 | 1.98 | 2.782 (2) | 158 |
O4—H2···O6ii | 0.87 | 1.92 | 2.779 (2) | 168 |
O8—H3···O4ii | 0.84 | 1.97 | 2.742 (2) | 152 |
O6—H4···O10iii | 0.87 | 1.92 | 2.772 (2) | 165 |
O1—H5···O8i | 0.87 | 1.84 | 2.704 (2) | 173 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x−1/2, −y+1/2, −z+1; (iii) −x+3/2, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C6H14O5 |
Mr | 166.17 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 150 |
a, b, c (Å) | 7.3650 (3), 7.6272 (3), 13.7676 (5) |
V (Å3) | 773.39 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.40 × 0.40 × 0.10 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.89, 0.99 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5170, 1033, 974 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.072, 0.97 |
No. of reflections | 1033 |
No. of parameters | 100 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.19 |
Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H1···O1i | 0.85 | 1.98 | 2.782 (2) | 158 |
O4—H2···O6ii | 0.87 | 1.92 | 2.779 (2) | 168 |
O8—H3···O4ii | 0.84 | 1.97 | 2.742 (2) | 152 |
O6—H4···O10iii | 0.87 | 1.92 | 2.772 (2) | 165 |
O1—H5···O8i | 0.87 | 1.84 | 2.704 (2) | 173 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x−1/2, −y+1/2, −z+1; (iii) −x+3/2, −y+1, z+1/2. |
Acknowledgements
This work was supported in part by the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN). We also thank the Oxford University Chemical Crystallography service for use of the instruments.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). US Patent No. 5 078 796. Google Scholar
Bertelsen, H., Jensen, B. B. & Buemann, B. (1999). World Rev. Nutr. Diet. 85, 98–109. CrossRef PubMed CAS Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Donner, T. W., Wilber, J. F. & Ostrowski, D. (1999). Diab. Obes. Metab. 1, 285–291. Web of Science CrossRef CAS Google Scholar
Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89–94. Web of Science CrossRef PubMed Google Scholar
Gullapalli, P., Shiji, T., Rao, D., Yoshihara, A., Morimoto, K., Takata, G., Fleet, G. W. J. & Izumori, K. (2007). Tetrahedron Asymmetry, 18, 1995–2000. Web of Science CrossRef CAS Google Scholar
Hossain, M. A., Wakabayashi, H., Izuishi, K., Okano, K., Yachida, S., Tokuda, M., Izumori, K. & Maeta, H. (2006). J. Biosci. Bioeng. 101, 369–371. Web of Science CrossRef PubMed CAS Google Scholar
Howling, D. & Callagan, J. L. (2000). PCT Int. App. WO 2 000 042 865. Google Scholar
Izumori, K. (2002). Naturwissenschaften, 89, 120–124. Web of Science CrossRef PubMed CAS Google Scholar
Izumori, K. (2006). J. Biotech. 124, 717–722. Web of Science CrossRef CAS Google Scholar
Jenkinson, S. F., Booth, K. V., Yoshihara, A., Morimoto, K., Fleet, G. W. J., Izumori, K. & Watkin, D. J. (2008). Acta Cryst. E64, o1429. Web of Science CSD CrossRef IUCr Journals Google Scholar
Levin, G. V. (2002). J. Med. Food, 5, 23–36. CrossRef PubMed CAS Google Scholar
Menavuvu, B. T., Poonperm, W., Leang, K., Noguchi, N., Okada, H., Morimoto, K., Granstrom, T. B., Takada, G. & Izumori, K. (2006). J. Biosci. Bioeng. 101, 340–345. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Skytte, U. P. (2002). Cereal Foods World, 47, 224–224. Google Scholar
Sui, L., Dong, Y. Y., Watanabe, Y., Yamaguchi, F., Hatano, N., Tsukamoto, I., Izumori, K. & Tokuda, M. (2005). Intl. J. Ocol. 27, 907–912. CAS Google Scholar
Takata, M. K., Yamaguchi, F., Nakanose, Y., Watanabe, Y., Hatano, N., Tsukamoto, I., Nagata, M., Izumori, K. & Tokuda, M. (2005). J. Biosci. Bioeng. 100, 511–516. Web of Science CrossRef PubMed CAS Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The properties of 1-deoxy ketohexose sugars have been little studied. The crystal structure of 6-deoxy-L-galactitol has recently been published (Jenkinson et al., 2008) and herein we report the crystal structure of a similar deoxy polyol, 1-deoxy-L-mannitol an intermediate in the synthesis of 1-deoxy-L-fructose, 3 (Fig. 1) (Gullapalli et al., 2007).
The demand for the large scale production of rare sugars by biotechnological (Izumori, 2006; Izumori, 2002; Granstrom et al., 2004) and chemical (Beadle et al., 1992) methods is driven by the demand for alternative foodstuffs (Skytte, 2002) and D-tagatose itself is used as a low calorie sweetener (Levin, 2002; Howling & Callagan, 2000; Bertelsen et al. 1999). Rare monosaccharides themselves, however, have been found to demonstrate interesting pharmaceutical properties, for example, D-psicose (Takata et al., 2005; Menavuvu et al., 2006) and D-allose (Sui et al., 2005; Hossain et al., 2006) have significant chemotherapeutic properties and D-tagatose has been found to be an anti-hyperglycemic agent (Donner et al., 1999) and therefore potentially useful in the treatment of diabetes.
1-Deoxy-L-mannitol 2 (Fig. 2) was prepared from the reduction by catalytic hydrogenation of 6-deoxy-L-mannose 1 (L-rhamnose). The X-ray structure shows that the crystal exists as an extensively hydrogen bonded lattice with each molecule acting as a donor and an acceptor for 5 hydrogen bonds (Fig.3).