organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-De­­oxy-L-mannitol (6-de­­oxy-L-mannitol or L-rhamnitol)

aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, bRare Sugar Research Centre, Kagawa University, 2393 Miki-cho, Kita-gun, Kagawa 761-0795, Japan, and cDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: victoria.booth@chem.ox.ac.uk

(Received 25 July 2008; accepted 31 July 2008; online 6 August 2008)

The crystalline form of 1-de­oxy-L-mannitol, C6H14O5, exists as an extensively hydrogen-bonded structure with each mol­ecule acting as a donor and acceptor for five hydrogen bonds. There are no unusual crystal-packing features; the absolute configuration was determined from the use of 6-de­oxy-L-mannose (L-rhamnose) as the starting material.

Related literature

For related literature see: Jenkinson et al. (2008[Jenkinson, S. F., Booth, K. V., Yoshihara, A., Morimoto, K., Fleet, G. W. J., Izumori, K. & Watkin, D. J. (2008). Acta Cryst. E64, o1429.]); Gullapalli et al. (2007[Gullapalli, P., Shiji, T., Rao, D., Yoshihara, A., Morimoto, K., Takata, G., Fleet, G. W. J. & Izumori, K. (2007). Tetrahedron Asymmetry, 18, 1995-2000.]); Izumori (2002[Izumori, K. (2002). Naturwissenschaften, 89, 120-124.], 2006[Izumori, K. (2006). J. Biotech. 124, 717-722.]); Granstrom et al. (2004[Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89-94.]); Beadle et al. (1992[Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). US Patent No. 5 078 796.]); Skytte (2002[Skytte, U. P. (2002). Cereal Foods World, 47, 224-224.]); Sui et al. (2005[Sui, L., Dong, Y. Y., Watanabe, Y., Yamaguchi, F., Hatano, N., Tsukamoto, I., Izumori, K. & Tokuda, M. (2005). Intl. J. Ocol. 27, 907-912.]); Levin (2002[Levin, G. V. (2002). J. Med. Food, 5, 23-36.]); Howling & Callagan (2000[Howling, D. & Callagan, J. L. (2000). PCT Int. App. WO 2 000 042 865.]); Bertelsen et al. (1999[Bertelsen, H., Jensen, B. B. & Buemann, B. (1999). World Rev. Nutr. Diet. 85, 98-109.]); Takata et al. (2005[Takata, M. K., Yamaguchi, F., Nakanose, Y., Watanabe, Y., Hatano, N., Tsukamoto, I., Nagata, M., Izumori, K. & Tokuda, M. (2005). J. Biosci. Bioeng. 100, 511-516.]); Menavuvu et al. (2006[Menavuvu, B. T., Poonperm, W., Leang, K., Noguchi, N., Okada, H., Morimoto, K., Granstrom, T. B., Takada, G. & Izumori, K. (2006). J. Biosci. Bioeng. 101, 340-345.]); Hossain et al. (2006[Hossain, M. A., Wakabayashi, H., Izuishi, K., Okano, K., Yachida, S., Tokuda, M., Izumori, K. & Maeta, H. (2006). J. Biosci. Bioeng. 101, 369-371.]); Donner et al. (1999[Donner, T. W., Wilber, J. F. & Ostrowski, D. (1999). Diab. Obes. Metab. 1, 285-291.]).

[Scheme 1]

Experimental

Crystal data
  • C6H14O5

  • Mr = 166.17

  • Orthorhombic, P 21 21 21

  • a = 7.3650 (3) Å

  • b = 7.6272 (3) Å

  • c = 13.7676 (5) Å

  • V = 773.39 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 K

  • 0.40 × 0.40 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.89, Tmax = 0.99

  • 5170 measured reflections

  • 1033 independent reflections

  • 974 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.072

  • S = 0.97

  • 1033 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H1⋯O1i 0.85 1.98 2.782 (2) 158
O4—H2⋯O6ii 0.87 1.92 2.779 (2) 168
O8—H3⋯O4ii 0.84 1.97 2.742 (2) 152
O6—H4⋯O10iii 0.87 1.92 2.772 (2) 165
O1—H5⋯O8i 0.87 1.84 2.704 (2) 173
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The properties of 1-deoxy ketohexose sugars have been little studied. The crystal structure of 6-deoxy-L-galactitol has recently been published (Jenkinson et al., 2008) and herein we report the crystal structure of a similar deoxy polyol, 1-deoxy-L-mannitol an intermediate in the synthesis of 1-deoxy-L-fructose, 3 (Fig. 1) (Gullapalli et al., 2007).

The demand for the large scale production of rare sugars by biotechnological (Izumori, 2006; Izumori, 2002; Granstrom et al., 2004) and chemical (Beadle et al., 1992) methods is driven by the demand for alternative foodstuffs (Skytte, 2002) and D-tagatose itself is used as a low calorie sweetener (Levin, 2002; Howling & Callagan, 2000; Bertelsen et al. 1999). Rare monosaccharides themselves, however, have been found to demonstrate interesting pharmaceutical properties, for example, D-psicose (Takata et al., 2005; Menavuvu et al., 2006) and D-allose (Sui et al., 2005; Hossain et al., 2006) have significant chemotherapeutic properties and D-tagatose has been found to be an anti-hyperglycemic agent (Donner et al., 1999) and therefore potentially useful in the treatment of diabetes.

1-Deoxy-L-mannitol 2 (Fig. 2) was prepared from the reduction by catalytic hydrogenation of 6-deoxy-L-mannose 1 (L-rhamnose). The X-ray structure shows that the crystal exists as an extensively hydrogen bonded lattice with each molecule acting as a donor and an acceptor for 5 hydrogen bonds (Fig.3).

Related literature top

For related literature see: Jenkinson et al. (2008); Gullapalli et al. (2007); Izumori (2002, 2006); Granstrom et al. (2004); Beadle et al. (1992); Skytte (2002); Sui et al. (2005); Levin (2002); Howling & Callagan (2000); Bertelsen et al. (1999); Takata et al. (2005); Menavuvu et al. (2006); Hossain et al. (2006); Donner et al. (1999).

Experimental top

1-Deoxy-L-mannitol was recrystallized from methanol: m.p. 390K, [α]D20 +1.4 (c, 1.4 in H2O).

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was determined from the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Synthetic scheme.
[Figure 2] Fig. 2. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 3] Fig. 3. Packing diagram for the title compound projected along the b axis. Hydrogen bonds are shown as dotted lines.
1-Deoxy-L-mannitol top
Crystal data top
C6H14O5F(000) = 360
Mr = 166.17Dx = 1.427 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1002 reflections
a = 7.3650 (3) Åθ = 5–27°
b = 7.6272 (3) ŵ = 0.12 mm1
c = 13.7676 (5) ÅT = 150 K
V = 773.39 (5) Å3Plate, colourless
Z = 40.40 × 0.40 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
974 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 99
Tmin = 0.89, Tmax = 0.99k = 99
5170 measured reflectionsl = 1717
1033 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(F2) + (0.04P)2 + 0.19P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.97(Δ/σ)max = 0.000327
1033 reflectionsΔρmax = 0.24 e Å3
100 parametersΔρmin = 0.19 e Å3
0 restraints
Crystal data top
C6H14O5V = 773.39 (5) Å3
Mr = 166.17Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3650 (3) ŵ = 0.12 mm1
b = 7.6272 (3) ÅT = 150 K
c = 13.7676 (5) Å0.40 × 0.40 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
1033 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
974 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.99Rint = 0.024
5170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 0.97Δρmax = 0.24 e Å3
1033 reflectionsΔρmin = 0.19 e Å3
100 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45760 (15)0.66827 (14)0.58528 (7)0.0158
C20.5038 (2)0.53406 (18)0.51734 (10)0.0121
C30.4654 (2)0.35710 (19)0.56608 (11)0.0129
O40.51432 (16)0.21669 (13)0.50177 (8)0.0180
C50.5694 (2)0.3334 (2)0.65961 (11)0.0160
O60.76010 (15)0.34756 (16)0.64310 (8)0.0190
C70.3954 (2)0.55797 (19)0.42326 (11)0.0125
O80.20579 (15)0.57629 (14)0.44513 (8)0.0163
C90.4543 (2)0.7196 (2)0.36498 (10)0.0140
O100.63971 (16)0.69611 (16)0.33563 (8)0.0188
C110.3428 (3)0.7388 (2)0.27300 (11)0.0195
H210.63380.54220.50170.0146*
H310.33660.35070.58360.0149*
H510.52580.42390.70480.0180*
H520.54240.21710.68900.0191*
H710.41470.45690.38160.0137*
H910.44020.82360.40590.0171*
H1110.37910.83900.23430.0290*
H1120.21120.75000.28630.0299*
H1130.35800.63340.23300.0284*
H10.71590.75320.36890.0319*
H20.42490.18980.46270.0307*
H30.17950.47080.45420.0290*
H40.80020.35230.70250.0312*
H50.53100.75600.57710.0285*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0168 (6)0.0130 (5)0.0175 (5)0.0022 (4)0.0027 (5)0.0036 (4)
C20.0103 (7)0.0137 (6)0.0122 (6)0.0004 (6)0.0007 (6)0.0009 (5)
C30.0118 (7)0.0125 (6)0.0145 (7)0.0011 (6)0.0000 (6)0.0014 (5)
O40.0207 (6)0.0137 (5)0.0198 (5)0.0040 (5)0.0064 (5)0.0030 (4)
C50.0146 (8)0.0191 (7)0.0144 (7)0.0011 (6)0.0020 (6)0.0022 (6)
O60.0144 (6)0.0283 (6)0.0142 (5)0.0026 (5)0.0015 (4)0.0002 (4)
C70.0103 (7)0.0127 (7)0.0146 (7)0.0004 (5)0.0003 (6)0.0003 (6)
O80.0102 (5)0.0128 (5)0.0259 (6)0.0000 (4)0.0005 (4)0.0033 (4)
C90.0130 (7)0.0143 (6)0.0148 (7)0.0010 (6)0.0003 (6)0.0017 (6)
O100.0120 (6)0.0284 (6)0.0160 (5)0.0049 (5)0.0009 (4)0.0020 (5)
C110.0173 (8)0.0250 (8)0.0163 (7)0.0002 (7)0.0017 (6)0.0065 (6)
Geometric parameters (Å, º) top
O1—C21.4277 (17)O6—H40.870
O1—H50.868C7—O81.4354 (18)
C2—C31.5335 (19)C7—C91.533 (2)
C2—C71.5323 (19)C7—H710.971
C2—H210.983O8—H30.837
C3—O41.4354 (18)C9—O101.4352 (19)
C3—C51.509 (2)C9—C111.516 (2)
C3—H310.980C9—H910.979
O4—H20.875O10—H10.845
C5—O61.4269 (18)C11—H1110.969
C5—H510.983C11—H1120.991
C5—H520.995C11—H1130.981
C2—O1—H5108.6C2—C7—O8109.94 (12)
O1—C2—C3107.49 (11)C2—C7—C9112.99 (12)
O1—C2—C7110.15 (12)O8—C7—C9107.87 (12)
C3—C2—C7112.26 (12)C2—C7—H71109.2
O1—C2—H21109.3O8—C7—H71110.1
C3—C2—H21109.3C9—C7—H71106.7
C7—C2—H21108.4C7—O8—H399.4
C2—C3—O4109.91 (11)C7—C9—O10108.44 (13)
C2—C3—C5112.67 (12)C7—C9—C11111.20 (12)
O4—C3—C5108.04 (12)O10—C9—C11106.98 (12)
C2—C3—H31109.3C7—C9—H91108.7
O4—C3—H31111.0O10—C9—H91111.4
C5—C3—H31105.9C11—C9—H91110.2
C3—O4—H2111.5C9—O10—H1114.5
C3—C5—O6110.76 (12)C9—C11—H111112.7
C3—C5—H51106.9C9—C11—H112112.6
O6—C5—H51111.7H111—C11—H112107.7
C3—C5—H52110.6C9—C11—H113109.2
O6—C5—H52109.2H111—C11—H113107.8
H51—C5—H52107.6H112—C11—H113106.6
C5—O6—H4100.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H1···O1i0.851.982.782 (2)158
O4—H2···O6ii0.871.922.779 (2)168
O8—H3···O4ii0.841.972.742 (2)152
O6—H4···O10iii0.871.922.772 (2)165
O1—H5···O8i0.871.842.704 (2)173
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+1/2, z+1; (iii) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H14O5
Mr166.17
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)7.3650 (3), 7.6272 (3), 13.7676 (5)
V3)773.39 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.40 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.89, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
5170, 1033, 974
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 0.97
No. of reflections1033
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H1···O1i0.851.982.782 (2)158
O4—H2···O6ii0.871.922.779 (2)168
O8—H3···O4ii0.841.972.742 (2)152
O6—H4···O10iii0.871.922.772 (2)165
O1—H5···O8i0.871.842.704 (2)173
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+1/2, z+1; (iii) x+3/2, y+1, z+1/2.
 

Acknowledgements

This work was supported in part by the Program for Promotion of Basic Research Activities for Innovative Bio­sciences (PROBRAIN). We also thank the Oxford University Chemical Crystallography service for use of the instruments.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBeadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). US Patent No. 5 078 796.  Google Scholar
First citationBertelsen, H., Jensen, B. B. & Buemann, B. (1999). World Rev. Nutr. Diet. 85, 98–109.  CrossRef PubMed CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDonner, T. W., Wilber, J. F. & Ostrowski, D. (1999). Diab. Obes. Metab. 1, 285–291.  Web of Science CrossRef CAS Google Scholar
First citationGranstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89–94.  Web of Science CrossRef PubMed Google Scholar
First citationGullapalli, P., Shiji, T., Rao, D., Yoshihara, A., Morimoto, K., Takata, G., Fleet, G. W. J. & Izumori, K. (2007). Tetrahedron Asymmetry, 18, 1995–2000.  Web of Science CrossRef CAS Google Scholar
First citationHossain, M. A., Wakabayashi, H., Izuishi, K., Okano, K., Yachida, S., Tokuda, M., Izumori, K. & Maeta, H. (2006). J. Biosci. Bioeng. 101, 369–371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHowling, D. & Callagan, J. L. (2000). PCT Int. App. WO 2 000 042 865.  Google Scholar
First citationIzumori, K. (2002). Naturwissenschaften, 89, 120–124.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIzumori, K. (2006). J. Biotech. 124, 717–722.  Web of Science CrossRef CAS Google Scholar
First citationJenkinson, S. F., Booth, K. V., Yoshihara, A., Morimoto, K., Fleet, G. W. J., Izumori, K. & Watkin, D. J. (2008). Acta Cryst. E64, o1429.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLevin, G. V. (2002). J. Med. Food, 5, 23–36.  CrossRef PubMed CAS Google Scholar
First citationMenavuvu, B. T., Poonperm, W., Leang, K., Noguchi, N., Okada, H., Morimoto, K., Granstrom, T. B., Takada, G. & Izumori, K. (2006). J. Biosci. Bioeng. 101, 340–345.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSkytte, U. P. (2002). Cereal Foods World, 47, 224–224.  Google Scholar
First citationSui, L., Dong, Y. Y., Watanabe, Y., Yamaguchi, F., Hatano, N., Tsukamoto, I., Izumori, K. & Tokuda, M. (2005). Intl. J. Ocol. 27, 907–912.  CAS Google Scholar
First citationTakata, M. K., Yamaguchi, F., Nakanose, Y., Watanabe, Y., Hatano, N., Tsukamoto, I., Nagata, M., Izumori, K. & Tokuda, M. (2005). J. Biosci. Bioeng. 100, 511–516.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds