metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1162-m1163

Poly[[bis­(μ2-4-amino­benzene­sul­fon­ato-κ2N:O)di­aqua­manganese(II)] dihydrate]

aDepartment of Chemistry, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
*Correspondence e-mail: bookw@126.com

(Received 27 July 2008; accepted 8 August 2008; online 13 August 2008)

The title compound, {[Mn(NH2C6H4SO3)2(H2O)2]·2H2O}n, was prepared under mild hydro­thermal conditions. The unique MnII ion is located on a crystallographic inversion center and is coordinated by two –NH2 and two –SO3 groups from four 4-amino­benzene­sulfonate ligands and by two water mol­ecules in the axial positions, forming a slightly distorted octa­hedral coordination environment. The 4-amino­benzene­sulfonate anions behave as μ2-bridging ligands to produce a two-dimensional structure. In the crystal structure, inter­molecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds link the layers into a three-dimensional network.

Related literature

For the isostructural Zn and Co compounds, see: Shakeri & Haussuhl (1992[Shakeri, V. & Haussuhl, S. (1992). Z. Kristallogr. 299, 198-199.]). For a similar layered structure, see: Cai et al. (2003[Cai, J., Zhou, J.-S. & Lin, M.-L. (2003). J. Mater. Chem. 13, 1806-1808.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C6H6NO3S)2(H2O)2]·2H2O

  • Mr = 471.36

  • Monoclinic, P 21 /n

  • a = 7.4485 (8) Å

  • b = 17.4102 (19) Å

  • c = 7.6509 (9) Å

  • β = 116.688 (1)°

  • V = 886.47 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 295 (2) K

  • 0.49 × 0.45 × 0.45 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.547, Tmax = 0.625

  • 6604 measured reflections

  • 1637 independent reflections

  • 1585 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.149

  • S = 1.11

  • 1637 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −1.03 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O4 1.993 (3)
Mn1—N1i 2.058 (3)
Mn1—O1 2.425 (3)
O4—Mn1—O4ii 180
O4—Mn1—N1i 92.95 (13)
O4—Mn1—N1iii 87.05 (13)
N1i—Mn1—N1iii 180
O4—Mn1—O1ii 84.94 (12)
O4—Mn1—O1 95.06 (12)
N1i—Mn1—O1 86.66 (11)
N1iii—Mn1—O1 93.34 (11)
O1ii—Mn1—O1 180
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+2, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2iv 0.90 2.46 2.980 (4) 117
O5—H3W⋯O1 0.82 2.06 2.855 (5) 164
C2—H2⋯O2 0.93 2.54 2.920 (5) 105
N1—H1B⋯O2iii 0.90 2.41 3.217 (4) 149
O4—H2W⋯O5v 0.83 1.83 2.651 (5) 175
C2—H2⋯O5v 0.93 2.53 3.431 (6) 164
O4—H1W⋯O3vi 0.82 2.02 2.795 (4) 157
N1—H1A⋯O3vii 0.90 2.24 3.070 (5) 153
C3—H3⋯O3vii 0.93 2.55 3.300 (5) 138
O5—H4W⋯O2viii 0.82 2.00 2.815 (5) 175
Symmetry codes: (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) x+1, y, z; (vi) x, y, z-1; (vii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (viii) -x+1, -y+2, -z+2.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The asymmetric unit of the title compound (I) is illustrated in Fig.1. This consists of one half of MnII ion, one 4-aminobenzenesulfonate ligand, one coordinated water molecule and one solvent water molecule. The title compound is isostructural with the Cobalt and Zinc analogs (Shakeri & Haussuhl, 1992). It is interesting to note that the title compound has very similar layered structure as that observed in [Cd(1,5 nds)-(H2O)2]n (Cai et al., 2003) (1,5-nds = 1,5-naphthalenedisulfonate) in which the CdII ion is also coordinated octahedrally by two water molecules occupying the axial positions and the layers are connected by hydrogen bonds formed between the coordinated water molecules and the sulfonate O atoms. In the crystal structure of (I) inter-layered hydrogen bonds formed between the coordinated water molecules and the –NH2 groups with the free –SO3- oxygen atoms generate an extended 3-D structure (Fig.2)

Related literature top

For the isostructural Zn and Co compounds, see: Shakeri & Haussuhl (1992). For a similar layered structure, see: Cai et al. (2003).

Experimental top

All the reagents were of AR grade and used without further purification. p-anilinesulfonic acid (0.8690 g, 5 mmol) were dissolved in 50 ml H2O solution, the mixed solution was basified with 1 mol.L-1 KOH to pH =7.5. Then the resultant solution was added in 10 ml double-distilled water containing MnCl2.4H2O (0.3950 g, 2 mmol), the resulting solution was heated at 423 K for 96 h. After cooling to room temperature, block crystals were obtained in a yield up to 37.6%.

Refinement top

H atoms bonded to O atoms were included in 'as found' positions and refined with Uiso(H)=1.5Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with C-H = 0.97 Å ; N-H = 0.90 Å and with Uiso(H)=1.2 times Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing hydrogen bonds as dashed lines.
Poly[[bis(µ2-4-aminobenzenesulfonato-κ2N:O)diaquamanganese(II)] dihydrate] top
Crystal data top
[Mn(C6H6NO3S)2(H2O)2]·2H2OF(000) = 486
Mr = 471.36Dx = 1.766 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2041 reflections
a = 7.4485 (8) Åθ = 2.5–26.2°
b = 17.4102 (19) ŵ = 1.04 mm1
c = 7.6509 (9) ÅT = 295 K
β = 116.688 (1)°Block, yellow
V = 886.47 (17) Å30.49 × 0.45 × 0.45 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1637 independent reflections
Radiation source: fine-focus sealed tube1585 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 0 pixels mm-1θmax = 25.5°, θmin = 2.3°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
k = 1920
Tmin = 0.547, Tmax = 0.625l = 99
6604 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0902P)2 + 2.4519P]
where P = (Fo2 + 2Fc2)/3
1637 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
[Mn(C6H6NO3S)2(H2O)2]·2H2OV = 886.47 (17) Å3
Mr = 471.36Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.4485 (8) ŵ = 1.04 mm1
b = 17.4102 (19) ÅT = 295 K
c = 7.6509 (9) Å0.49 × 0.45 × 0.45 mm
β = 116.688 (1)°
Data collection top
Bruker SMART CCD
diffractometer
1637 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1585 reflections with I > 2σ(I)
Tmin = 0.547, Tmax = 0.625Rint = 0.015
6604 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.11Δρmax = 1.19 e Å3
1637 reflectionsΔρmin = 1.03 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50001.00000.50000.0103 (3)
S10.65941 (14)0.89771 (5)0.94564 (13)0.0222 (3)
O10.4931 (4)0.92302 (17)0.7611 (4)0.0299 (7)
O20.8422 (4)0.94184 (16)0.9916 (4)0.0315 (7)
O30.6018 (5)0.89731 (17)1.1046 (4)0.0333 (7)
O40.7291 (5)0.9436 (2)0.4921 (4)0.0376 (8)
H1W0.71140.94060.37850.056*
H2W0.84950.94110.57060.056*
N10.8133 (5)0.57368 (19)0.7847 (5)0.0265 (7)
H1A0.86010.57710.69500.032*
H1B0.69180.55120.72530.032*
C10.7134 (6)0.8009 (2)0.9110 (5)0.0238 (8)
C20.8724 (6)0.7854 (2)0.8697 (6)0.0307 (9)
H20.95470.82500.86690.037*
C30.9088 (6)0.7106 (2)0.8325 (6)0.0309 (9)
H31.01670.69970.80650.037*
C40.7828 (6)0.6515 (2)0.8344 (5)0.0236 (8)
C50.6261 (6)0.6673 (2)0.8804 (6)0.0289 (9)
H50.54520.62760.88570.035*
C60.5900 (6)0.7421 (2)0.9184 (6)0.0288 (9)
H60.48470.75290.94850.035*
O50.1093 (5)0.9329 (2)0.7587 (5)0.0484 (9)
H3W0.20660.92850.73620.073*
H4W0.11880.96790.83420.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0192 (4)0.0266 (4)0.0139 (4)0.0005 (2)0.0062 (3)0.0015 (2)
S10.0264 (5)0.0180 (5)0.0240 (5)0.0012 (3)0.0129 (4)0.0003 (3)
O10.0309 (15)0.0283 (15)0.0302 (15)0.0046 (12)0.0134 (12)0.0053 (12)
O20.0311 (15)0.0227 (15)0.0398 (16)0.0025 (12)0.0153 (13)0.0021 (12)
O30.0452 (18)0.0300 (16)0.0328 (15)0.0003 (13)0.0246 (14)0.0025 (12)
O40.0328 (16)0.050 (2)0.0276 (15)0.0088 (14)0.0110 (13)0.0041 (14)
N10.0320 (18)0.0209 (17)0.0281 (17)0.0011 (13)0.0147 (15)0.0042 (13)
C10.0269 (19)0.0205 (18)0.0237 (18)0.0017 (15)0.0110 (15)0.0006 (14)
C20.036 (2)0.021 (2)0.042 (2)0.0019 (16)0.023 (2)0.0006 (17)
C30.031 (2)0.027 (2)0.042 (2)0.0011 (17)0.0226 (19)0.0010 (17)
C40.028 (2)0.0185 (18)0.0210 (18)0.0038 (14)0.0081 (15)0.0015 (14)
C50.031 (2)0.025 (2)0.032 (2)0.0039 (16)0.0153 (17)0.0010 (16)
C60.032 (2)0.025 (2)0.035 (2)0.0006 (16)0.0199 (18)0.0024 (16)
O50.0323 (17)0.064 (2)0.051 (2)0.0065 (16)0.0208 (16)0.0216 (18)
Geometric parameters (Å, º) top
Mn1—O41.993 (3)N1—H1A0.9000
Mn1—O4i1.993 (3)N1—H1B0.9000
Mn1—N1ii2.058 (3)C1—C21.383 (6)
Mn1—N1iii2.058 (3)C1—C61.393 (6)
Mn1—O1i2.425 (3)C2—C31.385 (6)
Mn1—O12.425 (3)C2—H20.9300
S1—O31.460 (3)C3—C41.396 (6)
S1—O21.462 (3)C3—H30.9300
S1—O11.467 (3)C4—C51.390 (6)
S1—C11.780 (4)C5—C61.387 (6)
O4—H1W0.8200C5—H50.9300
O4—H2W0.8267C6—H60.9300
N1—C41.453 (5)O5—H3W0.8197
N1—Mn1iv2.058 (3)O5—H4W0.8216
O4—Mn1—O4i180C4—N1—Mn1iv120.1 (2)
O4—Mn1—N1ii92.95 (13)C4—N1—H1A107.3
O4i—Mn1—N1ii87.05 (13)Mn1iv—N1—H1A107.3
O4—Mn1—N1iii87.05 (13)C4—N1—H1B107.3
O4i—Mn1—N1iii92.95 (13)Mn1iv—N1—H1B107.3
N1ii—Mn1—N1iii180H1A—N1—H1B106.9
O4—Mn1—O1i84.94 (12)C2—C1—C6121.0 (4)
O4i—Mn1—O1i95.06 (12)C2—C1—S1119.5 (3)
N1ii—Mn1—O1i93.34 (11)C6—C1—S1119.5 (3)
N1iii—Mn1—O1i86.66 (11)C1—C2—C3119.8 (4)
O4—Mn1—O195.06 (12)C1—C2—H2120.1
O4i—Mn1—O184.94 (12)C3—C2—H2120.1
N1ii—Mn1—O186.66 (11)C2—C3—C4119.7 (4)
N1iii—Mn1—O193.34 (11)C2—C3—H3120.1
O1i—Mn1—O1180C4—C3—H3120.1
O3—S1—O2113.12 (18)C5—C4—C3120.1 (4)
O3—S1—O1111.46 (18)C5—C4—N1119.9 (4)
O2—S1—O1111.50 (18)C3—C4—N1119.9 (4)
O3—S1—C1106.85 (18)C6—C5—C4120.2 (4)
O2—S1—C1106.57 (18)C6—C5—H5119.9
O1—S1—C1106.90 (18)C4—C5—H5119.9
S1—O1—Mn1129.61 (17)C5—C6—C1119.2 (4)
Mn1—O4—H1W109.4C5—C6—H6120.4
Mn1—O4—H2W132.0C1—C6—H6120.4
H1W—O4—H2W111.8H3W—O5—H4W114.3
O3—S1—O1—Mn1143.8 (2)C6—C1—C2—C30.8 (6)
O2—S1—O1—Mn116.3 (3)S1—C1—C2—C3176.6 (3)
C1—S1—O1—Mn199.8 (2)C1—C2—C3—C40.9 (6)
O4—Mn1—O1—S145.3 (2)C2—C3—C4—C52.4 (6)
O4i—Mn1—O1—S1134.7 (2)C2—C3—C4—N1176.5 (4)
N1ii—Mn1—O1—S147.3 (2)Mn1iv—N1—C4—C591.0 (4)
N1iii—Mn1—O1—S1132.7 (2)Mn1iv—N1—C4—C390.1 (4)
O3—S1—C1—C2141.2 (3)C3—C4—C5—C62.1 (6)
O2—S1—C1—C220.0 (4)N1—C4—C5—C6176.8 (4)
O1—S1—C1—C299.4 (3)C4—C5—C6—C10.4 (6)
O3—S1—C1—C641.3 (4)C2—C1—C6—C51.1 (6)
O2—S1—C1—C6162.5 (3)S1—C1—C6—C5176.4 (3)
O1—S1—C1—C678.2 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y+1/2, z+3/2; (iii) x1/2, y+3/2, z1/2; (iv) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2iv0.902.462.980 (4)117
O5—H3W···O10.822.062.855 (5)164
C2—H2···O20.932.542.920 (5)105
N1—H1B···O2iii0.902.413.217 (4)149
O4—H2W···O5v0.831.832.651 (5)175
C2—H2···O5v0.932.533.431 (6)164
O4—H1W···O3vi0.822.022.795 (4)157
N1—H1A···O3vii0.902.243.070 (5)153
C3—H3···O3vii0.932.553.300 (5)138
O5—H4W···O2viii0.822.002.815 (5)175
Symmetry codes: (iii) x1/2, y+3/2, z1/2; (iv) x+3/2, y1/2, z+3/2; (v) x+1, y, z; (vi) x, y, z1; (vii) x+1/2, y+3/2, z1/2; (viii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Mn(C6H6NO3S)2(H2O)2]·2H2O
Mr471.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.4485 (8), 17.4102 (19), 7.6509 (9)
β (°) 116.688 (1)
V3)886.47 (17)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.49 × 0.45 × 0.45
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.547, 0.625
No. of measured, independent and
observed [I > 2σ(I)] reflections
6604, 1637, 1585
Rint0.015
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.149, 1.11
No. of reflections1637
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 1.03

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—O41.993 (3)Mn1—O12.425 (3)
Mn1—N1i2.058 (3)
O4—Mn1—O4ii180O4—Mn1—O195.06 (12)
O4—Mn1—N1i92.95 (13)O4ii—Mn1—O184.94 (12)
O4—Mn1—N1iii87.05 (13)N1i—Mn1—O186.66 (11)
N1i—Mn1—N1iii180N1iii—Mn1—O193.34 (11)
O4—Mn1—O1ii84.94 (12)O1ii—Mn1—O1180
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y+2, z+1; (iii) x1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2iv0.902.462.980 (4)116.9
O5—H3W···O10.822.062.855 (5)164.2
C2—H2···O20.932.542.920 (5)104.7
N1—H1B···O2iii0.902.413.217 (4)149.2
O4—H2W···O5v0.831.832.651 (5)175.4
C2—H2···O5v0.932.533.431 (6)163.9
O4—H1W···O3vi0.822.022.795 (4)156.9
N1—H1A···O3vii0.902.243.070 (5)152.5
C3—H3···O3vii0.932.553.300 (5)137.5
O5—H4W···O2viii0.822.002.815 (5)174.7
Symmetry codes: (iii) x1/2, y+3/2, z1/2; (iv) x+3/2, y1/2, z+3/2; (v) x+1, y, z; (vi) x, y, z1; (vii) x+1/2, y+3/2, z1/2; (viii) x+1, y+2, z+2.
 

Acknowledgements

We thank the Natural Science Foundation of Henan Province and the Key Discipline Foundation of Zhoukou Normal University for financial support of this research.

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, J., Zhou, J.-S. & Lin, M.-L. (2003). J. Mater. Chem. 13, 1806–1808.  Web of Science CrossRef CAS Google Scholar
First citationShakeri, V. & Haussuhl, S. (1992). Z. Kristallogr. 299, 198–199.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1162-m1163
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds