metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1-Naphthyl­imino­meth­yl)ferrocene

aDepartment of Chemistry, Shangqiu Normal College, Shangqiu, Henan 476000, People's Republic of China
*Correspondence e-mail: yunbozang@sohu.com

(Received 28 July 2008; accepted 14 August 2008; online 20 August 2008)

In the title mol­ecule, [Fe(C5H5)(C16H12N)], the cyclo­penta­dienyl rings are approximately eclipsed and the inter­planar angle is 0.8 (7)°. The Fe atom is slightly closer to the substituted cyclo­penta­dienyl ring, with an Fe⋯centroid distance of 1.639 (2) Å, compared with 1.645 (2) Å for the unsubstituted ring. The C=N double bond is essentially coplanar with the substituted cyclo­penta­dienyl ring with a deviation of 10.3 (1)°. The angle formed by the C=N double bond and the naphthal­ene ring system is 47.1 (1)°. The C—N=C—C torsion angle is 177.32 (5)°.

Related literature

For related crystal structures, see: Kovac et al. (2004[Kovac, V., Visnjevac, A., Rapic, V. & Kojic-Prodic, B. (2004). J. Mol. Struct. 687, 107-110.]). For related literature, see: Baar et al. (2000[Baar, C. R., Carbray, L. P., Jennings, M. C. & Puddephatt, R. J. (2000). J. Am. Chem. Soc. 122, 176-177.]); Johnson & Sames (2000[Johnson, J. J. & Sames, D. (2000). J. Am. Chem. Soc. 122, 6321-6322.]); Staveren & Metzler-Nolte (2004[Staveren, D. R. V. & Metzler-Nolte, N. (2004). Chem. Rev. 104, 5931-5986.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C16H12N)]

  • Mr = 339.21

  • Monoclinic, C 2/c

  • a = 19.5283 (4) Å

  • b = 7.3578 (2) Å

  • c = 23.7390 (5) Å

  • β = 108.8260 (10)°

  • V = 3228.47 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 293 (2) K

  • 0.24 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.807, Tmax = 0.873

  • 18034 measured reflections

  • 3164 independent reflections

  • 2740 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.078

  • S = 1.05

  • 3164 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal complexes derived from ferrocene have attracted great intrest due to their applications as precursors for the synthesis of organic as well as organometallic compounds (Johnson & Sames, 2000), in homogeneous catalysis (Baar et al., 2000), or even in biological chemistry (Staveren & Metzler-Nolte, 2004). In this paper we reported the synthesis and crystal structure of the title compound (1). The molecular structure of (I) [Fig. 1] consists of a naphthyliminomethyl moiety and a ferrocene unit. In the ferrocene unit, the unsubstituted cyclopentadienyl ring and the substituted cyclopentadienyl ring are approximately eclipsed, and the interplannar angle is 0.8 (7)°. The Fe atom is slightly closer to the substituted cyclopentadienyl ring with a Fe···ring centroid distance of 1.639 (2) vs. 1.645 (2) for the other ring. The C=N double bond is almost parallel to the substituted cyclopentadienyl ring with the deviation 10.3 (1)°. The angle formed by the C=N double bond and the naphthyl ring is 47.1 (1) °. The torsion angle C-N=C-C is 177.32 (5)°.

Related literature top

For related crystal structures, see: Kovac et al. (2004). For related literature, see: Baar et al. (2000); Johnson & Sames (2000); Staveren & Metzler-Nolte (2004).

Experimental top

Ferrocenecarbaldehyde (1.2 g, 2.79 mmol) was dissolved in 30 ml benzene at room temperature, after the material had dissolved completely, 0.8 g naphthylamine (5.58 mmol) was added to the solution. The mixture was refluxed with a Dean-Stark apparatus to remove the water produced during the reaction. After 5 h, the solvents were removed on a rotary evaporator and the residue was recrystallized in ether to give orange crystals 1.55 g. Yield 82%.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 30% probability for non-H atoms.
(1-Naphthyliminomethyl)ferrocene top
Crystal data top
[Fe(C5H5)(C16H12N)]F(000) = 1408
Mr = 339.21Dx = 1.396 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8631 reflections
a = 19.5283 (4) Åθ = 2.2–26.9°
b = 7.3578 (2) ŵ = 0.93 mm1
c = 23.7390 (5) ÅT = 293 K
β = 108.826 (1)°Block, orange
V = 3228.47 (13) Å30.24 × 0.20 × 0.15 mm
Z = 8
Data collection top
Bruker SMART 1000 CCD
diffractometer
3164 independent reflections
Radiation source: fine-focus sealed tube2740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.807, Tmax = 0.873k = 98
18034 measured reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0401P)2 + 1.5179P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3164 reflectionsΔρmax = 0.19 e Å3
209 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00052 (11)
Crystal data top
[Fe(C5H5)(C16H12N)]V = 3228.47 (13) Å3
Mr = 339.21Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.5283 (4) ŵ = 0.93 mm1
b = 7.3578 (2) ÅT = 293 K
c = 23.7390 (5) Å0.24 × 0.20 × 0.15 mm
β = 108.826 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3164 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2740 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.873Rint = 0.022
18034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
3164 reflectionsΔρmin = 0.19 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.244742 (12)0.85825 (3)0.123387 (10)0.04360 (11)
N10.38867 (8)0.9603 (2)0.28006 (7)0.0572 (4)
C10.48453 (10)0.8798 (3)0.39478 (9)0.0601 (5)
H10.45280.79100.37340.072*
C20.53061 (11)0.8400 (4)0.45027 (10)0.0738 (6)
H20.52950.72510.46630.089*
C30.57918 (12)0.9697 (5)0.48302 (11)0.0864 (8)
H30.61080.94080.52060.104*
C40.58042 (11)1.1370 (4)0.46033 (12)0.0839 (8)
H40.61291.22260.48280.101*
C50.53241 (16)1.3586 (4)0.37809 (14)0.0928 (9)
H50.56451.44630.39970.111*
C60.48643 (18)1.4021 (4)0.32367 (15)0.0979 (9)
H60.48671.51870.30860.118*
C70.43728 (14)1.2685 (3)0.28922 (11)0.0792 (6)
H70.40551.29830.25180.095*
C80.43708 (10)1.0975 (3)0.31132 (9)0.0592 (5)
C90.48424 (9)1.0520 (3)0.36948 (9)0.0566 (5)
C100.53325 (11)1.1864 (3)0.40271 (11)0.0706 (6)
C110.38579 (9)0.9244 (3)0.22709 (8)0.0521 (4)
H110.41690.98520.21100.063*
C120.33590 (9)0.7921 (3)0.19079 (7)0.0478 (4)
C130.33816 (9)0.7214 (3)0.13539 (8)0.0522 (4)
H130.37470.74950.11650.063*
C140.27871 (11)0.6024 (3)0.11281 (9)0.0582 (5)
H140.26660.53530.07520.070*
C150.23897 (11)0.5992 (2)0.15338 (9)0.0559 (5)
H150.19450.53020.14850.067*
C160.27343 (9)0.7156 (3)0.20106 (8)0.0527 (4)
H160.25730.74090.23530.063*
C170.23857 (15)1.1334 (3)0.11874 (14)0.0953 (10)
H170.27381.21810.14430.114*
C180.24075 (12)1.0616 (3)0.06452 (12)0.0833 (7)
H180.27751.08780.04560.100*
C190.18066 (11)0.9451 (3)0.04201 (9)0.0702 (6)
H190.16800.87610.00470.084*
C200.14173 (10)0.9477 (3)0.08299 (10)0.0702 (6)
H200.09760.87860.07920.084*
C210.17731 (13)1.0623 (3)0.13038 (12)0.0843 (7)
H210.16231.08910.16510.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.04306 (15)0.03924 (16)0.04794 (16)0.00129 (10)0.01389 (11)0.00106 (10)
N10.0501 (8)0.0651 (11)0.0572 (9)0.0100 (7)0.0186 (7)0.0072 (8)
C10.0467 (9)0.0704 (14)0.0648 (12)0.0069 (9)0.0201 (9)0.0205 (10)
C20.0598 (12)0.0917 (18)0.0681 (13)0.0069 (11)0.0181 (11)0.0153 (12)
C30.0578 (12)0.120 (2)0.0766 (15)0.0029 (14)0.0148 (11)0.0353 (16)
C40.0484 (11)0.117 (2)0.0868 (17)0.0228 (13)0.0227 (11)0.0562 (16)
C50.0972 (19)0.090 (2)0.109 (2)0.0442 (15)0.0583 (18)0.0454 (17)
C60.135 (3)0.0633 (16)0.125 (2)0.0290 (16)0.082 (2)0.0183 (16)
C70.0958 (17)0.0693 (16)0.0859 (16)0.0127 (13)0.0480 (14)0.0083 (13)
C80.0545 (10)0.0604 (13)0.0720 (12)0.0114 (9)0.0333 (10)0.0141 (10)
C90.0427 (9)0.0695 (13)0.0647 (11)0.0123 (9)0.0271 (8)0.0253 (10)
C100.0572 (11)0.0777 (16)0.0901 (16)0.0231 (11)0.0421 (12)0.0372 (13)
C110.0422 (8)0.0560 (11)0.0589 (10)0.0003 (8)0.0174 (8)0.0008 (9)
C120.0443 (8)0.0480 (10)0.0505 (9)0.0060 (8)0.0144 (7)0.0054 (8)
C130.0516 (9)0.0475 (11)0.0619 (11)0.0077 (8)0.0247 (8)0.0005 (9)
C140.0682 (12)0.0426 (10)0.0664 (12)0.0032 (9)0.0253 (10)0.0086 (9)
C150.0606 (10)0.0410 (10)0.0665 (12)0.0043 (8)0.0211 (9)0.0063 (9)
C160.0544 (10)0.0558 (11)0.0497 (9)0.0005 (9)0.0190 (8)0.0075 (8)
C170.0882 (19)0.0363 (13)0.131 (3)0.0101 (11)0.0070 (18)0.0084 (13)
C180.0686 (13)0.0715 (16)0.1028 (19)0.0034 (12)0.0181 (13)0.0452 (15)
C190.0632 (12)0.0800 (16)0.0589 (12)0.0044 (11)0.0078 (9)0.0219 (11)
C200.0472 (10)0.0786 (16)0.0771 (14)0.0138 (10)0.0092 (10)0.0123 (12)
C210.0770 (15)0.0724 (16)0.0928 (17)0.0347 (13)0.0126 (13)0.0089 (14)
Geometric parameters (Å, º) top
Fe1—C132.0219 (17)C7—C81.364 (3)
Fe1—C172.029 (2)C7—H70.9300
Fe1—C182.031 (2)C8—C91.430 (3)
Fe1—C122.0317 (16)C9—C101.424 (3)
Fe1—C192.0362 (19)C11—C121.448 (3)
Fe1—C162.0366 (17)C11—H110.9300
Fe1—C142.0379 (18)C12—C131.428 (2)
Fe1—C202.0383 (19)C12—C161.434 (2)
Fe1—C212.039 (2)C13—C141.414 (3)
Fe1—C152.0506 (18)C13—H130.9800
N1—C111.269 (2)C14—C151.419 (3)
N1—C81.418 (2)C14—H140.9800
C1—C21.366 (3)C15—C161.406 (3)
C1—C91.402 (3)C15—H150.9800
C1—H10.9300C16—H160.9800
C2—C31.393 (3)C17—C181.405 (4)
C2—H20.9300C17—C211.412 (4)
C3—C41.347 (4)C17—H170.9800
C3—H30.9300C18—C191.412 (3)
C4—C101.428 (4)C18—H180.9800
C4—H40.9300C19—C201.415 (3)
C5—C61.352 (4)C19—H190.9800
C5—C101.393 (4)C20—C211.398 (3)
C5—H50.9300C20—H200.9800
C6—C71.432 (4)C21—H210.9800
C6—H60.9300
C13—Fe1—C17122.66 (10)C1—C9—C10118.8 (2)
C13—Fe1—C18107.24 (9)C1—C9—C8122.50 (18)
C17—Fe1—C1840.48 (10)C10—C9—C8118.7 (2)
C13—Fe1—C1241.27 (7)C5—C10—C9119.0 (2)
C17—Fe1—C12107.65 (9)C5—C10—C4123.4 (2)
C18—Fe1—C12123.20 (8)C9—C10—C4117.7 (2)
C13—Fe1—C19122.71 (8)N1—C11—C12122.42 (17)
C17—Fe1—C1968.15 (11)N1—C11—H11118.8
C18—Fe1—C1940.61 (9)C12—C11—H11118.8
C12—Fe1—C19159.46 (8)C13—C12—C16107.11 (16)
C13—Fe1—C1669.13 (7)C13—C12—C11125.31 (16)
C17—Fe1—C16123.88 (11)C16—C12—C11127.49 (16)
C18—Fe1—C16160.13 (10)C13—C12—Fe169.00 (10)
C12—Fe1—C1641.27 (7)C16—C12—Fe169.55 (10)
C19—Fe1—C16157.80 (8)C11—C12—Fe1123.92 (13)
C13—Fe1—C1440.77 (8)C14—C13—C12107.99 (16)
C17—Fe1—C14158.57 (11)C14—C13—Fe170.23 (10)
C18—Fe1—C14122.49 (11)C12—C13—Fe169.73 (9)
C12—Fe1—C1468.81 (8)C14—C13—H13126.0
C19—Fe1—C14107.33 (10)C12—C13—H13126.0
C16—Fe1—C1468.30 (8)Fe1—C13—H13126.0
C13—Fe1—C20159.35 (9)C13—C14—C15108.38 (17)
C17—Fe1—C2067.66 (10)C13—C14—Fe169.01 (10)
C18—Fe1—C2068.01 (9)C15—C14—Fe170.18 (10)
C12—Fe1—C20158.25 (8)C13—C14—H14125.8
C19—Fe1—C2040.63 (8)C15—C14—H14125.8
C16—Fe1—C20122.26 (8)Fe1—C14—H14125.8
C14—Fe1—C20123.46 (9)C16—C15—C14108.16 (16)
C13—Fe1—C21158.81 (9)C16—C15—Fe169.35 (10)
C17—Fe1—C2140.62 (11)C14—C15—Fe169.22 (10)
C18—Fe1—C2168.36 (11)C16—C15—H15125.9
C12—Fe1—C21122.47 (9)C14—C15—H15125.9
C19—Fe1—C2168.33 (10)Fe1—C15—H15125.9
C16—Fe1—C21107.57 (10)C15—C16—C12108.36 (16)
C14—Fe1—C21159.17 (10)C15—C16—Fe170.42 (10)
C20—Fe1—C2140.11 (9)C12—C16—Fe169.18 (9)
C13—Fe1—C1568.67 (8)C15—C16—H16125.8
C17—Fe1—C15159.62 (11)C12—C16—H16125.8
C18—Fe1—C15158.31 (11)Fe1—C16—H16125.8
C12—Fe1—C1568.67 (8)C18—C17—C21108.5 (2)
C19—Fe1—C15122.37 (9)C18—C17—Fe169.86 (13)
C16—Fe1—C1540.24 (8)C21—C17—Fe170.08 (13)
C14—Fe1—C1540.60 (8)C18—C17—H17125.7
C20—Fe1—C15107.88 (9)C21—C17—H17125.7
C21—Fe1—C15123.16 (10)Fe1—C17—H17125.7
C11—N1—C8118.44 (16)C17—C18—C19107.9 (2)
C2—C1—C9121.2 (2)C17—C18—Fe169.66 (13)
C2—C1—H1119.4C19—C18—Fe169.88 (12)
C9—C1—H1119.4C17—C18—H18126.0
C1—C2—C3120.6 (3)C19—C18—H18126.0
C1—C2—H2119.7Fe1—C18—H18126.0
C3—C2—H2119.7C18—C19—C20107.3 (2)
C4—C3—C2120.0 (2)C18—C19—Fe169.51 (12)
C4—C3—H3120.0C20—C19—Fe169.76 (11)
C2—C3—H3120.0C18—C19—H19126.4
C3—C4—C10121.8 (2)C20—C19—H19126.4
C3—C4—H4119.1Fe1—C19—H19126.4
C10—C4—H4119.1C21—C20—C19108.9 (2)
C6—C5—C10122.0 (2)C21—C20—Fe169.98 (12)
C6—C5—H5119.0C19—C20—Fe169.60 (11)
C10—C5—H5119.0C21—C20—H20125.5
C5—C6—C7120.0 (3)C19—C20—H20125.5
C5—C6—H6120.0Fe1—C20—H20125.5
C7—C6—H6120.0C20—C21—C17107.3 (2)
C8—C7—C6119.9 (3)C20—C21—Fe169.91 (12)
C8—C7—H7120.1C17—C21—Fe169.30 (13)
C6—C7—H7120.1C20—C21—H21126.3
C7—C8—N1122.6 (2)C17—C21—H21126.3
C7—C8—C9120.4 (2)Fe1—C21—H21126.3
N1—C8—C9116.87 (18)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C16H12N)]
Mr339.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)19.5283 (4), 7.3578 (2), 23.7390 (5)
β (°) 108.826 (1)
V3)3228.47 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.24 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.807, 0.873
No. of measured, independent and
observed [I > 2σ(I)] reflections
18034, 3164, 2740
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.078, 1.05
No. of reflections3164
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBaar, C. R., Carbray, L. P., Jennings, M. C. & Puddephatt, R. J. (2000). J. Am. Chem. Soc. 122, 176–177.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, J. J. & Sames, D. (2000). J. Am. Chem. Soc. 122, 6321–6322.  Web of Science CSD CrossRef CAS Google Scholar
First citationKovac, V., Visnjevac, A., Rapic, V. & Kojic-Prodic, B. (2004). J. Mol. Struct. 687, 107–110.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStaveren, D. R. V. & Metzler-Nolte, N. (2004). Chem. Rev. 104, 5931–5986.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds