metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1199-m1200

catena-Poly[[[di­aqua­cobalt(II)]bis­­(μ-1,3-di-4-pyridylpropane-κ2N:N′)] bis­­(perchlorate) bis­­(1,3-di-4-pyridyl­propane) bis­­(2-methyl-4-nitro­aniline)]

aSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People's Republic of China
*Correspondence e-mail: zyfu@scut.edu.cn

(Received 5 August 2008; accepted 17 August 2008; online 23 August 2008)

In the title compound, {[Co(C13H14N2)2(H2O)2](ClO4)2·2C13H14N2·2C7H8N2O2}n, the CoII ion lies on a crystallographic inversion center and is coordinated by four N atoms from four symmetry-related 1,3-di-4-pyridylpropane ligands and two O atoms from two water ligands in a slightly distorted octa­hedral coordination environment. The 1,3-di-4-pyridylpropane ligands are doubly bridging and connect the CoII ions into one-dimensional chains. The asymmetric unit also contains one uncoordinated 1,3-di-4-pyridylpropane mol­ecule, one 2-methyl-4-nitro­aniline mol­ecule and one perchlorate anion. In the crystal structure, inter­molecular O—H⋯N hydrogen bonds connect the one-dimensional chains into a two-dimensional network.

Related literature

For a related complex with a similar crystal structure, see: Merz et al. (2004[Merz, C., Desciak, M., O'Brien, C., LaDuca, R. L., Finn, R. C., Rarig, R. S. & Zubieta, J. A. (2004). Inorg. Chim. Acta. 357, 3331-3335.]). For related literature, see: James (2003[James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C13H14N2)2(H2O)2](ClO4)2·2C13H14N2·2C7H8N2O2

  • Mr = 1391.22

  • Triclinic, [P \overline 1]

  • a = 10.9310 (3) Å

  • b = 11.6505 (5) Å

  • c = 15.2054 (4) Å

  • α = 71.0112 (7)°

  • β = 82.4011 (6)°

  • γ = 68.3933 (7)°

  • V = 1702.22 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 298 (2) K

  • 0.30 × 0.22 × 0.1 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.892, Tmax = 0.967

  • 8612 measured reflections

  • 5827 independent reflections

  • 3438 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.168

  • S = 1.02

  • 5827 reflections

  • 438 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O1 2.090 (3)
Co1—N2i 2.179 (3)
Co1—N1 2.208 (3)
O1ii—Co1—O1 180
O1ii—Co1—N2i 92.94 (13)
O1—Co1—N2i 87.06 (13)
N2iii—Co1—N2i 180
O1ii—Co1—N1 88.90 (12)
O1—Co1—N1 91.10 (12)
N2iii—Co1—N1 87.20 (11)
N2iii—Co1—N1ii 92.80 (11)
N1—Co1—N1ii 180
Symmetry codes: (i) x, y+1, z; (ii) -x, -y, -z; (iii) -x, -y-1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3iii 0.85 (6) 1.94 (3) 2.744 (5) 173 (4)
O1—H2⋯N4iv 0.73 (4) 2.07 (2) 2.810 (3) 174 (3)
Symmetry codes: (iii) -x, -y-1, -z; (iv) -x-1, -y, -z.

Data collection: SMART (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Crystal engineering of metal organic frameworks has advanced dramatically over the past decade as a result of the number of interesting structural motifs (James, 2003). As part of our investigation of the use of 4,4,-trimethylenedipyridine as ligand in the construction of new coordination polymers, the title compound was obtained as a salt. The crystal structure of the title compound (I) comprises [Co(4,4,-trimethylenedipyridine)2(H2O)2]n polymeric chains, solvate 2-methyl-4-nitroaniline molecules, solvate 4,4,-trimethylenedipyridine molecules, and perchlorate anions. The asymmetric unit of (I) plus some symmetry related atoms are shown in Fig. 1. Each CoII ion is in a slightly distorted octahedral environment. The equatorial plane consists of four nitrogen atoms from 4,4,-trimethylenedipyridine (Co—N 2.177 (4)–2.208 (4) Å) and the axial positions are occupied by two aqua molecules (Co—O 2.109 (3) Å). The CoII ions, separated by approximately 11.65 Å, are bridged by 4,4,-trimethylenedipyridine ligands forming a polymeric chain. The structure possesses a distorted macrocycle enclosed by 4,4,-trimethylenedipyridine liaginds. The dimensions of the distorted square cavity are approximately 11.65*4.36 Å, measured from opposite phenyl ring to phenyl ring. The distorted macrocyclic structure includes low-symmetry guest molecules. The solvated 2-methyl-4-nitroaniline molecules solvated in the structure interact with the rest of the structure by normal van der Waals forces. There are two types of 4,4,-trimethylenedipyridine ligands located in the crystal structure. One is coordinated to the Co center while the other is a guest molecule. In the crystal structure, O—H···N hydrogen bonds exist between the water molecules and the guest 4,4,-trimethylenedipyridine molecules. Figure 2 shows the packing in (I) the extended two-dimensional network.

Related literature top

For a related complex with a similar crystal structure, see: Merz et al. (2004). For related literature, see: James (2003).

Experimental top

An aqueous mixture (10 ml) containing 4,4,-trimethylenedipyridine (0.1 g, 0.5 mmol), Co(ClO4)2(H2O)6 (0.365 g, 1 mmol), 2-methyl-4-nitroaniline (0.075 g, 0.5 mmol) was placed in a Parr Teflonlined stainless steel vessel(25 ml), and the vessel was sealed and heated to 388.15 K for 24 h. 0.090 g Orange sheet-like crystals were obtained.

Refinement top

H atoms bonded to the O atoms of the water molecules were located in a difference map and refined with distance restraints of O—H = 0.85 (3) Å. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with some symmetry related atoms. Displacement ellipsoids are drawn at the 50% probability level [Symmetry Codes: (a) -x, -1-y, -z, (b) x, -1+y, z, (c) -x, -y, -z].
[Figure 2] Fig. 2. The packing of (I), viewed approximately along the a axis, showing the O—H···N hydrogen bonds between the guest 4,4,-trimethylenedipyridine molecule and the coordinated water molecules.
catena-Poly[[[diaquacobalt(II)]bis(µ-1,3-di-4-pyridylpropane-κ2N:N')] bis(perchlorate) bis(1,3-di-4-pyridylpropane) bis(2-methyl-4-nitroaniline)] top
Crystal data top
[Co(C13H14N2)2(H2O)2](ClO4)2·2C13H14N2·2C7H8N2O2Z = 1
Mr = 1391.22F(000) = 729
Triclinic, P1Dx = 1.357 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.9310 (3) ÅCell parameters from 5827 reflections
b = 11.6505 (5) Åθ = 2.8–25.0°
c = 15.2054 (4) ŵ = 0.40 mm1
α = 71.0112 (7)°T = 298 K
β = 82.4011 (6)°Block, orange
γ = 68.3933 (7)°0.30 × 0.22 × 0.1 mm
V = 1702.22 (10) Å3
Data collection top
Bruker SMART CCD
diffractometer
5827 independent reflections
Radiation source: fine-focus sealed tube3438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1113
Tmin = 0.892, Tmax = 0.967k = 1313
8612 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0705P)2]
where P = (Fo2 + 2Fc2)/3
5827 reflections(Δ/σ)max < 0.001
438 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Co(C13H14N2)2(H2O)2](ClO4)2·2C13H14N2·2C7H8N2O2γ = 68.3933 (7)°
Mr = 1391.22V = 1702.22 (10) Å3
Triclinic, P1Z = 1
a = 10.9310 (3) ÅMo Kα radiation
b = 11.6505 (5) ŵ = 0.40 mm1
c = 15.2054 (4) ÅT = 298 K
α = 71.0112 (7)°0.30 × 0.22 × 0.1 mm
β = 82.4011 (6)°
Data collection top
Bruker SMART CCD
diffractometer
5827 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3438 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.967Rint = 0.039
8612 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.53 e Å3
5827 reflectionsΔρmin = 0.31 e Å3
438 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.00000.00000.0368 (2)
O10.0308 (3)0.0246 (3)0.1425 (2)0.0450 (8)
H20.095 (4)0.007 (4)0.161 (3)0.035 (14)*
H10.009 (5)0.091 (6)0.190 (4)0.10 (2)*
O20.0102 (8)0.3950 (9)0.2105 (4)0.185 (3)
O30.1176 (7)0.1911 (10)0.2256 (7)0.218 (5)
O40.6660 (4)0.3125 (5)0.7027 (3)0.1267 (17)
O50.5089 (6)0.3630 (6)0.7540 (3)0.146 (2)
O60.4479 (6)0.1872 (5)0.7051 (4)0.160 (2)
O70.5165 (4)0.3851 (5)0.5995 (3)0.1177 (16)
N10.1793 (3)0.0409 (3)0.0082 (2)0.0380 (8)
N20.1087 (3)0.7946 (3)0.0213 (2)0.0412 (8)
N30.0498 (4)0.7448 (4)0.2812 (3)0.0679 (11)
N40.7219 (4)0.0999 (4)0.2125 (3)0.0621 (10)
N50.3025 (6)0.1123 (7)0.5321 (4)0.139 (2)
H5A0.36380.16660.55500.167*
H5B0.28910.03090.55480.167*
N60.0249 (11)0.2734 (10)0.2435 (5)0.156 (4)
C10.2391 (4)0.0147 (3)0.0875 (3)0.0422 (10)
H1A0.21390.03790.14160.051*
C20.3361 (4)0.0616 (4)0.0933 (3)0.0464 (10)
H2A0.37490.03990.15010.056*
C30.2207 (4)0.1150 (4)0.0678 (3)0.0499 (11)
H3A0.18300.13290.12430.060*
C40.3148 (4)0.1659 (4)0.0676 (3)0.0507 (11)
H4A0.33860.21770.12290.061*
C50.3749 (4)0.1408 (4)0.0143 (3)0.0455 (11)
C60.4719 (4)0.2046 (4)0.0158 (3)0.0528 (11)
H6A0.51530.16530.07540.063*
H6B0.53860.18970.03210.063*
C70.4055 (4)0.3506 (4)0.0001 (3)0.0521 (11)
H7A0.36830.39070.06190.062*
H7B0.47140.38670.00250.062*
C80.2983 (4)0.3827 (4)0.0706 (3)0.0528 (11)
H8A0.33560.34280.13230.063*
H8B0.23250.34620.06800.063*
C90.2331 (4)0.5255 (4)0.0547 (3)0.0426 (10)
C100.1315 (4)0.5980 (4)0.0076 (3)0.0513 (11)
H10A0.10230.55760.03980.062*
C110.0732 (4)0.7292 (4)0.0225 (3)0.0488 (11)
H11A0.00550.77490.06520.059*
C120.2711 (4)0.5940 (4)0.0986 (3)0.0484 (10)
H12A0.34000.55080.14050.058*
C130.2081 (4)0.7249 (4)0.0807 (3)0.0450 (10)
H13A0.23600.76760.11170.054*
C140.1616 (6)0.7095 (5)0.3234 (4)0.0786 (15)
H14A0.20330.77000.31050.094*
C150.2205 (5)0.5909 (5)0.3846 (4)0.0716 (14)
H15A0.29920.57330.41200.086*
C160.0060 (5)0.6559 (5)0.3035 (4)0.0723 (14)
H16A0.08560.67680.27600.087*
C170.0468 (5)0.5330 (5)0.3655 (4)0.0681 (14)
H17A0.00190.47510.37920.082*
C180.1640 (4)0.4972 (4)0.4060 (3)0.0536 (11)
C190.2286 (5)0.3641 (5)0.4704 (3)0.0738 (14)
H19A0.24260.37110.52980.089*
H19B0.16990.31540.48090.089*
C200.3608 (6)0.2899 (5)0.4324 (4)0.0908 (18)
H20A0.39990.20710.47860.109*
H20B0.41960.33830.42260.109*
C210.3491 (5)0.2670 (5)0.3435 (4)0.0829 (16)
H21A0.29980.20920.35510.099*
H21B0.30000.34850.29970.099*
C220.4832 (5)0.2082 (5)0.2996 (3)0.0655 (13)
C230.5308 (5)0.0799 (5)0.3042 (3)0.0755 (15)
H23A0.48340.02650.33590.091*
C240.6487 (5)0.0307 (5)0.2618 (3)0.0696 (14)
H24A0.67970.05730.26770.084*
C250.5612 (5)0.2796 (5)0.2533 (4)0.0686 (14)
H25A0.53590.36590.25110.082*
C260.6763 (5)0.2240 (5)0.2102 (3)0.0642 (13)
H26A0.72510.27570.17760.077*
C270.1226 (7)0.0718 (7)0.4533 (5)0.120 (2)
H27A0.05380.11960.41920.180*
H27B0.10290.10680.51840.180*
H27C0.20460.07810.44350.180*
C280.1332 (6)0.0690 (6)0.4197 (4)0.0822 (16)
C290.2250 (6)0.1562 (7)0.4586 (4)0.0839 (17)
C300.2475 (6)0.2857 (7)0.4235 (5)0.0873 (17)
H30A0.31570.34250.44850.105*
C310.1723 (7)0.3344 (6)0.3523 (5)0.0910 (18)
H31A0.18720.42260.32770.109*
C320.0689 (6)0.2398 (8)0.3182 (4)0.086 (2)
C330.0569 (6)0.1127 (7)0.3516 (4)0.0845 (17)
H33A0.00730.05400.32570.101*
Cl10.53712 (14)0.31378 (14)0.69036 (9)0.0756 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0321 (4)0.0319 (4)0.0486 (5)0.0089 (3)0.0030 (4)0.0188 (4)
O10.0393 (19)0.0465 (19)0.0476 (19)0.0105 (15)0.0078 (16)0.0203 (17)
O20.257 (8)0.263 (9)0.105 (4)0.181 (8)0.027 (5)0.054 (5)
O30.150 (6)0.336 (12)0.284 (9)0.104 (6)0.096 (6)0.257 (9)
O40.084 (3)0.198 (5)0.098 (3)0.081 (3)0.011 (3)0.014 (3)
O50.168 (5)0.224 (6)0.110 (4)0.110 (5)0.030 (3)0.097 (4)
O60.159 (5)0.099 (4)0.183 (5)0.025 (3)0.006 (4)0.017 (4)
O70.121 (3)0.154 (4)0.077 (3)0.079 (3)0.013 (3)0.001 (3)
N10.0388 (19)0.0339 (18)0.0442 (19)0.0108 (14)0.0062 (16)0.0202 (15)
N20.0374 (19)0.0380 (19)0.0479 (19)0.0095 (15)0.0041 (16)0.0185 (16)
N30.057 (3)0.063 (3)0.067 (3)0.008 (2)0.009 (2)0.016 (2)
N40.041 (2)0.073 (3)0.068 (3)0.005 (2)0.001 (2)0.033 (2)
N50.126 (5)0.208 (7)0.109 (4)0.096 (5)0.034 (4)0.051 (4)
N60.242 (10)0.174 (8)0.120 (6)0.154 (9)0.045 (7)0.020 (6)
C10.043 (2)0.034 (2)0.051 (3)0.0155 (18)0.001 (2)0.0131 (19)
C20.043 (2)0.034 (2)0.065 (3)0.0071 (19)0.007 (2)0.023 (2)
C30.054 (3)0.055 (3)0.049 (3)0.026 (2)0.002 (2)0.019 (2)
C40.049 (3)0.059 (3)0.057 (3)0.032 (2)0.011 (2)0.024 (2)
C50.028 (2)0.032 (2)0.081 (3)0.0046 (17)0.004 (2)0.030 (2)
C60.029 (2)0.049 (3)0.088 (3)0.0095 (19)0.005 (2)0.037 (2)
C70.043 (2)0.037 (2)0.084 (3)0.0168 (19)0.009 (2)0.029 (2)
C80.062 (3)0.032 (2)0.062 (3)0.013 (2)0.011 (2)0.019 (2)
C90.039 (2)0.033 (2)0.053 (2)0.0119 (18)0.012 (2)0.0160 (19)
C100.049 (3)0.044 (3)0.068 (3)0.014 (2)0.003 (2)0.031 (2)
C110.046 (3)0.041 (2)0.060 (3)0.0072 (19)0.009 (2)0.023 (2)
C120.044 (2)0.036 (2)0.062 (3)0.0081 (19)0.004 (2)0.015 (2)
C130.043 (2)0.041 (2)0.058 (3)0.0158 (19)0.004 (2)0.024 (2)
C140.074 (4)0.072 (4)0.095 (4)0.030 (3)0.005 (3)0.028 (3)
C150.058 (3)0.081 (4)0.077 (4)0.015 (3)0.010 (3)0.030 (3)
C160.047 (3)0.084 (4)0.078 (4)0.018 (3)0.005 (3)0.017 (3)
C170.055 (3)0.066 (3)0.082 (4)0.025 (3)0.004 (3)0.018 (3)
C180.044 (3)0.058 (3)0.050 (3)0.003 (2)0.008 (2)0.025 (2)
C190.066 (3)0.072 (3)0.058 (3)0.002 (3)0.011 (3)0.018 (3)
C200.090 (4)0.081 (4)0.061 (3)0.015 (3)0.004 (3)0.019 (3)
C210.066 (4)0.084 (4)0.085 (4)0.003 (3)0.004 (3)0.033 (3)
C220.052 (3)0.075 (4)0.061 (3)0.006 (3)0.005 (2)0.029 (3)
C230.074 (4)0.073 (4)0.069 (3)0.018 (3)0.017 (3)0.024 (3)
C240.067 (3)0.063 (3)0.070 (3)0.005 (3)0.009 (3)0.032 (3)
C250.057 (3)0.060 (3)0.083 (4)0.001 (3)0.007 (3)0.035 (3)
C260.051 (3)0.075 (4)0.065 (3)0.017 (3)0.005 (3)0.023 (3)
C270.131 (6)0.113 (6)0.127 (6)0.042 (5)0.030 (5)0.038 (5)
C280.073 (4)0.100 (5)0.078 (4)0.024 (4)0.012 (4)0.036 (4)
C290.073 (4)0.120 (6)0.078 (4)0.045 (4)0.000 (3)0.041 (4)
C300.074 (4)0.104 (5)0.096 (5)0.027 (4)0.004 (4)0.052 (4)
C310.099 (5)0.094 (5)0.101 (5)0.041 (4)0.019 (4)0.040 (4)
C320.089 (5)0.156 (7)0.051 (3)0.083 (5)0.005 (3)0.034 (4)
C330.065 (4)0.119 (5)0.091 (4)0.032 (4)0.003 (3)0.061 (4)
Cl10.0767 (10)0.0836 (10)0.0635 (8)0.0338 (8)0.0127 (7)0.0164 (7)
Geometric parameters (Å, º) top
Co1—O1i2.090 (3)C9—C121.385 (5)
Co1—O12.090 (3)C10—C111.374 (5)
Co1—N2ii2.179 (3)C10—H10A0.9300
Co1—N2iii2.179 (3)C11—H11A0.9300
Co1—N12.208 (3)C12—C131.371 (5)
Co1—N1i2.208 (3)C12—H12A0.9300
O1—H20.73 (4)C13—H13A0.9300
O1—H10.85 (6)C14—C151.362 (7)
O2—N61.263 (10)C14—H14A0.9300
O3—N61.183 (12)C15—C181.375 (6)
O4—Cl11.402 (4)C15—H15A0.9300
O5—Cl11.390 (4)C16—C171.389 (6)
O6—Cl11.400 (5)C16—H16A0.9300
O7—Cl11.400 (4)C17—C181.358 (6)
N1—C31.336 (5)C17—H17A0.9300
N1—C11.340 (4)C18—C191.500 (6)
N2—C111.337 (5)C19—C201.534 (7)
N2—C131.338 (5)C19—H19A0.9700
N2—Co1iv2.179 (3)C19—H19B0.9700
N3—C141.319 (6)C20—C211.490 (7)
N3—C161.320 (6)C20—H20A0.9700
N4—C241.333 (6)C20—H20B0.9700
N4—C261.334 (6)C21—C221.537 (7)
N5—C291.387 (7)C21—H21A0.9700
N5—H5A0.8600C21—H21B0.9700
N5—H5B0.8600C22—C231.371 (7)
N6—C321.481 (10)C22—C251.377 (7)
C1—C21.383 (5)C23—C241.372 (7)
C1—H1A0.9300C23—H23A0.9300
C2—C51.382 (5)C24—H24A0.9300
C2—H2A0.9300C25—C261.375 (6)
C3—C41.365 (5)C25—H25A0.9300
C3—H3A0.9300C26—H26A0.9300
C4—C51.381 (6)C27—C281.516 (8)
C4—H4A0.9300C27—H27A0.9600
C5—C61.508 (5)C27—H27B0.9600
C6—C71.531 (5)C27—H27C0.9600
C6—H6A0.9700C28—C331.329 (8)
C6—H6B0.9700C28—C291.368 (8)
C7—C81.508 (6)C29—C301.363 (8)
C7—H7A0.9700C30—C311.370 (8)
C7—H7B0.9700C30—H30A0.9300
C8—C91.498 (5)C31—C321.436 (8)
C8—H8A0.9700C31—H31A0.9300
C8—H8B0.9700C32—C331.361 (8)
C9—C101.383 (5)C33—H33A0.9300
O1i—Co1—O1180C12—C13—H13A118.2
O1i—Co1—N2ii87.06 (13)N3—C14—C15124.7 (5)
O1—Co1—N2ii92.94 (13)N3—C14—H14A117.6
O1i—Co1—N2iii92.94 (13)C15—C14—H14A117.6
O1—Co1—N2iii87.06 (13)C14—C15—C18120.3 (5)
N2ii—Co1—N2iii180C14—C15—H15A119.8
O1i—Co1—N188.90 (12)C18—C15—H15A119.8
O1—Co1—N191.10 (12)N3—C16—C17124.1 (5)
N2ii—Co1—N187.20 (11)N3—C16—H16A118.0
N2iii—Co1—N192.80 (11)C17—C16—H16A118.0
O1i—Co1—N1i91.10 (12)C18—C17—C16120.0 (5)
O1—Co1—N1i88.90 (12)C18—C17—H17A120.0
N2ii—Co1—N1i92.80 (11)C16—C17—H17A120.0
N2iii—Co1—N1i87.20 (11)C17—C18—C15115.8 (4)
N1—Co1—N1i180C17—C18—C19122.4 (5)
Co1—O1—H2121 (3)C15—C18—C19121.7 (4)
Co1—O1—H1132 (4)C18—C19—C20112.9 (4)
H2—O1—H195 (5)C18—C19—H19A109.0
C3—N1—C1115.8 (3)C20—C19—H19A109.0
C3—N1—Co1118.7 (3)C18—C19—H19B109.0
C1—N1—Co1124.6 (3)C20—C19—H19B109.0
C11—N2—C13116.0 (3)H19A—C19—H19B107.8
C11—N2—Co1iv120.4 (3)C21—C20—C19113.4 (4)
C13—N2—Co1iv123.6 (2)C21—C20—H20A108.9
C14—N3—C16115.0 (4)C19—C20—H20A108.9
C24—N4—C26115.2 (4)C21—C20—H20B108.9
C29—N5—H5A120.0C19—C20—H20B108.9
C29—N5—H5B120.0H20A—C20—H20B107.7
H5A—N5—H5B120.0C20—C21—C22113.0 (4)
O3—N6—O2130.4 (11)C20—C21—H21A109.0
O3—N6—C32120.4 (10)C22—C21—H21A109.0
O2—N6—C32109.2 (10)C20—C21—H21B109.0
N1—C1—C2123.7 (4)C22—C21—H21B109.0
N1—C1—H1A118.2H21A—C21—H21B107.8
C2—C1—H1A118.2C23—C22—C25116.3 (5)
C5—C2—C1119.6 (4)C23—C22—C21120.8 (5)
C5—C2—H2A120.2C25—C22—C21122.9 (5)
C1—C2—H2A120.2C24—C23—C22119.7 (5)
N1—C3—C4124.0 (4)C24—C23—H23A120.1
N1—C3—H3A118.0C22—C23—H23A120.1
C4—C3—H3A118.0N4—C24—C23124.7 (5)
C3—C4—C5120.2 (4)N4—C24—H24A117.7
C3—C4—H4A119.9C23—C24—H24A117.7
C5—C4—H4A119.9C26—C25—C22120.4 (5)
C4—C5—C2116.7 (3)C26—C25—H25A119.8
C4—C5—C6120.3 (4)C22—C25—H25A119.8
C2—C5—C6123.0 (4)N4—C26—C25123.6 (5)
C5—C6—C7112.2 (3)N4—C26—H26A118.2
C5—C6—H6A109.2C25—C26—H26A118.2
C7—C6—H6A109.2C28—C27—H27A109.5
C5—C6—H6B109.2C28—C27—H27B109.5
C7—C6—H6B109.2H27A—C27—H27B109.5
H6A—C6—H6B107.9C28—C27—H27C109.5
C8—C7—C6112.7 (3)H27A—C27—H27C109.5
C8—C7—H7A109.1H27B—C27—H27C109.5
C6—C7—H7A109.1C33—C28—C29117.9 (6)
C8—C7—H7B109.1C33—C28—C27122.1 (7)
C6—C7—H7B109.1C29—C28—C27120.0 (7)
H7A—C7—H7B107.8C30—C29—C28121.7 (6)
C9—C8—C7112.7 (3)C30—C29—N5119.2 (7)
C9—C8—H8A109.1C28—C29—N5119.0 (7)
C7—C8—H8A109.1C29—C30—C31121.8 (6)
C9—C8—H8B109.1C29—C30—H30A119.1
C7—C8—H8B109.1C31—C30—H30A119.1
H8A—C8—H8B107.8C30—C31—C32115.3 (6)
C10—C9—C12115.6 (3)C30—C31—H31A122.3
C10—C9—C8121.1 (4)C32—C31—H31A122.3
C12—C9—C8123.3 (4)C33—C32—C31120.2 (5)
C11—C10—C9120.7 (4)C33—C32—N6116.6 (8)
C11—C10—H10A119.7C31—C32—N6123.2 (8)
C9—C10—H10A119.7C28—C33—C32122.8 (6)
N2—C11—C10123.5 (4)C28—C33—H33A118.6
N2—C11—H11A118.3C32—C33—H33A118.6
C10—C11—H11A118.3O5—Cl1—O6107.3 (4)
C13—C12—C9120.6 (4)O5—Cl1—O7110.2 (3)
C13—C12—H12A119.7O6—Cl1—O7107.4 (3)
C9—C12—H12A119.7O5—Cl1—O4111.1 (3)
N2—C13—C12123.6 (4)O6—Cl1—O4109.6 (3)
N2—C13—H13A118.2O7—Cl1—O4111.0 (3)
Symmetry codes: (i) x, y, z; (ii) x, y1, z; (iii) x, y+1, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N3ii0.85 (6)1.94 (3)2.744 (5)173 (4)
O1—H2···N4v0.73 (4)2.07 (2)2.810 (3)174 (3)
Symmetry codes: (ii) x, y1, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C13H14N2)2(H2O)2](ClO4)2·2C13H14N2·2C7H8N2O2
Mr1391.22
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.9310 (3), 11.6505 (5), 15.2054 (4)
α, β, γ (°)71.0112 (7), 82.4011 (6), 68.3933 (7)
V3)1702.22 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.30 × 0.22 × 0.1
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.892, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
8612, 5827, 3438
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.168, 1.02
No. of reflections5827
No. of parameters438
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.31

Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—O12.090 (3)Co1—N12.208 (3)
Co1—N2i2.179 (3)
O1ii—Co1—O1180O1—Co1—N191.10 (12)
O1ii—Co1—N2i92.94 (13)N2iii—Co1—N187.20 (11)
O1—Co1—N2i87.06 (13)N2iii—Co1—N1ii92.80 (11)
N2iii—Co1—N2i180N1—Co1—N1ii180
O1ii—Co1—N188.90 (12)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N3iii0.85 (6)1.94 (3)2.744 (5)173 (4)
O1—H2···N4iv0.73 (4)2.07 (2)2.810 (3)174 (3)
Symmetry codes: (iii) x, y1, z; (iv) x1, y, z.
 

Acknowledgements

The authors thank the NNSFC (No. 20701014) and the NSFFPC (No. 2003 F006) for financial support.

References

First citationBruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJames, S. L. (2003). Chem. Soc. Rev. 32, 276–288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMerz, C., Desciak, M., O'Brien, C., LaDuca, R. L., Finn, R. C., Rarig, R. S. & Zubieta, J. A. (2004). Inorg. Chim. Acta. 357, 3331–3335.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1199-m1200
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds