metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5,10,15,20-Tetra­phenyl­porphyrinato-κ4N)(2,2,2-tri­fluoro-1-phenyl­ethyl­­idene-κC1)ruthenium(II): a stable fluorinated alkyl­­idene complex of a ruthenium(II) porphyrin

aDepartment of Chemistry, School of Science, Kitasato University, Kitasato, Sagamihara, Kanagawa 228-8555, Japan
*Correspondence e-mail: orgnmtl@kitasato-u.ac.jp

(Received 3 July 2008; accepted 24 July 2008; online 6 August 2008)

In the title compound, [Ru(C44H28N4)(C8H5F3)], the fluorin­ated alkyl­idene group is bound to a five-coordinate Ru atom, which is located toward the carbene C atom, 0.3301 (5)Å from the least-squares plane of the C20N4 porphyrin core. The Ru=C bond is tilted slightly from the normal to the C20N4 least-squares plane due to steric repulsion between the porphyrinate ligand and the bulky trifluoro­methyl group. The Ru=C bond length of 1.838 (2) Å is comparable with those in bis­(subsituted phen­yl)carbene analogs.

Related literature

For background on fluorine chemistry, see: Seebach (1990[Seebach, D. (1990). Angew. Chem. Int. Ed. Engl. 29, 1320-1367.]). For the preparation of the precursor of the 1-phenyl-2,2,2-trifluoro­ethyl­idene ligand, see: Shepard & Wentworth (1967[Shepard, R. A. & Wentworth, S. E. (1967). J. Org. Chem. 32, 3197-3199.]). For related structures, see: Che & Huang (2002[Che, C.-M. & Huang, J.-S. (2002). Coord. Chem. Rev. 231, 151-164.]); Li et al. (2004[Li, Y., Huang, J.-S., Xu, G.-B., Zhu, N., Zhou, Z.-Y., Che, C.-M. & Wong, K.-Y. (2004). Chem. Eur. J. 10, 3486-3502.]); Wada et al. (2008[Wada, S., Shimomura, M., Kikuchi, T., Yuge, H. & Miyamoto, T. K. (2008). J. Porphyrins Phthalocyanines, 12, 35-48.]). For C—H⋯π inter­actions, see: Hunter et al. (2001[Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C44H28N4)(C8H5F3)]

  • Mr = 871.89

  • Triclinic, [P \overline 1]

  • a = 11.131 (1) Å

  • b = 12.634 (2) Å

  • c = 15.749 (2) Å

  • α = 101.713 (9)°

  • β = 110.133 (8)°

  • γ = 102.15 (1)°

  • V = 1939.2 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 296 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • Absorption correction: none

  • 9374 measured reflections

  • 8916 independent reflections

  • 7578 reflections with I > 2σ(I)

  • Rint = 0.017

  • 3 standard reflections every 150 reflections intensity decay: 3.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.077

  • S = 1.03

  • 8916 reflections

  • 541 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected interatomic distances (Å)

H37⋯C3i 2.79
H37⋯C4i 2.72
H38⋯C1i 2.86
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993[Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.]); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: CrystalStructure (Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ruthenium(II)-porphyrin-carbene complexes have been studied as effective and stereoselective catalysts for cyclopropanation or epoxidation of some alkenes (Che & Huang, 2002). In order to improve their robustness, activity or selectivity toward the reactions a number of compounds have been invented and applied for the reactions under different conditions (Li et al., 2004; Wada et al., 2008). It is important to introduce fluorine atom(s) for a tuning of the catalysts, taking advantage of its high electronegativity (Seebach, 1990). Surveying the carbene complexes of transition metals, few crystal structures of fluorinated alkylidene complexes have been known, especially in that fluorine atom(s) is attached to the β-carbon atom adjacent to the carbene carbon (α-carbon) atom. With ruthenium(II)-tetraphenylporphyrinate (tpp), we have prepared a highly stable fluorinated alkylidene complex [Ru(tpp){C(CF3)Ph}] (I), and present here its X-ray structure that features the trifluoromethyl group attached to the carbene carbon atom directly.

As shown in Fig. 1, the five-coordinate ruthenium atom is bound to the carbene carbon atom to which the phenyl and trifluoromethyl groups are attached, lying in a distorted square-pyramidal geometry in (I). There seems to be no remarkable difference in the bond lengths and angles about the carbene carbon atom, compared with those for the five-coordinate ruthenium(II)-porphyrin analogs reported so far, in the ranges 1.82–1.87 Å and 111–118° (Li et al., 2004; Wada et al., 2008). The porphyrin core in (I) is deformed in domed conformation with maximum and minimum deviations from the C20N4 least-squares plane of 0.205 (2) and -0.209 (2) Å for N1 and C17, respectively. The trifluoromethyl group has so large van der Waals radius (2.7 Å) (Seebach, 1990) that the steric repulsion toward the porphyrin core would affect some structural features. The ruthenium atom is situated at 0.3301 (5) Å out of the C20N4 least-squares plane toward the carbene moiety in (I), while the displacements are 0.216 (2)–0.287 (1) Å in other tetraphenyl- or tetra(p-tolyl)porphyrin complexes (Wada et al., 2008). In addition, the RuC45 bond is slightly tilted from the normal to the C20N4 least-squares plane, as indicated by the larger C45Ru—N1 angle [97.70 (8)°] than the C45Ru—N3 [93.42 (8)°]. The projection of the phenyl and trifluoromethyl groups of the carbene ligand on to the porphyrin plane shows an eclipsed configuration with regard to the Ru—N bonds.

In the unit cell a pair of the porphyrin cores of [Ru(tpp){C(CF3)Ph}] are arranged facing each other across an inversion center with a distance of ca 4.0 Å, which is too far for the face-to-face aromatic interaction. The closer distances might suggest CH···π interactions between the porphrin core and two H atoms of the phenyl group at meso-position of the neighboring porphyrin (Table 1; Hunter et al., 2001).

Related literature top

For background on fluorine chemistry, see: Seebach (1990). For the preparation of the precursor of the 1-phenyl-2,2,2-trifluoroethylidene ligand, see: Shepard & Wentworth (1967). For related structures, see: Che & Huang (2002); Li et al. (2004); Wada et al. (2008). For CH···π interactions, see: Hunter et al. (2001).

Experimental top

The carbene precursor, 1-phenyl-2,2,2-trifluorodiazoethane, was prepared according to lit. (Shepard & Wentworth, 1967). To an octane solution (50 ml) of [Ru(tpp)(CO)] (204 mg, 0.275 mmol) added an octane solution (10 ml) of 1-phenyl-2,2,2-trifluorodiazoethane (62 mg, 0.333 mmol) under nitrogen atmosphere with refluxing for 4 h. After removal of the volatiles in vacuo, the residue was chromatographed on a silica-gel column with dichloromethane/hexane mixture (v/v, 1/1). An intense red band was collected and evaporated to dryness. Recrystallization from a dichloromethane/hexane solution gave air-stable dark red crystals of (I) (yield, 133 mg, 0.153 mmol, 55%). Up to 450 K the compound [Ru(tpp){C(CF3)Ph}] blackened and decomposed in air, but under reduced pressure (ca 10 Pa) it sublimed above 510 K. Spectroscopic analysis: 1H NMR (CDCl3, 500 MHz, δ, p.p.m.): 8.52 (s, 8H), 8.06–7.98 (m, 8H), 7.75–7.66 (m, 12H), 6.62 (t, J = 7.8, 1H), 6.21 (t, J = 7.8 Hz, 2H), 2.99 (d, J = 7.8 Hz, 2H), 19F{1H} NMR (CDCl3, 470 MHz, δ, p.p.m.): -69.1 (s); SIMS: m/z = 872 [M]+, UV/Vis (CH2Cl2): λmax (log ε) 403 (5.15), 536 (3.93) nm.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level. All H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A unit-cell packing of (I). The possible CH···π interactions are drawn by dashed lines. [Symmetry code: (i) 1-x, 1-y, 1-z.]
(5,10,15,20-tetraphenylporphyrinato-κ4N)(2,2,2-trifluoro-1- phenylethylidene-κC1)ruthenium(II) top
Crystal data top
[Ru(C44H28N4)(C8H5F3)]Z = 2
Mr = 871.89F(000) = 888
Triclinic, P1Dx = 1.493 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 11.131 (1) ÅCell parameters from 25 reflections
b = 12.634 (2) Åθ = 14.9–15.0°
c = 15.749 (2) ŵ = 0.46 mm1
α = 101.713 (9)°T = 296 K
β = 110.133 (8)°Prism, dark red
γ = 102.15 (1)°0.20 × 0.20 × 0.20 mm
V = 1939.2 (5) Å3
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.017
Radiation source: rotating Mo anodeθmax = 27.5°, θmin = 2.6°
Graphite monochromatorh = 140
ω/2θ scansk = 1616
9374 measured reflectionsl = 1920
8916 independent reflections3 standard reflections every 150 reflections
7578 reflections with I > 2σ(I) intensity decay: 3.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0315P)2 + P]
where P = (Fo2 + 2Fc2)/3
8916 reflections(Δ/σ)max = 0.001
541 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Ru(C44H28N4)(C8H5F3)]γ = 102.15 (1)°
Mr = 871.89V = 1939.2 (5) Å3
Triclinic, P1Z = 2
a = 11.131 (1) ÅMo Kα radiation
b = 12.634 (2) ŵ = 0.46 mm1
c = 15.749 (2) ÅT = 296 K
α = 101.713 (9)°0.20 × 0.20 × 0.20 mm
β = 110.133 (8)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.017
9374 measured reflections3 standard reflections every 150 reflections
8916 independent reflections intensity decay: 3.5%
7578 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
8916 reflectionsΔρmin = 0.46 e Å3
541 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru0.471753 (17)0.400275 (13)0.271619 (12)0.02657 (5)
F10.3640 (2)0.24901 (18)0.04049 (12)0.0786 (6)
F20.22719 (18)0.18331 (13)0.09802 (13)0.0689 (5)
F30.1734 (2)0.27779 (16)0.00105 (12)0.0851 (7)
N10.48801 (17)0.23935 (14)0.24134 (12)0.0294 (4)
N20.63417 (17)0.45653 (14)0.24213 (12)0.0299 (4)
N30.48445 (17)0.56603 (14)0.32700 (12)0.0298 (4)
N40.35981 (17)0.35415 (14)0.34439 (12)0.0298 (4)
C10.4225 (2)0.14717 (17)0.26053 (15)0.0316 (4)
C20.4644 (2)0.05090 (18)0.23099 (17)0.0377 (5)
H20.43450.02130.23570.045*
C30.5547 (2)0.08434 (18)0.19533 (16)0.0361 (5)
H30.59850.03950.17080.043*
C40.5711 (2)0.20292 (17)0.20232 (15)0.0307 (4)
C50.6656 (2)0.27158 (17)0.18138 (15)0.0315 (4)
C60.6940 (2)0.38916 (18)0.19976 (15)0.0319 (4)
C70.7891 (2)0.45943 (19)0.17640 (17)0.0387 (5)
H70.84230.43520.14700.046*
C80.7876 (2)0.56714 (19)0.20473 (17)0.0395 (5)
H80.84040.63060.19900.047*
C90.6906 (2)0.56663 (17)0.24508 (15)0.0321 (4)
C100.6577 (2)0.66209 (17)0.28066 (15)0.0324 (4)
C110.5596 (2)0.66036 (17)0.31677 (15)0.0322 (4)
C120.5197 (2)0.75756 (18)0.34796 (17)0.0399 (5)
H120.55360.83090.34690.048*
C130.4246 (2)0.72243 (18)0.37877 (17)0.0396 (5)
H130.37970.76690.40240.048*
C140.4047 (2)0.60352 (17)0.36877 (15)0.0323 (4)
C150.3193 (2)0.53684 (18)0.39806 (15)0.0318 (4)
C160.3048 (2)0.42202 (18)0.39022 (15)0.0325 (4)
C170.2271 (2)0.3562 (2)0.42782 (18)0.0414 (5)
H170.18230.38270.46360.050*
C180.2304 (2)0.2485 (2)0.40216 (18)0.0417 (5)
H180.18720.18720.41620.050*
C190.3125 (2)0.24602 (18)0.34939 (16)0.0326 (4)
C200.3387 (2)0.14895 (17)0.30846 (15)0.0324 (4)
C210.7482 (2)0.21607 (17)0.14047 (16)0.0326 (4)
C220.6894 (2)0.1358 (2)0.05146 (17)0.0408 (5)
H220.59740.11640.01610.049*
C230.7674 (3)0.0847 (2)0.01522 (19)0.0500 (6)
H230.72730.03080.04420.060*
C240.9036 (3)0.1132 (2)0.0667 (2)0.0520 (7)
H240.95550.07920.04180.062*
C250.9633 (3)0.1925 (2)0.1554 (2)0.0489 (6)
H251.05540.21190.19030.059*
C260.8858 (2)0.2429 (2)0.19212 (17)0.0400 (5)
H260.92620.29550.25220.048*
C270.7324 (2)0.77578 (18)0.28066 (17)0.0356 (5)
C280.7179 (3)0.8016 (2)0.19709 (19)0.0444 (6)
H280.66280.74690.13930.053*
C290.7850 (3)0.9086 (2)0.1989 (2)0.0539 (7)
H290.77580.92480.14240.065*
C300.8646 (3)0.9902 (2)0.2837 (2)0.0583 (8)
H300.90861.06200.28480.070*
C310.8792 (3)0.9664 (2)0.3666 (2)0.0583 (7)
H310.93281.02230.42410.070*
C320.8145 (3)0.8591 (2)0.36579 (19)0.0481 (6)
H320.82630.84320.42270.058*
C330.2382 (2)0.59080 (18)0.44118 (15)0.0323 (4)
C340.0990 (2)0.5541 (2)0.39707 (18)0.0408 (5)
H340.05640.49580.34010.049*
C350.0225 (2)0.6028 (2)0.43629 (19)0.0460 (6)
H350.07080.57620.40630.055*
C360.0845 (3)0.6905 (2)0.51967 (19)0.0451 (6)
H360.03330.72390.54580.054*
C370.2227 (3)0.7289 (2)0.56426 (18)0.0444 (6)
H370.26470.78830.62060.053*
C380.2992 (2)0.6791 (2)0.52544 (16)0.0391 (5)
H380.39240.70510.55620.047*
C390.2704 (2)0.03916 (18)0.31815 (18)0.0381 (5)
C400.1691 (3)0.0434 (2)0.2397 (2)0.0515 (6)
H400.14570.03230.18020.062*
C410.1022 (3)0.1432 (2)0.2495 (3)0.0689 (9)
H410.03440.19870.19650.083*
C420.1356 (4)0.1602 (3)0.3369 (3)0.0776 (11)
H420.09020.22700.34310.093*
C430.2352 (4)0.0792 (3)0.4144 (3)0.0702 (10)
H430.25710.09070.47370.084*
C440.3045 (3)0.0206 (2)0.4057 (2)0.0542 (7)
H440.37370.07490.45890.065*
C450.3393 (2)0.38402 (18)0.15662 (15)0.0330 (4)
C460.2869 (3)0.4779 (2)0.13103 (17)0.0445 (6)
C470.3502 (4)0.5498 (3)0.0933 (2)0.0684 (9)
H470.42510.53960.08320.082*
C480.3010 (5)0.6381 (3)0.0703 (3)0.0933 (14)
H480.34410.68740.04580.112*
C490.1903 (6)0.6521 (4)0.0837 (3)0.1069 (17)
H490.15810.71090.06830.128*
C500.1267 (5)0.5808 (4)0.1193 (3)0.1007 (14)
H500.05040.59050.12730.121*
C510.1739 (3)0.4937 (3)0.1439 (3)0.0708 (9)
H510.13010.44580.16900.085*
C520.2759 (3)0.2741 (2)0.07449 (18)0.0488 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.02924 (9)0.02307 (8)0.02976 (9)0.00762 (6)0.01476 (6)0.00812 (6)
F10.0846 (13)0.1001 (15)0.0493 (10)0.0397 (12)0.0318 (10)0.0019 (9)
F20.0632 (11)0.0388 (8)0.0758 (12)0.0029 (8)0.0093 (9)0.0041 (8)
F30.0862 (13)0.0716 (12)0.0522 (10)0.0363 (11)0.0189 (9)0.0045 (9)
N10.0312 (9)0.0255 (8)0.0343 (9)0.0092 (7)0.0158 (7)0.0096 (7)
N20.0329 (9)0.0259 (8)0.0350 (9)0.0086 (7)0.0183 (8)0.0095 (7)
N30.0331 (9)0.0254 (8)0.0338 (9)0.0083 (7)0.0175 (8)0.0087 (7)
N40.0324 (9)0.0260 (8)0.0355 (9)0.0094 (7)0.0179 (8)0.0105 (7)
C10.0344 (11)0.0248 (10)0.0360 (11)0.0079 (8)0.0151 (9)0.0093 (8)
C20.0447 (13)0.0232 (10)0.0484 (13)0.0106 (9)0.0222 (11)0.0113 (9)
C30.0416 (12)0.0276 (10)0.0450 (12)0.0143 (9)0.0229 (10)0.0095 (9)
C40.0327 (10)0.0276 (10)0.0323 (10)0.0105 (8)0.0136 (9)0.0078 (8)
C50.0338 (11)0.0296 (10)0.0338 (11)0.0120 (8)0.0163 (9)0.0079 (8)
C60.0327 (11)0.0317 (10)0.0340 (11)0.0093 (9)0.0171 (9)0.0098 (9)
C70.0414 (12)0.0357 (11)0.0495 (13)0.0131 (10)0.0293 (11)0.0137 (10)
C80.0416 (12)0.0322 (11)0.0532 (14)0.0082 (9)0.0301 (11)0.0141 (10)
C90.0342 (11)0.0284 (10)0.0361 (11)0.0075 (8)0.0176 (9)0.0106 (9)
C100.0381 (11)0.0271 (10)0.0351 (11)0.0085 (9)0.0183 (9)0.0110 (8)
C110.0386 (11)0.0247 (10)0.0344 (11)0.0078 (8)0.0175 (9)0.0083 (8)
C120.0506 (14)0.0245 (10)0.0512 (14)0.0107 (10)0.0290 (12)0.0106 (9)
C130.0474 (13)0.0283 (11)0.0514 (14)0.0150 (10)0.0283 (11)0.0104 (10)
C140.0344 (11)0.0274 (10)0.0377 (11)0.0100 (8)0.0184 (9)0.0076 (8)
C150.0314 (10)0.0309 (10)0.0343 (11)0.0093 (8)0.0160 (9)0.0077 (8)
C160.0342 (11)0.0320 (11)0.0367 (11)0.0111 (9)0.0195 (9)0.0111 (9)
C170.0489 (14)0.0381 (12)0.0531 (14)0.0154 (10)0.0354 (12)0.0182 (11)
C180.0482 (14)0.0349 (12)0.0563 (15)0.0128 (10)0.0343 (12)0.0196 (11)
C190.0331 (11)0.0300 (10)0.0393 (11)0.0087 (8)0.0188 (9)0.0134 (9)
C200.0363 (11)0.0272 (10)0.0356 (11)0.0079 (8)0.0162 (9)0.0120 (8)
C210.0372 (11)0.0276 (10)0.0392 (11)0.0110 (9)0.0210 (10)0.0117 (9)
C220.0422 (13)0.0399 (12)0.0407 (12)0.0142 (10)0.0178 (11)0.0093 (10)
C230.0616 (17)0.0457 (14)0.0445 (14)0.0198 (13)0.0267 (13)0.0045 (11)
C240.0590 (16)0.0535 (15)0.0626 (17)0.0301 (13)0.0393 (15)0.0171 (13)
C250.0396 (13)0.0533 (15)0.0624 (17)0.0205 (12)0.0256 (12)0.0198 (13)
C260.0391 (12)0.0368 (12)0.0433 (13)0.0114 (10)0.0183 (10)0.0075 (10)
C270.0404 (12)0.0284 (10)0.0456 (12)0.0106 (9)0.0249 (10)0.0135 (9)
C280.0563 (15)0.0386 (13)0.0490 (14)0.0159 (11)0.0298 (12)0.0186 (11)
C290.0720 (19)0.0478 (15)0.0694 (18)0.0261 (14)0.0449 (16)0.0372 (14)
C300.0627 (18)0.0360 (13)0.093 (2)0.0142 (13)0.0442 (17)0.0323 (15)
C310.0586 (17)0.0326 (13)0.0690 (19)0.0003 (12)0.0201 (15)0.0102 (12)
C320.0553 (15)0.0366 (13)0.0484 (14)0.0045 (11)0.0211 (12)0.0141 (11)
C330.0338 (11)0.0309 (10)0.0382 (11)0.0118 (9)0.0198 (9)0.0114 (9)
C340.0374 (12)0.0358 (12)0.0467 (13)0.0083 (10)0.0198 (11)0.0054 (10)
C350.0333 (12)0.0520 (15)0.0566 (15)0.0133 (11)0.0226 (11)0.0163 (12)
C360.0513 (14)0.0486 (14)0.0538 (15)0.0249 (12)0.0351 (13)0.0185 (12)
C370.0533 (15)0.0452 (13)0.0389 (12)0.0176 (11)0.0247 (11)0.0077 (10)
C380.0362 (12)0.0424 (13)0.0380 (12)0.0132 (10)0.0155 (10)0.0086 (10)
C390.0440 (13)0.0278 (10)0.0543 (14)0.0130 (9)0.0296 (11)0.0171 (10)
C400.0497 (15)0.0358 (13)0.0686 (18)0.0077 (11)0.0285 (14)0.0125 (12)
C410.0570 (18)0.0348 (14)0.115 (3)0.0056 (13)0.0444 (19)0.0157 (16)
C420.087 (2)0.0402 (16)0.150 (4)0.0267 (17)0.083 (3)0.048 (2)
C430.105 (3)0.0600 (19)0.100 (3)0.046 (2)0.075 (2)0.054 (2)
C440.0735 (19)0.0410 (14)0.0622 (17)0.0212 (13)0.0368 (15)0.0242 (13)
C450.0350 (11)0.0344 (11)0.0320 (11)0.0102 (9)0.0159 (9)0.0110 (9)
C460.0549 (15)0.0376 (12)0.0338 (12)0.0156 (11)0.0078 (11)0.0124 (10)
C470.084 (2)0.0602 (18)0.0561 (18)0.0131 (17)0.0190 (16)0.0321 (15)
C480.132 (4)0.060 (2)0.068 (2)0.019 (2)0.012 (2)0.0407 (18)
C490.141 (4)0.064 (2)0.094 (3)0.053 (3)0.006 (3)0.029 (2)
C500.100 (3)0.088 (3)0.122 (4)0.066 (3)0.030 (3)0.035 (3)
C510.074 (2)0.065 (2)0.090 (2)0.0413 (18)0.0342 (19)0.0320 (18)
C520.0496 (15)0.0482 (15)0.0396 (13)0.0197 (12)0.0091 (11)0.0055 (11)
Geometric parameters (Å, º) top
Ru—C451.838 (2)C23—H230.9300
Ru—N12.053 (2)C24—C251.382 (4)
Ru—N22.040 (2)C24—H240.9300
Ru—N32.053 (2)C25—C261.382 (3)
Ru—N42.038 (2)C25—H250.9300
F1—C521.331 (3)C26—H260.9300
F2—C521.341 (3)C27—C281.384 (3)
F3—C521.333 (3)C27—C321.386 (3)
N1—C41.378 (3)C28—C291.390 (3)
N1—C11.384 (3)C28—H280.9300
N2—C91.385 (3)C29—C301.369 (4)
N2—C61.388 (3)C29—H290.9300
N3—C111.377 (3)C30—C311.362 (4)
N3—C141.378 (3)C30—H300.9300
N4—C161.380 (3)C31—C321.390 (3)
N4—C191.385 (3)C31—H310.9300
C1—C201.388 (3)C32—H320.9300
C1—C21.439 (3)C33—C341.387 (3)
C2—C31.346 (3)C33—C381.388 (3)
C2—H20.9300C34—C351.383 (3)
C3—C41.447 (3)C34—H340.9300
C3—H30.9300C35—C361.376 (4)
C4—C51.393 (3)C35—H350.9300
C5—C61.398 (3)C36—C371.377 (4)
C5—C211.499 (3)C36—H360.9300
C6—C71.432 (3)C37—C381.387 (3)
C7—C81.349 (3)C37—H370.9300
C7—H70.9300C38—H380.9300
C8—C91.428 (3)C39—C401.382 (4)
C8—H80.9300C39—C441.382 (4)
C9—C101.398 (3)C40—C411.390 (4)
C10—C111.392 (3)C40—H400.9300
C10—C271.501 (3)C41—C421.370 (5)
C11—C121.443 (3)C41—H410.9300
C12—C131.340 (3)C42—C431.360 (5)
C12—H120.9300C42—H420.9300
C13—C141.439 (3)C43—C441.392 (4)
C13—H130.9300C43—H430.9300
C14—C151.396 (3)C44—H440.9300
C15—C161.400 (3)C45—C461.494 (3)
C15—C331.495 (3)C45—C521.526 (3)
C16—C171.428 (3)C46—C471.383 (4)
C17—C181.350 (3)C46—C511.389 (4)
C17—H170.9300C47—C481.401 (5)
C18—C191.433 (3)C47—H470.9300
C18—H180.9300C48—C491.359 (6)
C19—C201.401 (3)C48—H480.9300
C20—C391.499 (3)C49—C501.356 (7)
C21—C221.390 (3)C49—H490.9300
C21—C261.391 (3)C50—C511.383 (5)
C22—C231.387 (3)C50—H500.9300
C22—H220.9300C51—H510.9300
C23—C241.376 (4)
H37···C3i2.79H38···C1i2.86
H37···C4i2.72
C45—Ru—N4100.99 (8)C23—C24—C25120.0 (2)
C45—Ru—N298.27 (8)C23—C24—H24120.0
N4—Ru—N2160.70 (7)C25—C24—H24120.0
C45—Ru—N197.70 (8)C24—C25—C26119.8 (2)
N4—Ru—N189.42 (7)C24—C25—H25120.1
N2—Ru—N189.28 (7)C26—C25—H25120.1
C45—Ru—N393.42 (9)C25—C26—C21120.9 (2)
N4—Ru—N388.58 (7)C25—C26—H26119.5
N2—Ru—N389.01 (7)C21—C26—H26119.5
N1—Ru—N3168.88 (7)C28—C27—C32118.5 (2)
C4—N1—C1106.29 (17)C28—C27—C10121.5 (2)
C4—N1—Ru126.95 (14)C32—C27—C10119.9 (2)
C1—N1—Ru126.68 (14)C27—C28—C29120.5 (3)
C9—N2—C6106.62 (17)C27—C28—H28119.7
C9—N2—Ru126.37 (14)C29—C28—H28119.7
C6—N2—Ru126.16 (13)C30—C29—C28120.1 (3)
C11—N3—C14106.12 (17)C30—C29—H29119.9
C11—N3—Ru126.55 (14)C28—C29—H29119.9
C14—N3—Ru126.65 (14)C31—C30—C29120.1 (2)
C16—N4—C19106.40 (17)C31—C30—H30120.0
C16—N4—Ru126.59 (14)C29—C30—H30120.0
C19—N4—Ru126.71 (14)C30—C31—C32120.4 (3)
N1—C1—C20125.66 (19)C30—C31—H31119.8
N1—C1—C2109.44 (18)C32—C31—H31119.8
C20—C1—C2124.67 (19)C27—C32—C31120.4 (3)
C3—C2—C1107.56 (19)C27—C32—H32119.8
C3—C2—H2126.2C31—C32—H32119.8
C1—C2—H2126.2C34—C33—C38118.2 (2)
C2—C3—C4107.30 (19)C34—C33—C15120.5 (2)
C2—C3—H3126.3C38—C33—C15121.36 (19)
C4—C3—H3126.3C35—C34—C33121.2 (2)
N1—C4—C5125.50 (18)C35—C34—H34119.4
N1—C4—C3109.39 (18)C33—C34—H34119.4
C5—C4—C3124.84 (19)C36—C35—C34119.9 (2)
C4—C5—C6125.03 (19)C36—C35—H35120.0
C4—C5—C21117.48 (18)C34—C35—H35120.0
C6—C5—C21117.42 (18)C35—C36—C37119.8 (2)
N2—C6—C5126.04 (19)C35—C36—H36120.1
N2—C6—C7108.92 (18)C37—C36—H36120.1
C5—C6—C7125.0 (2)C36—C37—C38120.2 (2)
C8—C7—C6107.54 (19)C36—C37—H37119.9
C8—C7—H7126.2C38—C37—H37119.9
C6—C7—H7126.2C37—C38—C33120.7 (2)
C7—C8—C9108.05 (19)C37—C38—H38119.6
C7—C8—H8126.0C33—C38—H38119.6
C9—C8—H8126.0C40—C39—C44119.1 (2)
N2—C9—C10125.95 (19)C40—C39—C20120.1 (2)
N2—C9—C8108.87 (18)C44—C39—C20120.7 (2)
C10—C9—C8125.18 (19)C39—C40—C41120.0 (3)
C11—C10—C9124.88 (19)C39—C40—H40120.0
C11—C10—C27116.57 (19)C41—C40—H40120.0
C9—C10—C27118.55 (19)C42—C41—C40120.4 (3)
N3—C11—C10125.57 (19)C42—C41—H41119.8
N3—C11—C12109.51 (18)C40—C41—H41119.8
C10—C11—C12124.92 (19)C43—C42—C41119.9 (3)
C13—C12—C11107.20 (19)C43—C42—H42120.1
C13—C12—H12126.4C41—C42—H42120.1
C11—C12—H12126.4C42—C43—C44120.5 (3)
C12—C13—C14107.6 (2)C42—C43—H43119.7
C12—C13—H13126.2C44—C43—H43119.7
C14—C13—H13126.2C39—C44—C43120.0 (3)
N3—C14—C15125.25 (19)C39—C44—H44120.0
N3—C14—C13109.39 (18)C43—C44—H44120.0
C15—C14—C13125.4 (2)C46—C45—C52112.38 (19)
C14—C15—C16124.24 (19)C46—C45—Ru124.10 (16)
C14—C15—C33118.35 (19)C52—C45—Ru123.44 (17)
C16—C15—C33117.40 (18)C47—C46—C51119.1 (3)
N4—C16—C15126.30 (19)C47—C46—C45120.2 (3)
N4—C16—C17109.27 (18)C51—C46—C45120.7 (2)
C15—C16—C17124.4 (2)C46—C47—C48119.7 (4)
C18—C17—C16107.7 (2)C46—C47—H47120.2
C18—C17—H17126.1C48—C47—H47120.2
C16—C17—H17126.1C49—C48—C47120.2 (4)
C17—C18—C19107.39 (19)C49—C48—H48119.9
C17—C18—H18126.3C47—C48—H48119.9
C19—C18—H18126.3C50—C49—C48120.3 (4)
N4—C19—C20125.80 (19)C50—C49—H49119.8
N4—C19—C18109.13 (18)C48—C49—H49119.8
C20—C19—C18125.06 (19)C49—C50—C51120.9 (4)
C1—C20—C19125.15 (19)C49—C50—H50119.5
C1—C20—C39118.16 (19)C51—C50—H50119.5
C19—C20—C39116.69 (19)C50—C51—C46119.8 (4)
C22—C21—C26118.6 (2)C50—C51—H51120.1
C22—C21—C5121.1 (2)C46—C51—H51120.1
C26—C21—C5120.2 (2)F1—C52—F3106.0 (2)
C23—C22—C21120.3 (2)F1—C52—F2106.0 (2)
C23—C22—H22119.9F3—C52—F2105.4 (2)
C21—C22—H22119.9F1—C52—C45111.8 (2)
C24—C23—C22120.4 (2)F3—C52—C45113.4 (2)
C24—C23—H23119.8F2—C52—C45113.6 (2)
C22—C23—H23119.8
C45—Ru—N1—C489.58 (18)C14—C15—C16—N47.3 (4)
N4—Ru—N1—C4169.41 (17)C33—C15—C16—N4173.1 (2)
N2—Ru—N1—C48.66 (17)C14—C15—C16—C17174.0 (2)
N3—Ru—N1—C489.8 (4)C33—C15—C16—C175.6 (3)
C45—Ru—N1—C193.94 (18)N4—C16—C17—C182.3 (3)
N4—Ru—N1—C17.07 (18)C15—C16—C17—C18176.6 (2)
N2—Ru—N1—C1167.82 (18)C16—C17—C18—C191.0 (3)
N3—Ru—N1—C186.7 (4)C16—N4—C19—C20177.2 (2)
C45—Ru—N2—C981.26 (18)Ru—N4—C19—C203.2 (3)
N4—Ru—N2—C994.9 (3)C16—N4—C19—C181.9 (2)
N1—Ru—N2—C9178.93 (18)Ru—N4—C19—C18175.98 (15)
N3—Ru—N2—C912.06 (18)C17—C18—C19—N40.6 (3)
C45—Ru—N2—C686.67 (18)C17—C18—C19—C20178.6 (2)
N4—Ru—N2—C697.2 (2)N1—C1—C20—C193.5 (4)
N1—Ru—N2—C611.00 (17)C2—C1—C20—C19170.4 (2)
N3—Ru—N2—C6179.99 (18)N1—C1—C20—C39176.8 (2)
C45—Ru—N3—C1184.89 (19)C2—C1—C20—C399.4 (3)
N4—Ru—N3—C11174.18 (18)N4—C19—C20—C13.7 (4)
N2—Ru—N3—C1113.33 (18)C18—C19—C20—C1177.3 (2)
N1—Ru—N3—C1194.5 (4)N4—C19—C20—C39176.6 (2)
C45—Ru—N3—C1484.30 (19)C18—C19—C20—C392.5 (3)
N4—Ru—N3—C1416.63 (18)C4—C5—C21—C2265.4 (3)
N2—Ru—N3—C14177.48 (18)C6—C5—C21—C22117.6 (2)
N1—Ru—N3—C1496.3 (4)C4—C5—C21—C26113.5 (2)
C45—Ru—N4—C1682.03 (19)C6—C5—C21—C2663.5 (3)
N2—Ru—N4—C1694.1 (3)C26—C21—C22—C230.5 (3)
N1—Ru—N4—C16179.75 (18)C5—C21—C22—C23179.4 (2)
N3—Ru—N4—C1611.18 (18)C21—C22—C23—C240.4 (4)
C45—Ru—N4—C1990.84 (19)C22—C23—C24—C250.6 (4)
N2—Ru—N4—C1993.0 (3)C23—C24—C25—C260.0 (4)
N1—Ru—N4—C196.89 (18)C24—C25—C26—C210.8 (4)
N3—Ru—N4—C19175.96 (18)C22—C21—C26—C251.0 (4)
C4—N1—C1—C20173.6 (2)C5—C21—C26—C25180.0 (2)
Ru—N1—C1—C203.5 (3)C11—C10—C27—C28112.4 (3)
C4—N1—C1—C21.1 (2)C9—C10—C27—C2867.6 (3)
Ru—N1—C1—C2178.15 (14)C11—C10—C27—C3265.2 (3)
N1—C1—C2—C30.6 (3)C9—C10—C27—C32114.8 (3)
C20—C1—C2—C3174.1 (2)C32—C27—C28—C290.4 (4)
C1—C2—C3—C40.2 (3)C10—C27—C28—C29178.0 (2)
C1—N1—C4—C5173.0 (2)C27—C28—C29—C301.1 (4)
Ru—N1—C4—C54.0 (3)C28—C29—C30—C310.7 (4)
C1—N1—C4—C31.2 (2)C29—C30—C31—C320.4 (5)
Ru—N1—C4—C3178.23 (14)C28—C27—C32—C310.7 (4)
C2—C3—C4—N10.8 (3)C10—C27—C32—C31177.0 (2)
C2—C3—C4—C5173.4 (2)C30—C31—C32—C271.1 (5)
N1—C4—C5—C62.3 (4)C14—C15—C33—C34116.4 (2)
C3—C4—C5—C6171.1 (2)C16—C15—C33—C3464.0 (3)
N1—C4—C5—C21179.02 (19)C14—C15—C33—C3863.1 (3)
C3—C4—C5—C215.7 (3)C16—C15—C33—C38116.6 (2)
C9—N2—C6—C5179.2 (2)C38—C33—C34—C350.9 (4)
Ru—N2—C6—C59.3 (3)C15—C33—C34—C35179.7 (2)
C9—N2—C6—C70.1 (2)C33—C34—C35—C361.2 (4)
Ru—N2—C6—C7169.97 (15)C34—C35—C36—C370.6 (4)
C4—C5—C6—N20.6 (4)C35—C36—C37—C380.1 (4)
C21—C5—C6—N2176.2 (2)C36—C37—C38—C330.4 (4)
C4—C5—C6—C7178.6 (2)C34—C33—C38—C370.1 (4)
C21—C5—C6—C74.6 (3)C15—C33—C38—C37179.5 (2)
N2—C6—C7—C80.4 (3)C1—C20—C39—C4070.2 (3)
C5—C6—C7—C8179.7 (2)C19—C20—C39—C40110.1 (3)
C6—C7—C8—C90.8 (3)C1—C20—C39—C44112.1 (3)
C6—N2—C9—C10178.8 (2)C19—C20—C39—C4467.7 (3)
Ru—N2—C9—C108.9 (3)C44—C39—C40—C410.5 (4)
C6—N2—C9—C80.6 (2)C20—C39—C40—C41177.3 (2)
Ru—N2—C9—C8170.43 (15)C39—C40—C41—C420.3 (4)
C7—C8—C9—N20.9 (3)C40—C41—C42—C430.3 (5)
C7—C8—C9—C10178.5 (2)C41—C42—C43—C440.5 (5)
N2—C9—C10—C111.7 (4)C40—C39—C44—C431.3 (4)
C8—C9—C10—C11177.6 (2)C20—C39—C44—C43176.5 (2)
N2—C9—C10—C27178.2 (2)C42—C43—C44—C391.4 (5)
C8—C9—C10—C272.5 (3)N4—Ru—C45—C4693.0 (2)
C14—N3—C11—C10177.5 (2)N2—Ru—C45—C4685.7 (2)
Ru—N3—C11—C1011.5 (3)N1—Ru—C45—C46176.11 (19)
C14—N3—C11—C123.4 (2)N3—Ru—C45—C463.8 (2)
Ru—N3—C11—C12167.60 (15)N4—Ru—C45—C5290.6 (2)
C9—C10—C11—N33.1 (4)N2—Ru—C45—C5290.7 (2)
C27—C10—C11—N3176.9 (2)N1—Ru—C45—C520.3 (2)
C9—C10—C11—C12175.9 (2)N3—Ru—C45—C52179.79 (19)
C27—C10—C11—C124.1 (3)C52—C45—C46—C4790.1 (3)
N3—C11—C12—C131.6 (3)Ru—C45—C46—C4786.7 (3)
C10—C11—C12—C13179.3 (2)C52—C45—C46—C5189.3 (3)
C11—C12—C13—C140.8 (3)Ru—C45—C46—C5193.9 (3)
C11—N3—C14—C15175.3 (2)C51—C46—C47—C481.1 (5)
Ru—N3—C14—C1513.8 (3)C45—C46—C47—C48179.5 (3)
C11—N3—C14—C133.9 (2)C46—C47—C48—C491.0 (6)
Ru—N3—C14—C13167.09 (15)C47—C48—C49—C500.0 (7)
C12—C13—C14—N33.0 (3)C48—C49—C50—C510.9 (7)
C12—C13—C14—C15176.2 (2)C49—C50—C51—C460.8 (6)
N3—C14—C15—C161.1 (4)C47—C46—C51—C500.3 (5)
C13—C14—C15—C16177.9 (2)C45—C46—C51—C50179.7 (3)
N3—C14—C15—C33179.2 (2)C46—C45—C52—F1110.7 (2)
C13—C14—C15—C331.7 (3)Ru—C45—C52—F166.1 (3)
C19—N4—C16—C15176.3 (2)C46—C45—C52—F39.1 (3)
Ru—N4—C16—C152.3 (3)Ru—C45—C52—F3174.08 (19)
C19—N4—C16—C172.6 (2)C46—C45—C52—F2129.5 (2)
Ru—N4—C16—C17176.62 (15)Ru—C45—C52—F253.7 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ru(C44H28N4)(C8H5F3)]
Mr871.89
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.131 (1), 12.634 (2), 15.749 (2)
α, β, γ (°)101.713 (9), 110.133 (8), 102.15 (1)
V3)1939.2 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9374, 8916, 7578
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.077, 1.03
No. of reflections8916
No. of parameters541
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.46

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993), CrystalStructure (Rigaku/MSC, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected interatomic distances (Å) top
H37···C3i2.79H38···C1i2.86
H37···C4i2.72
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationChe, C.-M. & Huang, J.-S. (2002). Coord. Chem. Rev. 231, 151–164.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.  Web of Science CrossRef Google Scholar
First citationLi, Y., Huang, J.-S., Xu, G.-B., Zhu, N., Zhou, Z.-Y., Che, C.-M. & Wong, K.-Y. (2004). Chem. Eur. J. 10, 3486–3502.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMolecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSeebach, D. (1990). Angew. Chem. Int. Ed. Engl. 29, 1320–1367.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShepard, R. A. & Wentworth, S. E. (1967). J. Org. Chem. 32, 3197–3199.  CrossRef CAS Web of Science Google Scholar
First citationWada, S., Shimomura, M., Kikuchi, T., Yuge, H. & Miyamoto, T. K. (2008). J. Porphyrins Phthalocyanines, 12, 35–48.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds