organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E,E)-1,5-Di-2-thienylpenta-1,4-dien-3-one

aDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, bDepartment of Physics, SMK Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and dDepartment of Analytical Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: a_spandian@yahoo.com

(Received 30 July 2008; accepted 18 August 2008; online 23 August 2008)

In the title compound, C13H10OS2, the dihedral angle between the thio­phene rings is 14.3 (1)°. The mol­ecular structure is stabilized by C—H⋯π inter­actions between a thio­phene H atom and an adjacent thio­phene ring, and by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the bioactivity of chalcones, see: Go et al. (2005[Go, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem. 12, 483-499.]). For uses in organic solid-state photochemistry, see: Gould et al. (1995[Gould, B. S., Panneerelvam, K., Zacharias, D. E. & Desiraju, G. R. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 325-330.]); For a related structure, see: Arshad et al. (2008[Arshad, M. N., Tahir, M. N., Asghar, M. N., Khan, I. U. & Ashfaq, M. (2008). Acta Cryst. E64, o1413.]). For the non-linear optical properties of bis-chalcones, see: Uchida et al. (1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10OS2

  • Mr = 246.35

  • Orthorhombic, P b c a

  • a = 12.1141 (4) Å

  • b = 7.4449 (3) Å

  • c = 27.246 (1) Å

  • V = 2457.27 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 (2) K

  • 0.26 × 0.15 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.984, Tmax = 0.987

  • 13976 measured reflections

  • 2373 independent reflections

  • 1719 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.210

  • S = 1.01

  • 2373 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.93 2.47 3.374 (5) 165
C13—H13⋯O1ii 0.93 2.33 3.255 (4) 171
C11—H11⋯Cgiii 0.93 3.12 3.936 (5) 148
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]. Cg is the centroid of the C10/C11/C12/C13/S1 thio­phene ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Chalcones with the general formula Ar—CHCH—CO—Ar are an important class of compounds, with the common structural entity being the central –CHCH—C(O)- group, in the H atoms can be substituted. The –CC– double bond can be photoreactive and can produce various products through solid-state photo cycloaddition. Therefore, chalcones are widely used in organic solid-state photochemistry (Gould et al., 1995). Reviews on the bioactivities of various chalcones have been reported (Go et al., 2005). Bis-chalcones are also found to exhibit good NLO properties (Uchida et al., 1998). In view of this biological importance, the crystal structure of the title compound (I), (1E, 4E)-1,5-Bis(2-thienyl)penta-1,4-dien-3-one (Fig. 1) has been determined and the results are presented here.

Compound (I) consists of two thiophene rings A and B. The central position of (I) shows double and single bonds orientating from O1 atom and five C atom behave like a backbone. The planarities of rings A and B are fairly good. The bond lengths in the (I) are normal and comparable with the corresponding values observed in the related structure (Arshad et al., 2008). The dihedral angle between the two thiophene rings is 14.3 (1)°. The crystal packing (Fig. 2) is stabilized by C—H···π interactions between a thiophene H atom and a neighbouring thiophene ring, with a C11—H11···Cgiii separetion of 2.34 Å (Fig. 2 and Table 1; Cg is the centroid of the C10/C11/C12/C13/S1 thiophene ring, symmetry code as in Fig. 2). The molecular packing is further stabilized by intermolecular C—H···O hydrogen bonds (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Related literature top

For the bioactivity of the chalcones, see: Go et al. (2005); For uses in organic solid-state photochemistry, see: Gould et al. (1995); For related structures, see: Arshad et al. (2008). For the non-linear optical properties of bis-chalcones, see: Uchida et al. (1998). Cg is the centroid of the C10/C11/C12/C13/S1 thiophene ring.

Experimental top

A solution of sodium hydroxide (10 g, 0.25 mol) in water (50 ml) was added to a solution of acetone (5 ml) and 2-thiophenecarboxaldehyde (22.4 g, 0.2 mol) in methanol (50 ml) at 273 K. This mixture was stirred overnight and the product was filtered. Single crystals suitable for X-ray diffraction was obtained by slow evaporation of a solution of the title compound in ethyl acetate.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent atoms, with N—H=0.86Å and C—H= 0.93–0.98Å with Uiso(H)= 1.5Ueq(methyl H) and 1.2Ueq(for other H atoms).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. C—H···π and C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry code: (i) x-1/2, -y+1/2, -z+1; (ii)x-1/2, y, -z+1/2; (iii) x-1/2, y, -z+1/2; (iv) -x+3/2, y-1/2, z; (v)-x+1, y+1/2, -z+1/2.]
(E,E)-1,5-Di-2-thienylpenta-1,4-dien-3-one top
Crystal data top
C13H10OS2F(000) = 1024
Mr = 246.35Dx = 1.332 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 10259 reflections
a = 12.1141 (4) Åθ = 2.3–30.3°
b = 7.4449 (3) ŵ = 0.41 mm1
c = 27.246 (1) ÅT = 293 K
V = 2457.27 (16) Å3Block, colourless
Z = 80.26 × 0.15 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2373 independent reflections
Radiation source: fine-focus sealed tube1719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10 pixels mm-1θmax = 26.0°, θmin = 1.5°
ω scansh = 1114
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 79
Tmin = 0.984, Tmax = 0.987l = 3231
13976 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1295P)2 + 1.4091P]
where P = (Fo2 + 2Fc2)/3
2373 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C13H10OS2V = 2457.27 (16) Å3
Mr = 246.35Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.1141 (4) ŵ = 0.41 mm1
b = 7.4449 (3) ÅT = 293 K
c = 27.246 (1) Å0.26 × 0.15 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2373 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1719 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.987Rint = 0.023
13976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 1.01Δρmax = 0.49 e Å3
2373 reflectionsΔρmin = 0.36 e Å3
145 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.52710 (7)0.54328 (13)0.23889 (4)0.0733 (4)
S20.53529 (8)0.23805 (14)0.51370 (4)0.0801 (4)
O10.82061 (18)0.5548 (4)0.38920 (9)0.0734 (7)
C10.5312 (3)0.2113 (6)0.57495 (18)0.0876 (13)
H10.47680.14550.59100.105*
C20.6135 (4)0.2934 (6)0.59817 (16)0.0907 (12)
H20.62090.29040.63210.109*
C30.6903 (3)0.3874 (5)0.56716 (12)0.0667 (9)
H30.75250.45070.57730.080*
C40.6519 (3)0.3642 (4)0.51665 (13)0.0612 (8)
C50.7055 (3)0.4350 (4)0.47339 (13)0.0610 (8)
H50.77550.48430.47740.073*
C60.6638 (3)0.4359 (4)0.42854 (13)0.0612 (8)
H60.59380.38810.42360.073*
C70.7236 (2)0.5093 (4)0.38617 (12)0.0573 (8)
C80.6611 (2)0.5283 (4)0.34019 (12)0.0594 (8)
H80.59010.48100.33840.071*
C90.7027 (2)0.6109 (4)0.30106 (12)0.0565 (7)
H90.77330.65830.30450.068*
C100.6513 (2)0.6354 (4)0.25413 (12)0.0536 (7)
C110.6974 (2)0.7299 (4)0.21337 (11)0.0541 (7)
H110.76530.78820.21320.065*
C120.6228 (3)0.7207 (6)0.17301 (14)0.0794 (10)
H120.63640.77640.14310.095*
C130.5322 (3)0.6260 (6)0.18183 (15)0.0774 (11)
H130.47710.60740.15860.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0542 (6)0.0750 (6)0.0909 (8)0.0090 (4)0.0089 (4)0.0068 (5)
S20.0619 (6)0.0821 (7)0.0962 (9)0.0065 (4)0.0047 (4)0.0076 (5)
O10.0483 (13)0.1008 (18)0.0710 (16)0.0067 (11)0.0009 (10)0.0029 (12)
C10.069 (2)0.090 (3)0.103 (3)0.0109 (19)0.018 (2)0.033 (2)
C20.091 (3)0.113 (3)0.068 (2)0.012 (3)0.000 (2)0.013 (2)
C30.071 (2)0.073 (2)0.056 (2)0.0057 (16)0.0001 (15)0.0110 (15)
C40.0558 (17)0.0542 (15)0.074 (2)0.0020 (13)0.0024 (14)0.0003 (14)
C50.0527 (16)0.0593 (17)0.071 (2)0.0027 (13)0.0005 (15)0.0028 (14)
C60.0510 (16)0.0621 (17)0.071 (2)0.0018 (13)0.0012 (14)0.0036 (15)
C70.0497 (17)0.0576 (16)0.065 (2)0.0021 (13)0.0033 (13)0.0081 (14)
C80.0467 (15)0.0646 (17)0.067 (2)0.0029 (13)0.0012 (14)0.0081 (15)
C90.0435 (14)0.0592 (16)0.067 (2)0.0007 (12)0.0031 (13)0.0097 (14)
C100.0457 (15)0.0511 (14)0.0641 (19)0.0013 (12)0.0020 (13)0.0103 (13)
C110.0442 (14)0.0624 (17)0.0558 (18)0.0046 (12)0.0030 (12)0.0082 (13)
C120.081 (2)0.096 (3)0.062 (2)0.013 (2)0.0044 (18)0.0026 (18)
C130.063 (2)0.091 (3)0.078 (3)0.0085 (18)0.0146 (17)0.022 (2)
Geometric parameters (Å, º) top
S1—C131.673 (5)C6—C71.468 (5)
S1—C101.704 (3)C6—H60.9300
S2—C11.682 (5)C7—C81.471 (5)
S2—C41.699 (3)C8—C91.330 (5)
O1—C71.225 (4)C8—H80.9300
C1—C21.330 (6)C9—C101.434 (4)
C1—H10.9300C9—H90.9300
C2—C31.438 (5)C10—C111.429 (4)
C2—H20.9300C11—C121.425 (5)
C3—C41.463 (5)C11—H110.9300
C3—H30.9300C12—C131.326 (5)
C4—C51.445 (5)C12—H120.9300
C5—C61.322 (5)C13—H130.9300
C5—H50.9300
C13—S1—C1092.62 (17)O1—C7—C8121.6 (3)
C1—S2—C492.5 (2)C6—C7—C8116.8 (3)
C2—C1—S2113.3 (3)C9—C8—C7122.1 (3)
C2—C1—H1123.3C9—C8—H8118.9
S2—C1—H1123.3C7—C8—H8118.9
C1—C2—C3115.4 (4)C8—C9—C10127.5 (3)
C1—C2—H2122.3C8—C9—H9116.3
C3—C2—H2122.3C10—C9—H9116.3
C2—C3—C4106.8 (3)C9—C10—C11125.9 (3)
C2—C3—H3126.6C9—C10—S1123.3 (2)
C4—C3—H3126.6C11—C10—S1110.7 (2)
C5—C4—C3125.6 (3)C12—C11—C10109.1 (3)
C5—C4—S2122.5 (3)C12—C11—H11125.4
C3—C4—S2112.0 (2)C10—C11—H11125.4
C6—C5—C4125.7 (3)C13—C12—C11114.2 (4)
C6—C5—H5117.1C13—C12—H12122.9
C4—C5—H5117.1C11—C12—H12122.9
C5—C6—C7122.7 (3)C12—C13—S1113.3 (3)
C5—C6—H6118.7C12—C13—H13123.4
C7—C6—H6118.7S1—C13—H13123.4
O1—C7—C6121.5 (3)
C4—S2—C1—C20.3 (4)O1—C7—C8—C96.5 (5)
S2—C1—C2—C30.5 (5)C6—C7—C8—C9172.5 (3)
C1—C2—C3—C40.5 (5)C7—C8—C9—C10178.8 (3)
C2—C3—C4—C5179.2 (3)C8—C9—C10—C11177.9 (3)
C2—C3—C4—S20.3 (4)C8—C9—C10—S15.4 (4)
C1—S2—C4—C5179.0 (3)C13—S1—C10—C9177.9 (3)
C1—S2—C4—C30.1 (3)C13—S1—C10—C110.8 (2)
C3—C4—C5—C6170.2 (3)C9—C10—C11—C12178.5 (3)
S2—C4—C5—C611.1 (5)S1—C10—C11—C121.5 (3)
C4—C5—C6—C7179.5 (3)C10—C11—C12—C131.6 (4)
C5—C6—C7—O18.6 (5)C11—C12—C13—S11.0 (4)
C5—C6—C7—C8170.4 (3)C10—S1—C13—C120.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.473.374 (5)165
C13—H13···O1ii0.932.333.255 (4)171
C11—H11···Cgiii0.933.123.936 (5)148
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x1/2, y, z+1/2; (iii) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC13H10OS2
Mr246.35
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.1141 (4), 7.4449 (3), 27.246 (1)
V3)2457.27 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.26 × 0.15 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.984, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
13976, 2373, 1719
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.211, 1.01
No. of reflections2373
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.36

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.473.374 (5)164.5
C13—H13···O1ii0.932.333.255 (4)171.1
C11—H11···Cgiii0.933.123.936 (5)147.8
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x1/2, y, z+1/2; (iii) x+3/2, y+1/2, z.
 

Acknowledgements

SM and ASP thank Dr S. Pandi, Head of the Department of Physics, Presidency College (Autonomous), Chennai, for providing the necessary facilities.

References

First citationArshad, M. N., Tahir, M. N., Asghar, M. N., Khan, I. U. & Ashfaq, M. (2008). Acta Cryst. E64, o1413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGo, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem. 12, 483–499.  CrossRef CAS Google Scholar
First citationGould, B. S., Panneerelvam, K., Zacharias, D. E. & Desiraju, G. R. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 325–330.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds