metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(1,3,4,6,7,8-hexa­hydro-2H-pyrimido[1,2-a]pyrimidin-9-ido-κ2N1,N9)niobium(V) hexa­fluorido­phosphate

aLaboratory for Molecular Structure and Bonding, Department of Chemistry, Texas A&M University, PO Box 30012 College Station, Texas 77842-3012, USA, bX-ray Diffraction Laboratory, Department of Chemistry, Texas A & M University, PO Box 30012 College Station, Texas 77842-3012, USA, and cDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA
*Correspondence e-mail: murillo@tamu.edu

(Received 11 August 2008; accepted 18 August 2008; online 23 August 2008)

The title complex, [Nb(C7H12N3)4]PF6, features chelating hpp anions (hpp is 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrim­idine) that define a distorted dodeca­hedral coordination geometry based on an N8 donor set. The Nb atom is situated on a site of symmetry [\overline{4}], and the PF6 anion has crystallographic fourfold symmetry.

Related literature

For background literature, see: Cotton et al. (1998[Cotton, F. A., Matonic, J. H. & Murillo, C. A. (1998). J. Am. Chem. Soc. 120, 6047-6052.], 2005[Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed. New York: Springer Science and Business Media.]). For related structures, see: Cotton et al. (2000[Cotton, F. A., Murillo, C. A. & Wang, X. (2000). Inorg. Chim. Acta, 300, 1-6.]); Coles & Hitchcock (2001[Coles, M. P. & Hitchcock, P. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1169-1171.]).

[Scheme 1]

Experimental

Crystal data
  • [Nb(C7H12N3)4]PF6

  • Mr = 790.66

  • Tetragonal, P 4/n

  • a = 13.531 (6) Å

  • c = 9.159 (4) Å

  • V = 1676.9 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 213 (2) K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.910, Tmax = 0.953

  • 10356 measured reflections

  • 1655 independent reflections

  • 1381 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.144

  • S = 1.05

  • 1655 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex, [Nb(hpp)4][PF6] (I), feaures a [Nb(hpp)4]+ cation, with the Nb atom located on a site of symmetry 4, and a [PF6]- anion, with fourfold symmetry; where hpp is 1,3,4,6,7,8-hexahydro-2H-pyrimido(1,2 - a)pyrimidine. The Nb atom is chelated four hpp ligands and the N8 donor set defines an approximate dodecahedral coordination environment (Fig. 1).

The conformations of the N1- and N-2 containing six-membered rings is twisted chair. Such a binding mode as observed in (I) is uncommon for the hpp ligand, which normally acts as a bridging group in various paddlewheel complexes (Cotton et al., 2005). A related example of hpp acting as a chelating ligand is [Ta(hpp)4][Ta(CO)6] (Cotton et al., 2000). Both complexes were obtained by oxidizing the precursors Nb2(hpp)4 and [Et4N][Ta(CO)6], respectively. The chelating mode of hpp is also found in some Ti complexes (Coles & Hitchcok, 2001).

Related literature top

For background literature, see: Cotton et al. (1998, 2005). For related structures, see: Cotton et al. (2000); Coles & Hitchcock (2001).

Experimental top

The title complex (I) was obtained unintentionally in an attempt to oxidize the paddlewheel complex Nb2(hpp)4 with [Cp2Fe][PF6] in CH2Cl2. X-ray quality crystals were obtained by slow diffusion of hexanes into a CH2Cl2 solution of (I) at room temperature.

Refinement top

The H atoms were geometrically placed (C—H = 0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the cation in (I) showing the crystallographic numbering scheme. Displacement ellipsoids are shown at the 35% probability level. The Nb atom is located on a site of symmetry 4.
Tetrakis(1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidin-9-ido- κ2N1,N9)niobium(V) hexafluoridophosphate top
Crystal data top
[Nb(C7H12N3)4]PF6Dx = 1.566 Mg m3
Mr = 790.66Mo Kα radiation, λ = 0.71069 Å
Tetragonal, P4/nCell parameters from 10356 reflections
Hall symbol: -P 4aθ = 2.1–27.5°
a = 13.531 (6) ŵ = 0.48 mm1
c = 9.159 (4) ÅT = 213 K
V = 1676.9 (13) Å3Block, yellow
Z = 20.20 × 0.15 × 0.10 mm
F(000) = 820
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1655 independent reflections
Radiation source: fine-focus sealed tube1381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10 pixels mm-1θmax = 26.0°, θmin = 2.1°
ω and ϕ scansh = 1712
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 1716
Tmin = 0.910, Tmax = 0.953l = 1011
10356 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.067P)2 + 3.4248P]
where P = (Fo2 + 2Fc2)/3
1655 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Nb(C7H12N3)4]PF6Z = 2
Mr = 790.66Mo Kα radiation
Tetragonal, P4/nµ = 0.48 mm1
a = 13.531 (6) ÅT = 213 K
c = 9.159 (4) Å0.20 × 0.15 × 0.10 mm
V = 1676.9 (13) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1655 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1381 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.953Rint = 0.025
10356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.05Δρmax = 0.69 e Å3
1655 reflectionsΔρmin = 0.39 e Å3
111 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nb0.75000.25000.50000.0388 (2)
N10.6548 (3)0.1964 (3)0.3195 (4)0.0670 (11)
N20.6131 (3)0.1782 (3)0.5468 (4)0.0677 (11)
N30.4885 (3)0.1508 (3)0.3731 (4)0.0598 (9)
C10.6352 (4)0.1994 (4)0.1664 (5)0.0730 (14)
H1A0.69310.17470.11370.088*
H1B0.62450.26820.13700.088*
C20.5483 (5)0.1405 (7)0.1244 (6)0.116 (3)
H2A0.52950.15870.02470.139*
H2B0.56750.07060.12310.139*
C30.4618 (4)0.1511 (4)0.2179 (6)0.0783 (15)
H3A0.41580.09670.19850.094*
H3B0.42810.21320.19450.094*
C40.4136 (3)0.1333 (4)0.4827 (6)0.0694 (14)
H4A0.37200.07770.45230.083*
H4B0.37130.19190.49090.083*
C50.4580 (4)0.1111 (4)0.6279 (6)0.0839 (18)
H5A0.48300.04310.62790.101*
H5B0.40670.11590.70320.101*
C60.5406 (4)0.1802 (4)0.6648 (5)0.0745 (14)
H6A0.51490.24740.67720.089*
H6B0.57180.15990.75660.089*
C70.5805 (3)0.1735 (3)0.4103 (5)0.0549 (10)
P10.25000.25000.9214 (2)0.0475 (5)
F10.13862 (19)0.2132 (2)0.9219 (3)0.0772 (9)
F20.25000.25000.7468 (5)0.0695 (14)
F30.25000.25001.0963 (5)0.0562 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb0.0438 (3)0.0438 (3)0.0288 (4)0.0000.0000.000
N10.056 (2)0.107 (3)0.0386 (18)0.013 (2)0.0009 (16)0.0025 (19)
N20.061 (2)0.095 (3)0.0472 (19)0.019 (2)0.0110 (18)0.003 (2)
N30.051 (2)0.067 (2)0.062 (2)0.0073 (17)0.0030 (17)0.0021 (19)
C10.077 (3)0.099 (4)0.043 (2)0.014 (3)0.009 (2)0.005 (2)
C20.084 (4)0.217 (8)0.047 (3)0.053 (5)0.014 (3)0.001 (4)
C30.061 (3)0.096 (4)0.078 (3)0.001 (3)0.023 (3)0.010 (3)
C40.048 (2)0.055 (3)0.105 (4)0.0021 (19)0.012 (3)0.006 (3)
C50.090 (4)0.072 (3)0.089 (4)0.004 (3)0.054 (3)0.000 (3)
C60.076 (3)0.101 (4)0.047 (2)0.013 (3)0.018 (2)0.000 (3)
C70.055 (2)0.065 (3)0.045 (2)0.005 (2)0.0064 (18)0.0035 (19)
P10.0530 (7)0.0530 (7)0.0365 (10)0.0000.0000.000
F10.0582 (15)0.112 (2)0.0619 (17)0.0192 (15)0.0028 (13)0.0233 (16)
F20.087 (2)0.087 (2)0.035 (2)0.0000.0000.000
F30.0660 (18)0.0660 (18)0.036 (2)0.0000.0000.000
Geometric parameters (Å, º) top
Nb—N22.135 (4)C2—H2B0.9800
Nb—N2i2.135 (4)C3—H3A0.9800
Nb—N12.218 (4)C3—H3B0.9800
Nb—N1i2.218 (4)C4—C51.490 (8)
Nb—C72.648 (4)C4—H4A0.9800
Nb—C7i2.648 (4)C4—H4B0.9800
N1—C71.341 (5)C5—C61.496 (8)
N1—C11.428 (5)C5—H5A0.9800
N2—C71.328 (6)C5—H5B0.9800
N2—C61.460 (6)C6—H6A0.9800
N3—C71.326 (5)C6—H6B0.9800
N3—C41.447 (6)P1—F11.587 (3)
N3—C31.466 (6)P1—F1ii1.587 (3)
C1—C21.472 (7)P1—F1iii1.587 (3)
C1—H1A0.9800P1—F1iv1.587 (3)
C1—H1B0.9800P1—F21.600 (5)
C2—C31.457 (8)P1—F31.602 (5)
C2—H2A0.9800
N2—Nb—N2i156.8 (2)C7—N1—C1118.4 (4)
N2—Nb—N2v92.31 (4)C7—N1—Nb92.8 (3)
N2i—Nb—N2v92.31 (4)C1—N1—Nb146.2 (3)
N2—Nb—N2vi92.31 (4)C7—N2—C6118.3 (4)
N2i—Nb—N2vi92.31 (4)C7—N2—Nb97.0 (3)
N2v—Nb—N2vi156.8 (2)C6—N2—Nb136.4 (3)
N2—Nb—N159.80 (14)C7—N3—C4121.1 (4)
N2i—Nb—N1143.38 (14)C7—N3—C3118.7 (4)
N2v—Nb—N180.23 (16)C4—N3—C3120.0 (4)
N2vi—Nb—N182.54 (17)N1—C1—C2112.9 (4)
N2—Nb—N1v82.54 (17)N1—C1—H1A109.0
N2i—Nb—N1v80.23 (16)C2—C1—H1A109.0
N2v—Nb—N1v59.80 (14)N1—C1—H1B109.0
N2vi—Nb—N1v143.38 (14)C2—C1—H1B109.0
N1—Nb—N1v123.75 (12)H1A—C1—H1B107.8
N2—Nb—N1vi80.23 (16)C3—C2—C1115.7 (6)
N2i—Nb—N1vi82.54 (17)C3—C2—H2A108.3
N2v—Nb—N1vi143.38 (14)C1—C2—H2A108.3
N2vi—Nb—N1vi59.80 (14)C3—C2—H2B108.3
N1—Nb—N1vi123.75 (12)C1—C2—H2B108.3
N1v—Nb—N1vi83.6 (2)H2A—C2—H2B107.4
N2—Nb—N1i143.38 (14)C2—C3—N3111.8 (4)
N2i—Nb—N1i59.80 (14)C2—C3—H3A109.3
N2v—Nb—N1i82.54 (17)N3—C3—H3A109.3
N2vi—Nb—N1i80.23 (16)C2—C3—H3B109.3
N1—Nb—N1i83.6 (2)N3—C3—H3B109.3
N1v—Nb—N1i123.75 (12)H3A—C3—H3B107.9
N1vi—Nb—N1i123.75 (12)N3—C4—C5111.7 (4)
N2—Nb—C729.86 (14)N3—C4—H4A109.3
N2i—Nb—C7172.73 (14)C5—C4—H4A109.3
N2v—Nb—C789.57 (16)N3—C4—H4B109.3
N2vi—Nb—C783.26 (16)C5—C4—H4B109.3
N1—Nb—C730.39 (13)H4A—C4—H4B107.9
N1v—Nb—C7106.74 (15)C4—C5—C6112.1 (4)
N1vi—Nb—C7100.07 (15)C4—C5—H5A109.2
N1i—Nb—C7113.57 (13)C6—C5—H5A109.2
N2—Nb—C7vi89.57 (15)C4—C5—H5B109.2
N2i—Nb—C7vi83.26 (16)C6—C5—H5B109.2
N2v—Nb—C7vi172.73 (14)H5A—C5—H5B107.9
N2vi—Nb—C7vi29.86 (14)N2—C6—C5108.9 (4)
N1—Nb—C7vi106.74 (15)N2—C6—H6A109.9
N1v—Nb—C7vi113.57 (13)C5—C6—H6A109.9
N1vi—Nb—C7vi30.39 (13)N2—C6—H6B109.9
N1i—Nb—C7vi100.07 (15)C5—C6—H6B109.9
C7—Nb—C7vi95.53 (5)H6A—C6—H6B108.3
N2—Nb—C7v83.26 (16)N3—C7—N2124.4 (4)
N2i—Nb—C7v89.57 (15)N3—C7—N1126.7 (4)
N2v—Nb—C7v29.86 (14)N2—C7—N1108.8 (4)
N2vi—Nb—C7v172.73 (14)N3—C7—Nb169.6 (3)
N1—Nb—C7v100.07 (15)N2—C7—Nb53.2 (2)
N1v—Nb—C7v30.39 (13)N1—C7—Nb56.8 (2)
N1vi—Nb—C7v113.57 (13)F1—P1—F1ii90.000 (2)
N1i—Nb—C7v106.74 (15)F1—P1—F1iii179.7 (2)
C7—Nb—C7v95.53 (5)F1ii—P1—F1iii90.000 (2)
C7vi—Nb—C7v143.83 (18)F1—P1—F1iv90.000 (1)
N2—Nb—C7i172.73 (14)F1ii—P1—F1iv179.7 (2)
N2i—Nb—C7i29.86 (14)F1iii—P1—F1iv90.000 (2)
N2v—Nb—C7i83.26 (16)F1—P1—F290.16 (12)
N2vi—Nb—C7i89.57 (16)F1ii—P1—F290.16 (12)
N1—Nb—C7i113.57 (13)F1iii—P1—F290.16 (12)
N1v—Nb—C7i100.07 (15)F1iv—P1—F290.16 (12)
N1vi—Nb—C7i106.74 (15)F1—P1—F389.84 (12)
N1i—Nb—C7i30.39 (13)F1ii—P1—F389.84 (12)
C7—Nb—C7i143.83 (18)F1iii—P1—F389.84 (12)
C7vi—Nb—C7i95.53 (5)F1iv—P1—F389.84 (12)
C7v—Nb—C7i95.53 (5)F2—P1—F3180.000 (2)
N2—Nb—N1—C77.7 (3)N3—C4—C5—C645.0 (6)
N2i—Nb—N1—C7173.2 (3)C7—N2—C6—C539.2 (7)
N2v—Nb—N1—C7106.2 (3)Nb—N2—C6—C5179.1 (4)
N2vi—Nb—N1—C789.4 (3)C4—C5—C6—N254.6 (6)
N1v—Nb—N1—C763.0 (4)C4—N3—C7—N23.0 (7)
N1vi—Nb—N1—C743.6 (4)C3—N3—C7—N2178.2 (5)
N1i—Nb—N1—C7170.3 (4)C4—N3—C7—N1176.2 (5)
C7vi—Nb—N1—C771.7 (3)C3—N3—C7—N11.0 (7)
C7v—Nb—N1—C783.7 (2)C4—N3—C7—Nb70.1 (19)
C7i—Nb—N1—C7175.65 (18)C3—N3—C7—Nb105.1 (17)
N2—Nb—N1—C1165.9 (7)C6—N2—C7—N314.1 (7)
N2i—Nb—N1—C115.0 (8)Nb—N2—C7—N3167.5 (4)
N2v—Nb—N1—C195.6 (7)C6—N2—C7—N1165.2 (5)
N2vi—Nb—N1—C168.8 (7)Nb—N2—C7—N111.8 (4)
N1v—Nb—N1—C1138.8 (6)C6—N2—C7—Nb153.4 (5)
N1vi—Nb—N1—C1114.6 (6)C1—N1—C7—N31.6 (8)
N1i—Nb—N1—C112.1 (6)Nb—N1—C7—N3168.0 (4)
C7—Nb—N1—C1158.2 (9)C1—N1—C7—N2177.7 (5)
C7vi—Nb—N1—C186.5 (7)Nb—N1—C7—N211.3 (4)
C7v—Nb—N1—C1118.0 (7)C1—N1—C7—Nb166.4 (5)
C7i—Nb—N1—C117.4 (7)N2—Nb—C7—N380.4 (17)
N2i—Nb—N2—C7173.5 (3)N2v—Nb—C7—N3175.8 (17)
N2v—Nb—N2—C785.1 (3)N2vi—Nb—C7—N326.3 (17)
N2vi—Nb—N2—C772.2 (3)N1—Nb—C7—N3113.0 (18)
N1—Nb—N2—C77.8 (3)N1v—Nb—C7—N3117.6 (17)
N1v—Nb—N2—C7144.2 (3)N1vi—Nb—C7—N331.3 (18)
N1vi—Nb—N2—C7131.0 (3)N1i—Nb—C7—N3102.5 (17)
N1i—Nb—N2—C74.5 (5)C7vi—Nb—C7—N31.0 (17)
C7vi—Nb—N2—C7101.9 (3)C7v—Nb—C7—N3146.5 (18)
C7v—Nb—N2—C7113.6 (3)C7i—Nb—C7—N3106.3 (18)
N2i—Nb—N2—C628.4 (5)N2v—Nb—C7—N295.4 (3)
N2v—Nb—N2—C6129.7 (6)N2vi—Nb—C7—N2106.7 (3)
N2vi—Nb—N2—C673.0 (5)N1—Nb—C7—N2166.6 (5)
N1—Nb—N2—C6153.0 (6)N1v—Nb—C7—N237.2 (3)
N1v—Nb—N2—C670.6 (5)N1vi—Nb—C7—N249.1 (3)
N1vi—Nb—N2—C614.2 (5)N1i—Nb—C7—N2177.1 (3)
N1i—Nb—N2—C6149.7 (5)C7v—Nb—C7—N266.1 (3)
C7—Nb—N2—C6145.2 (7)C7i—Nb—C7—N2173.3 (3)
C7vi—Nb—N2—C643.3 (5)N2—Nb—C7—N1166.6 (5)
C7v—Nb—N2—C6101.2 (5)N2v—Nb—C7—N171.2 (3)
C7—N1—C1—C222.7 (8)N2vi—Nb—C7—N186.7 (3)
Nb—N1—C1—C2177.8 (5)N1v—Nb—C7—N1129.3 (3)
N1—C1—C2—C344.3 (9)N1vi—Nb—C7—N1144.4 (3)
C1—C2—C3—N343.2 (8)N1i—Nb—C7—N110.5 (4)
C7—N3—C3—C221.6 (8)C7vi—Nb—C7—N1114.0 (3)
C4—N3—C3—C2163.1 (5)C7v—Nb—C7—N1100.5 (3)
C7—N3—C4—C519.0 (6)C7i—Nb—C7—N16.8 (3)
C3—N3—C4—C5165.8 (5)
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) y+1/2, x, z; (iii) x+1/2, y+1/2, z; (iv) y, x+1/2, z; (v) y+1, x1/2, z+1; (vi) y+1/2, x+1, z+1.

Experimental details

Crystal data
Chemical formula[Nb(C7H12N3)4]PF6
Mr790.66
Crystal system, space groupTetragonal, P4/n
Temperature (K)213
a, c (Å)13.531 (6), 9.159 (4)
V3)1676.9 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.910, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
10356, 1655, 1381
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.144, 1.05
No. of reflections1655
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.39

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

 

Acknowledgements

The authors thank the Robert A. Welch Foundation and Texas A&M University for financial support.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColes, M. P. & Hitchcock, P. B. (2001). J. Chem. Soc. Dalton Trans. pp. 1169–1171.  Web of Science CSD CrossRef Google Scholar
First citationCotton, F. A., Matonic, J. H. & Murillo, C. A. (1998). J. Am. Chem. Soc. 120, 6047–6052.  Web of Science CSD CrossRef CAS Google Scholar
First citationCotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed. New York: Springer Science and Business Media.  Google Scholar
First citationCotton, F. A., Murillo, C. A. & Wang, X. (2000). Inorg. Chim. Acta, 300, 1–6.  CrossRef Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds