inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Natural perovskite: (CaII0.95 (1)CeIII0.011 (2)NaI0.010 (4))(FeIII0.022 (2)TiIV0.98 (1))O3

aDepartment of Chemistry, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil
*Correspondence e-mail: ngfernandes@ufmg.br

(Received 16 July 2008; accepted 16 August 2008; online 30 August 2008)

A natural sample of perovskite (calcium caesium sodium iron titanium oxide) from the Tapira Alkaline Complex in southeastern Brazil was found by electron microprobe analysis to have the chemical formula (Ca2+0.95 (1)Ce3+0.011 (2)Na+0.010 (4))(Fe3+0.022 (2)Ti4+0.98 (1))O2−3 and by IR spectroscopy to be an anhydrous mineral. Oxygen anions are arranged around Ti4+ in an almost perfect octa­hedron and around Ca2+ in a distorted 12-fold polyhedron.

Related literature

For related literature, see: Banfield & Veblen (1992[Banfield, J. F. & Veblen, D. R. (1992). Am. Mineral. 77, 545-557.]); Beran et al. (1996[Beran, A., Libowittzky, E. & Armbruster, T. (1996). Can. Mineral. 34, 803-809.]); Chakhmouradian & Mitchell (1998[Chakhmouradian, A. R. & Mitchell, R. H. (1998). Can. Mineral. 36, 953-969.]); Haggerty & Mariano (1983[Haggerty, S. E. & Mariano, A. N. (1983). Contrib. Mineral. Petrol. 84, 365-381.]); Kay & Bailey (1957[Kay, H. F. & Bailey, P. C. (1957). Acta Cryst. 10, 219-226.]); Lloyd & Bailey (1991[Lloyd, F. E. & Bailey, D. K. (1991). 5th International Kimberlite Conference (Extended Abstracts), edited by O. H. Leonardos, H. O. A. Meyer & J. C. Gaspar, pp. 263-269. Araxá, Brazil, CPRM, Special Publication 3/91.]); Mariano & Mitchell (1991[Mariano, A. N. & Mitchell, R. H. (1991). Proceedings of the 5th International Conference, Araxa, Brazil, pp. 251-253. Extended Abstracts.]); Seer & Moraes (1988[Seer, H. J. & Moraes, L. C. (1988). Rev. Bras. Geo. 18, 134-140.]); Sgarbi & Gaspar (1995[Sgarbi, P. B. A. & Gaspar, J. C. (1995). 6th International Kimberlite Conference (Extended Abstracts), Novosibirsk, Rússia, pp. 498-499.]); Sgarbi & Valença (1994[Sgarbi, P. B. A. & Valença, J. G. (1994). International Symposium on the Physics and Chemistry of the Upper Mantle (Extended Abstracts), pp. 27-29. São Paulo, Brazil: CPRM/FAPESP.]); Soubies et al. (1991[Soubies, F., Melfi, A. J. & Autefage, F. (1991). Rev. Bras. Geo. 21, 3-16.]).

Experimental

Crystal data
  • Na0.01Ca0.96Fe0.02Ti0.98Ce0.01O3

  • Mr = 136.40

  • Orthorhombic, P b n m

  • a = 5.3818 (4) Å

  • b = 5.4431 (4) Å

  • c = 7.6450 (5) Å

  • V = 223.95 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.94 mm−1

  • T = 298 (2) K

  • 0.2 × 0.15 × 0.15 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: refined from ΔF (SHELXL97; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.356, Tmax = 0.409

  • 2383 measured reflections

  • 1594 independent reflections

  • 1527 reflections with I > 2s(I)

  • Rint = 0.033

  • 3 standard reflections every 197 reflections intensity decay: 0.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.103

  • S = 1.25

  • 1594 reflections

  • 31 parameters

  • Δρmax = 2.01 e Å−3

  • Δρmin = −2.88 e Å−3

Table 1
Selected geometric parameters (Å ,° ), where A represents the Ca2+, Na+ and Ce3+ cations, on a 12-coordinated site and B represents Fe3+ and Ti4+ cations on an octahedral site

A—O1 2.359 (2) O1iv—A—O1iv 162.30 (6)
A—O1iv 2.481 (2) O2ivA—O2viii 80.97 (4)
A—O1iv 3.027 (2) O1A—O2vii 118.03 (2)
A—O1 3.052 (2) O2iiA—O1iv 65.08 (3)
A—O2viii 2.378 (1)    
A—O2ii 2.620 (1)    
A—O2iv 2.667 (1)    
A—O2vi 3.233 (1)    
B—O1ii 1.9513 (3) O1B—O1ii 180.0
B—O2vii 1.956 (1) O2B—O2vii 89.41 (1)
B—O2v 1.959 (1) O1B—O2 89.58 (6)
Symmetry code: (ii) [-x, -y, z + {\script{1\over 2}}]; (iii) [(x + {\script{1\over 2}}) -1, -y + {\script{1\over 2}}, -z]; (iv) [-x + {\script{1\over 2}}, (y + {\script{1\over 2}}) - 1, 1- (-z + {\script{1\over 2}})]; (v) -x, -y, -z; (vi) [x, y, 1 - (-z + {\script{1\over 2}})]; (vii) [-x + {\script{1\over 2}}, y + {\script{1\over 2}}, z]; (viii) [(x + {\script{1\over 2}}) - 1, -y + {\script{1\over 2}}, z + {\script{1\over 2}}]; (ix) [-x, -y + 1, (z + {\script{1\over 2}}) -1].

Data collection: XSCANS (Siemens, 1991[Siemens (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (CrystalMaker, 2007[CrystalMaker (2007). CrystalMaker for Windows. CrystalMaker Software Ltd, Yarnton, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The term perovskite refers to both natural and synthetic compounds ABX3 based on the mineral CaTiO3. CaTiO3 itself is the most commonly occurring perovskite in the Earth's crust (Chakhmouradian & Mitchell, 1998) and an important material to immobilize high-level radioactive waste. The first structure determination was reported for a synthetic material (Kay & Bailey, 1957), but structural studies of natural CaTiO3 are quite rare and have been mostly limited to twinned crystals (Beran et al., 1996). In central and southeastern Brazil, perovskite can be found as essential and accessory minerals of the Alto Paranaíba Igneous Province (Seer & Moraes, 1988; Sgarbi & Valença, 1994; Sgarbi & Gaspar, 1995), where they form part of five important carbonatite complexes, as in Tapira (Lloyd & Bailey, 1991). In these complexes, the conversion of perovskite in anatase (Soubies et al., 1991) resulted in some of the biggest known titanium concentrations, but even so these deposits are not still economically explored for technological reasons. There are many geological studies (Haggerty & Mariano, 1983; Mariano & Mitchell, 1991; and others) describing crystals of perovskite in the Brazilian carbonatite complexes as belonging to the system lueshite (NaNbO3)-loparite [(NaCe)TiO3]-perovskite (CaTiO3) but with the end member perovskite sensu stricto as the principal component.

In this work, a naturally occurring perovskite from the Tapira Alkaline Complex, localized at Minas Gerais State in Brazil (19°52' south and 46°50' west), has been investigated. The economic importance of this complex is due to the phosphates, titanium, and lanthanide and actinide elements drifts, which were formed by intemperism from primary magmatic rocks. From electron microprobe analyses (major elements: Ca - 38.9 (8) wt% CaO; Ti - 56.6 (9) wt% TiO2; minor elements: Na - 0.224 (8) wt% Na2O; Fe - 1.2 (1) wt% Fe2O3; Ce - 1.4 (3) wt% Ce2O3), it can be concluded that the sample is essentially the mineral CaTiO3, with the calculated formula: Ca2+0.96 (2) Ce3+0.011 (2) Na+0.010 (4) Fe3+0.022 (2) Ti4+0.98 (1) O2-3. The infrared spectra reveal characteristic bands for Ti-O and Ca-O, but importantly, the absence of bands related to OH- and water suggests that the Tapira perovskite is indeed an anhydrous mineral. The bands at 348, 423, 528, 695 and 703 cm-1 observed are also present in spectra of TiO2 polymorphs, especially anatase and TiO2(B) as reported by Banfield & Veblen (1992). This could be due to the octahedral TiO6 or even to the Ca2+ leaching from the perovskite, which has those two polymorphs as byproducts. Figure 1 shows the perovskite structure.

Related literature top

For related literature, see: Banfield & Veblen (1992); Beran et al. (1996); Chakhmouradian & Mitchell (1998); Haggerty & Mariano (1983); Kay & Bailey (1957); Lloyd & Bailey (1991); Mariano & Mitchell (1991); Seer & Moraes (1988); Sgarbi & Gaspar (1995); Sgarbi & Valença (1994); Soubies et al. (1991).

Experimental top

Among crystals averaging 1-2 cm3 in size, some have carbonate incrustations and alterations due to intemperism. The cleanest crystals were separated and the biggest were chosen for polished sections for chemical analysis. Electron microprobe analyses were performed for four crystals on a JEOL JXA-8900 RL microscope, qualitatively with wavelength-dispersive mode and quantitatively with energy-dispersive mode. Standards used included rutile (TiO2) for Ti, anorthite (CaAl2Si2O8) for Ca, olivine [(Mg,Fe)2SiO4] for Fe, albite (NaAlSi3O8) for Na, and synthetic glasses for the lanthanide content. Infrared spectra were recorded for ground crystals on a Perkin Elmer GX spectrophotometer. Crystals were examined by polarizing microscope.

Initial refinements were performed using scattering factors for the neutral atoms of the major elements, with site occupancies based on the microprobe analyses (Ca0.96 (2)Ti0.98 (1)O3), giving R = 0.0436, wR = 0.1099, and S = 1.315. The minor elements were added next, with the cation distribution based on the loparite (Na and Ce at A site) and latrappite structures (Fe at B site), and with the constraints that the displacement parameters of atoms within each of these sites be equal. The site occupancies for Ca and Ti were refined whereas those for the Na, Ce, and Fe atoms (including their uncertainties) were taken from the chemical analysis. In the final model, scattering factors for the ions were used and electroneutrality was found to be maintained with a total cation charge of +5.89 (2), according to the chemical formula (Ca2+0.95 (1) Ce3+0.011 (2) Na+0.010 (4)) (Fe3+0.022 (2)Ti4+0.98 (1))O2-3.

Computing details top

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS (Siemens, 1991); data reduction: XSCANS (Siemens, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2007); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Part of the unit cell with the A site represented in dark blue, the B site in dark grey, and the oxygen ions in dark red. The bonds of the AO12 are also all represented in blue. Displacement ellipsoids are drawn at the 70% probability level [symmetry codes: (i) x, y, z; (ii) -x, -y, z+1/2; (iii) (x+1/2)-1, -y+1/2, -z; (iv) -x+1/2, (y+1/2)-1, 1-(-z+1/2); (v) -x, -y, -z; (vi) x, y, 1-(-z+1/2); (vii) -x+1/2, y+1/2, z; (viii) (x+1/2)-1, -y+1/2, z+1/2; (ix) -x, -y+1, (z+1/2)-1].
calcium caesium sodium iron titanium oxide top
Crystal data top
Na0.01Ca0.96Fe0.02Ti0.98Ce0.01O3F(000) = 262.9
Mr = 136.40Dx = 4.045 Mg m3
Orthorhombic, PbnmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2c 2abCell parameters from 40 reflections
a = 5.3818 (4) Åθ = 4.6–56.8°
b = 5.4431 (4) ŵ = 5.94 mm1
c = 7.6450 (5) ÅT = 298 K
V = 223.95 (3) Å3Octahedral, grey
Z = 40.2 × 0.15 × 0.15 mm
Data collection top
Siemens P4
diffractometer
1527 reflections with I > 2s(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 56.8°, θmin = 4.6°
θ/2θ scansh = 112
Absorption correction: part of the refinement model (ΔF)
(SHELXL97; Sheldrick, 2008)
k = 112
Tmin = 0.356, Tmax = 0.409l = 118
2383 measured reflections3 standard reflections every 197 reflections
1594 independent reflections intensity decay: 0.8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0192P)2 + 1.1174P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max < 0.001
S = 1.25Δρmax = 2.01 e Å3
1594 reflectionsΔρmin = 2.88 e Å3
31 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.045 (5)
Crystal data top
Na0.01Ca0.96Fe0.02Ti0.98Ce0.01O3V = 223.95 (3) Å3
Mr = 136.40Z = 4
Orthorhombic, PbnmMo Kα radiation
a = 5.3818 (4) ŵ = 5.94 mm1
b = 5.4431 (4) ÅT = 298 K
c = 7.6450 (5) Å0.2 × 0.15 × 0.15 mm
Data collection top
Siemens P4
diffractometer
1527 reflections with I > 2s(I)
Absorption correction: part of the refinement model (ΔF)
(SHELXL97; Sheldrick, 2008)
Rint = 0.033
Tmin = 0.356, Tmax = 0.4093 standard reflections every 197 reflections
2383 measured reflections intensity decay: 0.8%
1594 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04131 parameters
wR(F2) = 0.1030 restraints
S = 1.25Δρmax = 2.01 e Å3
1594 reflectionsΔρmin = 2.88 e Å3
Special details top

Experimental. Room temperature single-crystal X-ray diffraction standard experiment

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca0.50660 (7)0.53492 (7)0.25000.00739 (7)0.951 (7)
Ce0.50660 (7)0.53492 (7)0.25000.0074 (11)0.01
Na0.50660 (7)0.53492 (7)0.25000.0074 (11)0.01
Ti0.00000.50000.50000.00487 (6)0.977 (7)
Fe0.00000.50000.50000.0049 (11)0.02
O10.0713 (3)0.4842 (3)0.25000.00743 (19)
O20.21101 (17)0.21143 (18)0.53714 (14)0.00728 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca0.00587 (16)0.00800 (13)0.00831 (13)0.00138 (8)0.0000.000
Ce0.006 (3)0.00800 (16)0.00831 (13)0.00138 (13)0.0000.000
Na0.006 (3)0.00800 (16)0.00831 (13)0.00138 (13)0.0000.000
Ti0.00482 (11)0.00595 (10)0.00384 (9)0.00000 (6)0.00004 (6)0.00027 (6)
Fe0.005 (3)0.00595 (11)0.00384 (10)0.00000 (6)0.00004 (6)0.00027 (9)
O10.0072 (4)0.0104 (4)0.0047 (4)0.0005 (3)0.0000.000
O20.0060 (3)0.0072 (3)0.0087 (3)0.0020 (2)0.0005 (2)0.0010 (2)
Geometric parameters (Å, º) top
Ca—O12.3586 (16)Fe—O2iii1.9555 (9)
Ca—O2i2.3783 (11)Fe—O2x1.9555 (9)
Ca—O2ii2.3783 (11)Fe—O2ix1.9589 (9)
Ca—O1iii2.4814 (16)Fe—O21.9589 (9)
Ca—O2iv2.6199 (11)Fe—Cexi3.1721 (4)
Ca—O2v2.6199 (11)Fe—Caxi3.1721 (4)
Ca—O2vi2.6671 (11)Fe—Cevii3.1721 (4)
Ca—O2iii2.6671 (11)Fe—Cavii3.1721 (4)
Ca—O1vii3.0266 (16)Fe—Caxii3.2772 (3)
Ca—O1viii3.0518 (16)Fe—Cexii3.2772 (3)
Ti—O11.9513 (3)O1—Fexiii1.9513 (3)
Ti—O1ix1.9513 (3)O1—Tixiii1.9513 (3)
Ti—O2iii1.9555 (9)O1—Cavii2.4814 (16)
Ti—O2x1.9555 (9)O1—Cevii2.4814 (16)
Ti—O2ix1.9589 (9)O1—Caiii3.0266 (16)
Ti—O21.9589 (9)O1—Caxii3.0518 (16)
Ti—Cexi3.1721 (4)O2—Feii1.9555 (9)
Ti—Caxi3.1721 (4)O2—Tiii1.9555 (9)
Ti—Cevii3.1721 (4)O2—Cax2.3783 (11)
Ti—Cavii3.1721 (4)O2—Cex2.3783 (11)
Ti—Caxii3.2772 (3)O2—Caiv2.6199 (11)
Ti—Cexii3.2772 (3)O2—Ceiv2.6199 (11)
Fe—O11.9513 (3)O2—Cevii2.6671 (11)
Fe—O1ix1.9513 (3)O2—Cavii2.6671 (11)
O1—Ca—O2i113.17 (4)O2ix—Fe—O2180.0
O1—Ca—O2ii113.17 (4)O1—Fe—Cexi128.54 (5)
O2i—Ca—O2ii86.35 (5)O1ix—Fe—Cexi51.46 (5)
O1—Ca—O1iii86.98 (4)O2iii—Fe—Cexi55.53 (3)
O2i—Ca—O1iii129.34 (3)O2x—Fe—Cexi124.47 (3)
O2ii—Ca—O1iii129.34 (3)O2ix—Fe—Cexi56.90 (3)
O1—Ca—O2iv129.62 (3)O2—Fe—Cexi123.10 (3)
O2i—Ca—O2iv116.99 (3)O1—Fe—Caxi128.54 (5)
O2ii—Ca—O2iv66.66 (2)O1ix—Fe—Caxi51.46 (5)
O1iii—Ca—O2iv65.08 (3)O2iii—Fe—Caxi55.53 (3)
O1—Ca—O2v129.62 (3)O2x—Fe—Caxi124.47 (3)
O2i—Ca—O2v66.66 (2)O2ix—Fe—Caxi56.90 (3)
O2ii—Ca—O2v116.99 (3)O2—Fe—Caxi123.10 (3)
O1iii—Ca—O2v65.08 (3)O1—Fe—Cevii51.46 (5)
O2iv—Ca—O2v76.80 (5)O1ix—Fe—Cevii128.54 (5)
O1—Ca—O2vi66.80 (3)O2iii—Fe—Cevii124.47 (3)
O2i—Ca—O2vi80.97 (4)O2x—Fe—Cevii55.53 (3)
O2ii—Ca—O2vi165.78 (3)O2ix—Fe—Cevii123.10 (3)
O1iii—Ca—O2vi64.58 (3)O2—Fe—Cevii56.90 (3)
O2iv—Ca—O2vi125.177 (19)Cexi—Fe—Cevii180.0
O2v—Ca—O2vi63.491 (11)Caxi—Fe—Cevii180.0
O1—Ca—O2iii66.80 (3)O1—Fe—Cavii51.46 (5)
O2i—Ca—O2iii165.78 (3)O1ix—Fe—Cavii128.54 (5)
O2ii—Ca—O2iii80.97 (4)O2iii—Fe—Cavii124.47 (3)
O1iii—Ca—O2iii64.58 (3)O2x—Fe—Cavii55.53 (3)
O2iv—Ca—O2iii63.491 (11)O2ix—Fe—Cavii123.10 (3)
O2v—Ca—O2iii125.177 (19)O2—Fe—Cavii56.90 (3)
O2vi—Ca—O2iii110.78 (5)Cexi—Fe—Cavii180.0
O1—Ca—O1vii75.32 (5)Caxi—Fe—Cavii180.0
O2i—Ca—O1vii60.38 (3)O1—Fe—Caxii65.84 (4)
O2ii—Ca—O1vii60.38 (3)O1ix—Fe—Caxii114.16 (4)
O1iii—Ca—O1vii162.30 (6)O2iii—Fe—Caxii134.03 (3)
O2iv—Ca—O1vii127.03 (3)O2x—Fe—Caxii45.97 (3)
O2v—Ca—O1vii127.03 (3)O2ix—Fe—Caxii53.08 (3)
O2vi—Ca—O1vii107.21 (3)O2—Fe—Caxii126.92 (3)
O2iii—Ca—O1vii107.21 (3)Cexi—Fe—Caxii108.311 (8)
O1—Ca—O1viii168.10 (7)Caxi—Fe—Caxii108.311 (8)
O2i—Ca—O1viii59.23 (3)Cevii—Fe—Caxii71.689 (8)
O2ii—Ca—O1viii59.23 (3)Cavii—Fe—Caxii71.689 (8)
O1iii—Ca—O1viii104.92 (5)O1—Fe—Cexii65.84 (4)
O2iv—Ca—O1viii57.99 (3)O1ix—Fe—Cexii114.16 (4)
O2v—Ca—O1viii57.99 (3)O2iii—Fe—Cexii134.03 (3)
O2vi—Ca—O1viii118.03 (2)O2x—Fe—Cexii45.97 (3)
O2iii—Ca—O1viii118.03 (2)O2ix—Fe—Cexii53.08 (3)
O1vii—Ca—O1viii92.78 (5)O2—Fe—Cexii126.92 (3)
O1—Ti—O1ix180.0Cexi—Fe—Cexii108.311 (8)
O1—Ti—O2iii90.66 (5)Caxi—Fe—Cexii108.311 (8)
O1ix—Ti—O2iii89.34 (5)Cevii—Fe—Cexii71.689 (8)
O1—Ti—O2x89.34 (5)Cavii—Fe—Cexii71.689 (8)
O1ix—Ti—O2x90.66 (5)Fexiii—O1—Fe156.74 (9)
O2iii—Ti—O2x180.0Tixiii—O1—Fe156.74 (9)
O1—Ti—O2ix90.42 (6)Fexiii—O1—Ti156.74 (9)
O1ix—Ti—O2ix89.58 (6)Tixiii—O1—Ti156.74 (9)
O2iii—Ti—O2ix90.586 (13)Fexiii—O1—Ca100.97 (4)
O2x—Ti—O2ix89.414 (13)Tixiii—O1—Ca100.97 (4)
O1—Ti—O289.58 (6)Fe—O1—Ca100.97 (4)
O1ix—Ti—O290.42 (6)Ti—O1—Ca100.97 (4)
O2iii—Ti—O289.414 (13)Fexiii—O1—Cavii90.58 (5)
O2x—Ti—O290.586 (13)Tixiii—O1—Cavii90.58 (5)
O2ix—Ti—O2180.0Fe—O1—Cavii90.58 (5)
O1—Ti—Cexi128.54 (5)Ti—O1—Cavii90.58 (5)
O1ix—Ti—Cexi51.46 (5)Ca—O1—Cavii106.45 (6)
O2iii—Ti—Cexi55.53 (3)Fexiii—O1—Cevii90.58 (5)
O2x—Ti—Cexi124.47 (3)Tixiii—O1—Cevii90.58 (5)
O2ix—Ti—Cexi56.90 (3)Fe—O1—Cevii90.58 (5)
O2—Ti—Cexi123.10 (3)Ti—O1—Cevii90.58 (5)
O1—Ti—Caxi128.54 (5)Ca—O1—Cevii106.45 (6)
O1ix—Ti—Caxi51.46 (5)Fexiii—O1—Caiii85.94 (5)
O2iii—Ti—Caxi55.53 (3)Tixiii—O1—Caiii85.94 (5)
O2x—Ti—Caxi124.47 (3)Fe—O1—Caiii85.94 (5)
O2ix—Ti—Caxi56.90 (3)Ti—O1—Caiii85.94 (5)
O2—Ti—Caxi123.10 (3)Ca—O1—Caiii91.25 (5)
O1—Ti—Cevii51.46 (5)Cavii—O1—Caiii162.30 (6)
O1ix—Ti—Cevii128.54 (5)Cevii—O1—Caiii162.30 (6)
O2iii—Ti—Cevii124.47 (3)Fexiii—O1—Caxii78.47 (4)
O2x—Ti—Cevii55.53 (3)Tixiii—O1—Caxii78.47 (4)
O2ix—Ti—Cevii123.10 (3)Fe—O1—Caxii78.47 (4)
O2—Ti—Cevii56.90 (3)Ti—O1—Caxii78.47 (4)
Cexi—Ti—Cevii180.0Ca—O1—Caxii168.10 (7)
Caxi—Ti—Cevii180.0Cavii—O1—Caxii85.45 (4)
O1—Ti—Cavii51.46 (5)Cevii—O1—Caxii85.45 (4)
O1ix—Ti—Cavii128.54 (5)Caiii—O1—Caxii76.85 (4)
O2iii—Ti—Cavii124.47 (3)Feii—O2—Ti155.77 (6)
O2x—Ti—Cavii55.53 (3)Tiii—O2—Ti155.77 (6)
O2ix—Ti—Cavii123.10 (3)Feii—O2—Fe155.77 (6)
O2—Ti—Cavii56.90 (3)Tiii—O2—Fe155.77 (6)
Cexi—Ti—Cavii180.0Feii—O2—Cax97.78 (4)
Caxi—Ti—Cavii180.0Tiii—O2—Cax97.78 (4)
O1—Ti—Caxii65.84 (4)Ti—O2—Cax106.45 (4)
O1ix—Ti—Caxii114.16 (4)Fe—O2—Cax106.45 (4)
O2iii—Ti—Caxii134.03 (3)Feii—O2—Cex97.78 (4)
O2x—Ti—Caxii45.97 (3)Tiii—O2—Cex97.78 (4)
O2ix—Ti—Caxii53.08 (3)Ti—O2—Cex106.45 (4)
O2—Ti—Caxii126.92 (3)Fe—O2—Cex106.45 (4)
Cexi—Ti—Caxii108.311 (8)Feii—O2—Caiv86.50 (4)
Caxi—Ti—Caxii108.311 (8)Tiii—O2—Caiv86.50 (4)
Cevii—Ti—Caxii71.689 (8)Ti—O2—Caiv90.22 (4)
Cavii—Ti—Caxii71.689 (8)Fe—O2—Caiv90.22 (4)
O1—Ti—Cexii65.84 (4)Cax—O2—Caiv98.07 (4)
O1ix—Ti—Cexii114.16 (4)Cex—O2—Caiv98.07 (4)
O2iii—Ti—Cexii134.03 (3)Feii—O2—Ceiv86.50 (4)
O2x—Ti—Cexii45.97 (3)Tiii—O2—Ceiv86.50 (4)
O2ix—Ti—Cexii53.08 (3)Ti—O2—Ceiv90.22 (4)
O2—Ti—Cexii126.92 (3)Fe—O2—Ceiv90.22 (4)
Cexi—Ti—Cexii108.311 (8)Cax—O2—Ceiv98.07 (4)
Caxi—Ti—Cexii108.311 (8)Cex—O2—Ceiv98.07 (4)
Cevii—Ti—Cexii71.689 (8)Feii—O2—Cevii91.02 (4)
Cavii—Ti—Cexii71.689 (8)Tiii—O2—Cevii91.02 (4)
O1—Fe—O1ix180.0Ti—O2—Cevii85.12 (4)
O1—Fe—O2iii90.66 (5)Fe—O2—Cevii85.12 (4)
O1ix—Fe—O2iii89.34 (5)Cax—O2—Cevii99.03 (4)
O1—Fe—O2x89.34 (5)Cex—O2—Cevii99.03 (4)
O1ix—Fe—O2x90.66 (5)Caiv—O2—Cevii162.90 (4)
O2iii—Fe—O2x180.0Ceiv—O2—Cevii162.90 (4)
O1—Fe—O2ix90.42 (6)Feii—O2—Cavii91.02 (4)
O1ix—Fe—O2ix89.58 (6)Tiii—O2—Cavii91.02 (4)
O2iii—Fe—O2ix90.586 (13)Ti—O2—Cavii85.12 (4)
O2x—Fe—O2ix89.414 (13)Fe—O2—Cavii85.12 (4)
O1—Fe—O289.58 (6)Cax—O2—Cavii99.03 (4)
O1ix—Fe—O290.42 (6)Cex—O2—Cavii99.03 (4)
O2iii—Fe—O289.414 (13)Caiv—O2—Cavii162.90 (4)
O2x—Fe—O290.586 (13)Ceiv—O2—Cavii162.90 (4)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z; (iv) x+1, y+1, z+1; (v) x+1, y+1, z1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y1/2, z; (viii) x+1, y, z; (ix) x, y+1, z+1; (x) x1/2, y+1/2, z+1; (xi) x1/2, y+3/2, z+1; (xii) x1, y, z; (xiii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaNa0.01Ca0.96Fe0.02Ti0.98Ce0.01O3
Mr136.40
Crystal system, space groupOrthorhombic, Pbnm
Temperature (K)298
a, b, c (Å)5.3818 (4), 5.4431 (4), 7.6450 (5)
V3)223.95 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.94
Crystal size (mm)0.2 × 0.15 × 0.15
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(SHELXL97; Sheldrick, 2008)
Tmin, Tmax0.356, 0.409
No. of measured, independent and
observed [I > 2s(I)] reflections
2383, 1594, 1527
Rint0.033
(sin θ/λ)max1)1.178
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.25
No. of reflections1594
No. of parameters31
Δρmax, Δρmin (e Å3)2.01, 2.88

Computer programs: XSCANS (Siemens, 1991), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (CrystalMaker, 2007), WinGX (Farrugia, 1999).

Selected geometric parameters (Å ,° ), where A represents the Ca2+, Na+ and Ce3+ cations, on 12-coordinated site and B represents Fe3+ and Ti4+ cations on octahedral site top
A-O12.359 (2)O1iv-A-O1iv162.30 (6)
A-O1iv2.481 (2)O2iv-A-O2viii80.97 (4)
A-O1iv3.027 (2)O1-A-O2vii118.03 (2)
A-O13.052 (2)O2ii-A-O1iv65.08 (3)
A-O2viii2.378 (1)
A-O2ii2.620 (1)
A-O2iv2.667 (1)
A-O2vi3.233 (1)
B-O1ii1.9513 (3)O1-B-O1ii180.0
B-O2vii1.956 (1)O2-B-O2vii89.41 (1)
B-O2v1.959 (1)O1-B-O289.58 (6)
Notes: [Symmetry code: i) x, y, z; ii) -x, -y, z + 1/2; iii) (x + 1/2) -1, -y + 1/2, -z; iv) -x + 1/2, (y + 1/2) - 1, 1- (-z + 1/2); v) -x, -y, -z; vi) x, y, 1 - (-z + 1/2); vii) -x + 1/2, y + 1/2, z; viii) (x + 1/2) - 1, -y + 1/2, z + 1/2; ix) -x, -y + 1, (z + 1/2) -1].
 

Acknowledgements

The authors are grateful to Dr José Affonso Brod, University of Brasília, Brazil, for providing the perovskite samples, and to Mr William T. Soares for the microprobe analysis. This work was supported by the Minas Gerais Foundation for Research Development, FAPEMIG (Grant CEX 1123/90). EGG is grateful to the Brazilian Science Research Council, CNPq, for providing a graduate fellowship.

References

First citationBanfield, J. F. & Veblen, D. R. (1992). Am. Mineral. 77, 545-557.  CAS Google Scholar
First citationBeran, A., Libowittzky, E. & Armbruster, T. (1996). Can. Mineral. 34, 803-809.  CAS Google Scholar
First citationChakhmouradian, A. R. & Mitchell, R. H. (1998). Can. Mineral. 36, 953-969.  CAS Google Scholar
First citationCrystalMaker (2007). CrystalMaker for Windows. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHaggerty, S. E. & Mariano, A. N. (1983). Contrib. Mineral. Petrol. 84, 365-381.  CrossRef CAS Web of Science Google Scholar
First citationKay, H. F. & Bailey, P. C. (1957). Acta Cryst. 10, 219–226.  CrossRef CAS IUCr Journals Google Scholar
First citationLloyd, F. E. & Bailey, D. K. (1991). 5th International Kimberlite Conference (Extended Abstracts), edited by O. H. Leonardos, H. O. A. Meyer & J. C. Gaspar, pp. 263–269. Araxá, Brazil, CPRM, Special Publication 3/91.  Google Scholar
First citationMariano, A. N. & Mitchell, R. H. (1991). Proceedings of the 5th International Conference, Araxa, Brazil, pp. 251–253. Extended Abstracts.  Google Scholar
First citationSeer, H. J. & Moraes, L. C. (1988). Rev. Bras. Geo. 18, 134-140.  Google Scholar
First citationSgarbi, P. B. A. & Gaspar, J. C. (1995). 6th International Kimberlite Conference (Extended Abstracts), Novosibirsk, Rússia, pp. 498–499.  Google Scholar
First citationSgarbi, P. B. A. & Valença, J. G. (1994). International Symposium on the Physics and Chemistry of the Upper Mantle (Extended Abstracts), pp. 27–29. São Paulo, Brazil: CPRM/FAPESP.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSoubies, F., Melfi, A. J. & Autefage, F. (1991). Rev. Bras. Geo. 21, 3-16.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds