metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­copper(II)]-bis­­[μ-1,1′-(butane-1,4-di­yl)di­imidazole-κ2N3:N3′]] dinitrate]

aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: wangxf103@mail.jlu.edu.cn

(Received 22 July 2008; accepted 25 August 2008; online 30 August 2008)

In the title compound, {[Cu(C10H14N4)2(H2O)2](NO3)2}n, the CuII ion lies on an inversion center and is six-coordinated in an octa­hedral environment by four N atoms from four different 1,1′-butane-1,4-diyldiimidazole ligands and two O atoms from the two water mol­ecules. Bridging by the ligands results in a ribbon structure. Adjacent ribbons are linked to the nitrate anions via O—H⋯O hydrogen bonds, forming layers. One nitrate O atom is disordered equally over two positions.

Related literature

For background and the synthesis of 1,1′-butane-1,4-diyldiimidazole, see: Ma et al. (2003[Ma, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531-7534.]). For the crystal structure of a metal adduct, see: Che et al. (2006[Che, G.-B., Liu, H., Liu, C.-B. & Liu, B. (2006). Acta Cryst. E62, m286-m288.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H14N4)2(H2O)2](NO3)2

  • Mr = 604.10

  • Monoclinic, C 2/c

  • a = 22.161 (11) Å

  • b = 10.334 (4) Å

  • c = 14.366 (7) Å

  • β = 126.375 (18)°

  • V = 2649 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 291 (2) K

  • 0.48 × 0.36 × 0.25 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.673, Tmax = 0.808

  • 12704 measured reflections

  • 3023 independent reflections

  • 2753 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.113

  • S = 1.07

  • 3023 reflections

  • 188 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯O4i 0.85 1.96 2.801 (4) 170
O5—H12⋯O3ii 0.85 2.10 2.888 (8) 153
Symmetry codes: (i) [-x+1, y+1, -z+{\script{3\over 2}}]; (ii) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The 1,1'-butane-1,4-diyldiimidazole can be used as a flexible ligand to construct coordination polymeric compounds (Ma et al., 2003; Che et al., 2006). In this paper, we report the new title compound, (I), synthesized by the reaction of 1,1'-butane-1,4-diyldiimidazole ligands and copper dinitrate in methanol.

The CuII atom is located on an inversion centre and is hexacoordinated by four N atoms of four different 1,1'-butane-1,4-diyldiimidazole ligands and two O atoms of two water molecules (Fig. 1). Adjacent Cu(II) ions are linked by pairs of 1,1'-butane-1,4- diyldiimidazole molecules, resulting in a ribbon motif (Fig. 2).

In the crystal structure, uncoordinated nitrate anions link these ribbons into a layer structure via O—H···O hydrogen bonds (Table 1,Figure 3).

Related literature top

For background and the synthesis of 1,1'-butane-1,4-diyldiimidazole, see: Ma et al. (2003). For the crystal structure of metal adduct, see: Che et al. (2006).

Experimental top

1,1'-Butane-1,4-diyldiimidazole was prepared from imidazole and 1,4-dibromobutane in DMSO (Ma et al., 2003). 1,1'-(1,4-Butanediyl)diimidazole (0.380 g, 2 mmol) and copper dinitrate (0.188 g, 2 mmol) were dissolved in hot methanol solution (15 ml) to give a clear solution was obtained. The resulting solution was allowed to stand in a desiccator at room temperature for several days. Blue crystals of (I) were obtained.

Refinement top

The O3 atom of the nitrate is refined with a split model over two positions, with occupancy of 0.5 for O3 and O3'. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (Caromatic); C—H = 0.97 Å (methylene) and with Uiso(H) = 1.2Ueq(C). Water H atoms were initially located in a difference Fourier map, but they were treated as riding on their parent atoms with O—H = 0.85 Å and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms. Dashed lines indicate the hydrogen-bonding interactions [Symmetry code: (I) -x + 1, y, -z + 3/2; (II) -x + 1/2, -y + 3/2, -z - 1;(III) x + 1/2, -y + 3/2, z + 1/2].
[Figure 2] Fig. 2. A partial packing view, showing the ribbon chain structure.
[Figure 3] Fig. 3. A partial packing view, showing the two-dimensional network. Dashed lines indicate the hydrogen-bonding interactions and H atoms have been omitted.
catena-Poly[[[diaquacopper(II)]-bis[µ-1,1'-(butane-1,4- diyl)diimidazole-κ2N3:N3']] dinitrate] top
Crystal data top
[Cu(C10H14N4)2(H2O)2](NO3)2F(000) = 1260
Mr = 604.10Dx = 1.515 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 11099 reflections
a = 22.161 (11) Åθ = 3.3–27.5°
b = 10.334 (4) ŵ = 0.89 mm1
c = 14.366 (7) ÅT = 291 K
β = 126.375 (18)°Block, blue
V = 2649 (2) Å30.48 × 0.36 × 0.25 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3023 independent reflections
Radiation source: fine-focus sealed tube2753 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2828
Tmin = 0.673, Tmax = 0.808k = 1312
12704 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0644P)2 + 3.5066P]
where P = (Fo2 + 2Fc2)/3
3023 reflections(Δ/σ)max = 0.001
188 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Cu(C10H14N4)2(H2O)2](NO3)2V = 2649 (2) Å3
Mr = 604.10Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.161 (11) ŵ = 0.89 mm1
b = 10.334 (4) ÅT = 291 K
c = 14.366 (7) Å0.48 × 0.36 × 0.25 mm
β = 126.375 (18)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3023 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2753 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.808Rint = 0.024
12704 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.07Δρmax = 0.82 e Å3
3023 reflectionsΔρmin = 0.55 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.43494 (12)0.5667 (2)0.87357 (19)0.0360 (4)
H10.43870.48020.86000.043*
C20.40800 (13)0.6108 (2)0.9310 (2)0.0395 (5)
H20.39010.56110.96380.047*
C30.44106 (11)0.7749 (2)0.87476 (18)0.0321 (4)
H30.44950.85930.86270.038*
C40.38590 (14)0.8327 (3)0.9787 (2)0.0460 (6)
H4A0.40390.91900.98070.055*
H4B0.40690.80781.05760.055*
C50.30100 (14)0.8355 (3)0.9086 (2)0.0514 (7)
H5A0.28720.89260.94670.062*
H5B0.28360.74930.90840.062*
C60.26042 (14)0.8803 (3)0.7830 (2)0.0473 (6)
H6A0.21280.91860.75690.057*
H6B0.29020.94700.78040.057*
C70.24623 (12)0.7730 (2)0.70083 (18)0.0394 (5)
H7A0.29380.74050.72140.047*
H7B0.22050.70230.70820.047*
C80.22282 (12)0.9038 (3)0.5330 (2)0.0427 (5)
H80.26960.94270.56990.051*
C90.16308 (12)0.9201 (3)0.42203 (19)0.0402 (5)
H90.16190.97310.36870.048*
C100.12939 (11)0.7874 (2)0.49805 (18)0.0325 (4)
H100.10100.73150.50860.039*
Cu10.50000.66433 (3)0.75000.02769 (13)
N10.45588 (9)0.67011 (16)0.83845 (14)0.0293 (4)
N20.41221 (9)0.74259 (19)0.93120 (14)0.0328 (4)
N30.20075 (10)0.81828 (18)0.58036 (16)0.0342 (4)
N40.10424 (9)0.84658 (17)0.39970 (15)0.0317 (4)
N50.59796 (14)0.1501 (2)0.7259 (3)0.0516 (6)
O10.50000.9027 (3)0.75000.0740 (10)
H110.46280.95230.72540.111*
O20.5825 (2)0.0978 (4)0.6366 (3)0.1229 (13)
O30.5894 (5)0.2662 (7)0.7011 (8)0.089 (2)0.50
O40.61485 (19)0.0723 (3)0.8025 (3)0.0997 (10)
O50.50000.4120 (3)0.75000.0640 (8)
H120.46900.35730.74330.082 (13)*
O3'0.6140 (5)0.2592 (7)0.7753 (9)0.099 (3)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0384 (11)0.0388 (11)0.0349 (10)0.0060 (9)0.0239 (9)0.0065 (9)
C20.0400 (11)0.0502 (13)0.0353 (11)0.0056 (10)0.0263 (10)0.0109 (10)
C30.0270 (9)0.0405 (11)0.0284 (9)0.0014 (8)0.0162 (8)0.0031 (8)
C40.0390 (12)0.0706 (17)0.0274 (11)0.0129 (11)0.0191 (10)0.0063 (10)
C50.0388 (12)0.089 (2)0.0311 (12)0.0203 (12)0.0233 (11)0.0022 (11)
C60.0419 (12)0.0596 (14)0.0324 (11)0.0185 (11)0.0178 (10)0.0020 (11)
C70.0314 (10)0.0485 (13)0.0256 (10)0.0068 (9)0.0099 (9)0.0054 (9)
C80.0284 (10)0.0633 (15)0.0339 (11)0.0104 (10)0.0170 (9)0.0013 (10)
C90.0313 (10)0.0588 (14)0.0309 (10)0.0083 (10)0.0187 (9)0.0017 (10)
C100.0263 (9)0.0397 (10)0.0281 (10)0.0016 (8)0.0144 (8)0.0021 (8)
Cu10.02036 (18)0.0421 (2)0.02152 (19)0.0000.01289 (15)0.000
N10.0239 (8)0.0408 (9)0.0241 (8)0.0015 (6)0.0147 (7)0.0004 (6)
N20.0254 (8)0.0509 (10)0.0216 (8)0.0055 (7)0.0135 (7)0.0009 (7)
N30.0252 (8)0.0453 (10)0.0258 (9)0.0011 (7)0.0116 (7)0.0020 (7)
N40.0249 (8)0.0436 (9)0.0260 (8)0.0019 (7)0.0147 (7)0.0002 (7)
N50.0477 (12)0.0460 (12)0.0739 (17)0.0010 (9)0.0430 (13)0.0065 (11)
O10.098 (2)0.0383 (14)0.134 (3)0.0000.095 (3)0.000
O20.162 (3)0.137 (3)0.090 (2)0.032 (3)0.086 (3)0.006 (2)
O30.112 (6)0.045 (3)0.150 (7)0.023 (4)0.098 (6)0.024 (5)
O40.109 (2)0.108 (2)0.0686 (16)0.0290 (19)0.0449 (16)0.0012 (16)
O50.086 (2)0.0417 (14)0.097 (2)0.0000.072 (2)0.000
O3'0.085 (5)0.043 (3)0.158 (8)0.002 (3)0.066 (6)0.001 (5)
Geometric parameters (Å, º) top
C1—C21.352 (3)C8—C91.349 (3)
C1—N11.374 (3)C8—N31.370 (3)
C1—H10.9300C8—H80.9300
C2—N21.365 (3)C9—N41.372 (3)
C2—H20.9300C9—H90.9300
C3—N11.325 (3)C10—N41.322 (3)
C3—N21.339 (3)C10—N31.335 (3)
C3—H30.9300C10—H100.9300
C4—N21.465 (3)Cu1—N12.0120 (18)
C4—C51.519 (4)Cu1—N1i2.0120 (18)
C4—H4A0.9700Cu1—N4ii2.020 (2)
C4—H4B0.9700Cu1—N4iii2.020 (2)
C5—C61.535 (3)Cu1—O12.463 (3)
C5—H5A0.9700Cu1—O52.608 (3)
C5—H5B0.9700N4—Cu1ii2.0203 (19)
C6—C71.510 (3)N5—O41.228 (4)
C6—H6A0.9700N5—O31.234 (7)
C6—H6B0.9700N5—O21.239 (4)
C7—N31.470 (3)O1—H110.8500
C7—H7A0.9700O5—H120.8500
C7—H7B0.9700
C2—C1—N1109.2 (2)C8—C9—H9125.1
C2—C1—H1125.4N4—C9—H9125.1
N1—C1—H1125.4N4—C10—N3111.30 (19)
C1—C2—N2106.46 (19)N4—C10—H10124.3
C1—C2—H2126.8N3—C10—H10124.3
N2—C2—H2126.8N1—Cu1—N1i176.60 (10)
N1—C3—N2110.72 (19)N1—Cu1—N4ii89.82 (8)
N1—C3—H3124.6N1i—Cu1—N4ii90.37 (8)
N2—C3—H3124.6N1—Cu1—N4iii90.37 (8)
N2—C4—C5112.4 (2)N1i—Cu1—N4iii89.82 (8)
N2—C4—H4A109.1N4ii—Cu1—N4iii173.60 (10)
C5—C4—H4A109.1N1—Cu1—O188.30 (5)
N2—C4—H4B109.1N1i—Cu1—O188.30 (5)
C5—C4—H4B109.1N4ii—Cu1—O193.20 (5)
H4A—C4—H4B107.8N4iii—Cu1—O193.20 (5)
C4—C5—C6114.7 (2)N1—Cu1—O591.70 (5)
C4—C5—H5A108.6N1i—Cu1—O591.70 (5)
C6—C5—H5A108.6N4ii—Cu1—O586.80 (5)
C4—C5—H5B108.6N4iii—Cu1—O586.80 (5)
C6—C5—H5B108.6O1—Cu1—O5180.000 (1)
H5A—C5—H5B107.6C3—N1—C1105.91 (18)
C7—C6—C5113.8 (2)C3—N1—Cu1126.85 (14)
C7—C6—H6A108.8C1—N1—Cu1127.24 (14)
C5—C6—H6A108.8C3—N2—C2107.66 (18)
C7—C6—H6B108.8C3—N2—C4126.1 (2)
C5—C6—H6B108.8C2—N2—C4126.2 (2)
H6A—C6—H6B107.7C10—N3—C8107.36 (18)
N3—C7—C6111.5 (2)C10—N3—C7126.27 (19)
N3—C7—H7A109.3C8—N3—C7126.33 (19)
C6—C7—H7A109.3C10—N4—C9105.44 (18)
N3—C7—H7B109.3C10—N4—Cu1ii127.10 (15)
C6—C7—H7B109.3C9—N4—Cu1ii127.43 (15)
H7A—C7—H7B108.0O4—N5—O3144.0 (5)
C9—C8—N3106.16 (19)O4—N5—O2113.1 (3)
C9—C8—H8126.9O3—N5—O2103.0 (5)
N3—C8—H8126.9Cu1—O1—H11127.1
C8—C9—N4109.7 (2)Cu1—O5—H12131.6
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O4iv0.851.962.801 (4)170
O5—H12···O3i0.852.102.888 (8)153
Symmetry codes: (i) x+1, y, z+3/2; (iv) x+1, y+1, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(C10H14N4)2(H2O)2](NO3)2
Mr604.10
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)22.161 (11), 10.334 (4), 14.366 (7)
β (°) 126.375 (18)
V3)2649 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.48 × 0.36 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.673, 0.808
No. of measured, independent and
observed [I > 2σ(I)] reflections
12704, 3023, 2753
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.07
No. of reflections3023
No. of parameters188
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.55

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O4i0.851.962.801 (4)170.0
O5—H12···O3ii0.852.102.888 (8)153.2
Symmetry codes: (i) x+1, y+1, z+3/2; (ii) x+1, y, z+3/2.
 

Acknowledgements

The authors thank Jilin University for supporting this study.

References

First citationChe, G.-B., Liu, H., Liu, C.-B. & Liu, B. (2006). Acta Cryst. E62, m286–m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMa, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531–7534.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds