metal-organic compounds
catena-Poly[[[diaquacopper(II)]-bis[μ-1,1′-(butane-1,4-diyl)diimidazole-κ2N3:N3′]] dinitrate]
aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: wangxf103@mail.jlu.edu.cn
In the title compound, {[Cu(C10H14N4)2(H2O)2](NO3)2}n, the CuII ion lies on an inversion center and is six-coordinated in an octahedral environment by four N atoms from four different 1,1′-butane-1,4-diyldiimidazole ligands and two O atoms from the two water molecules. Bridging by the ligands results in a ribbon structure. Adjacent ribbons are linked to the nitrate anions via O—H⋯O hydrogen bonds, forming layers. One nitrate O atom is disordered equally over two positions.
Related literature
For background and the synthesis of 1,1′-butane-1,4-diyldiimidazole, see: Ma et al. (2003). For the of a metal adduct, see: Che et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808027281/ng2477sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808027281/ng2477Isup2.hkl
1,1'-Butane-1,4-diyldiimidazole was prepared from imidazole and 1,4-dibromobutane in DMSO (Ma et al., 2003). 1,1'-(1,4-Butanediyl)diimidazole (0.380 g, 2 mmol) and copper dinitrate (0.188 g, 2 mmol) were dissolved in hot methanol solution (15 ml) to give a clear solution was obtained. The resulting solution was allowed to stand in a desiccator at room temperature for several days. Blue crystals of (I) were obtained.
The O3 atom of the nitrate is refined with a split model over two positions, with occupancy of 0.5 for O3 and O3'. H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (Caromatic); C—H = 0.97 Å (methylene) and with Uiso(H) = 1.2Ueq(C). Water H atoms were initially located in a difference Fourier map, but they were treated as riding on their parent atoms with O—H = 0.85 Å and with Uiso(H) = 1.5Ueq(O).
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu(C10H14N4)2(H2O)2](NO3)2 | F(000) = 1260 |
Mr = 604.10 | Dx = 1.515 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 11099 reflections |
a = 22.161 (11) Å | θ = 3.3–27.5° |
b = 10.334 (4) Å | µ = 0.89 mm−1 |
c = 14.366 (7) Å | T = 291 K |
β = 126.375 (18)° | Block, blue |
V = 2649 (2) Å3 | 0.48 × 0.36 × 0.25 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 3023 independent reflections |
Radiation source: fine-focus sealed tube | 2753 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ω scans | θmax = 27.5°, θmin = 3.3° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −28→28 |
Tmin = 0.673, Tmax = 0.808 | k = −13→12 |
12704 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0644P)2 + 3.5066P] where P = (Fo2 + 2Fc2)/3 |
3023 reflections | (Δ/σ)max = 0.001 |
188 parameters | Δρmax = 0.82 e Å−3 |
0 restraints | Δρmin = −0.55 e Å−3 |
[Cu(C10H14N4)2(H2O)2](NO3)2 | V = 2649 (2) Å3 |
Mr = 604.10 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 22.161 (11) Å | µ = 0.89 mm−1 |
b = 10.334 (4) Å | T = 291 K |
c = 14.366 (7) Å | 0.48 × 0.36 × 0.25 mm |
β = 126.375 (18)° |
Rigaku R-AXIS RAPID diffractometer | 3023 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2753 reflections with I > 2σ(I) |
Tmin = 0.673, Tmax = 0.808 | Rint = 0.024 |
12704 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.82 e Å−3 |
3023 reflections | Δρmin = −0.55 e Å−3 |
188 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.43494 (12) | 0.5667 (2) | 0.87357 (19) | 0.0360 (4) | |
H1 | 0.4387 | 0.4802 | 0.8600 | 0.043* | |
C2 | 0.40800 (13) | 0.6108 (2) | 0.9310 (2) | 0.0395 (5) | |
H2 | 0.3901 | 0.5611 | 0.9638 | 0.047* | |
C3 | 0.44106 (11) | 0.7749 (2) | 0.87476 (18) | 0.0321 (4) | |
H3 | 0.4495 | 0.8593 | 0.8627 | 0.038* | |
C4 | 0.38590 (14) | 0.8327 (3) | 0.9787 (2) | 0.0460 (6) | |
H4A | 0.4039 | 0.9190 | 0.9807 | 0.055* | |
H4B | 0.4069 | 0.8078 | 1.0576 | 0.055* | |
C5 | 0.30100 (14) | 0.8355 (3) | 0.9086 (2) | 0.0514 (7) | |
H5A | 0.2872 | 0.8926 | 0.9467 | 0.062* | |
H5B | 0.2836 | 0.7493 | 0.9084 | 0.062* | |
C6 | 0.26042 (14) | 0.8803 (3) | 0.7830 (2) | 0.0473 (6) | |
H6A | 0.2128 | 0.9186 | 0.7569 | 0.057* | |
H6B | 0.2902 | 0.9470 | 0.7804 | 0.057* | |
C7 | 0.24623 (12) | 0.7730 (2) | 0.70083 (18) | 0.0394 (5) | |
H7A | 0.2938 | 0.7405 | 0.7214 | 0.047* | |
H7B | 0.2205 | 0.7023 | 0.7082 | 0.047* | |
C8 | 0.22282 (12) | 0.9038 (3) | 0.5330 (2) | 0.0427 (5) | |
H8 | 0.2696 | 0.9427 | 0.5699 | 0.051* | |
C9 | 0.16308 (12) | 0.9201 (3) | 0.42203 (19) | 0.0402 (5) | |
H9 | 0.1619 | 0.9731 | 0.3687 | 0.048* | |
C10 | 0.12939 (11) | 0.7874 (2) | 0.49805 (18) | 0.0325 (4) | |
H10 | 0.1010 | 0.7315 | 0.5086 | 0.039* | |
Cu1 | 0.5000 | 0.66433 (3) | 0.7500 | 0.02769 (13) | |
N1 | 0.45588 (9) | 0.67011 (16) | 0.83845 (14) | 0.0293 (4) | |
N2 | 0.41221 (9) | 0.74259 (19) | 0.93120 (14) | 0.0328 (4) | |
N3 | 0.20075 (10) | 0.81828 (18) | 0.58036 (16) | 0.0342 (4) | |
N4 | 0.10424 (9) | 0.84658 (17) | 0.39970 (15) | 0.0317 (4) | |
N5 | 0.59796 (14) | 0.1501 (2) | 0.7259 (3) | 0.0516 (6) | |
O1 | 0.5000 | 0.9027 (3) | 0.7500 | 0.0740 (10) | |
H11 | 0.4628 | 0.9523 | 0.7254 | 0.111* | |
O2 | 0.5825 (2) | 0.0978 (4) | 0.6366 (3) | 0.1229 (13) | |
O3 | 0.5894 (5) | 0.2662 (7) | 0.7011 (8) | 0.089 (2) | 0.50 |
O4 | 0.61485 (19) | 0.0723 (3) | 0.8025 (3) | 0.0997 (10) | |
O5 | 0.5000 | 0.4120 (3) | 0.7500 | 0.0640 (8) | |
H12 | 0.4690 | 0.3573 | 0.7433 | 0.082 (13)* | |
O3' | 0.6140 (5) | 0.2592 (7) | 0.7753 (9) | 0.099 (3) | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0384 (11) | 0.0388 (11) | 0.0349 (10) | 0.0060 (9) | 0.0239 (9) | 0.0065 (9) |
C2 | 0.0400 (11) | 0.0502 (13) | 0.0353 (11) | 0.0056 (10) | 0.0263 (10) | 0.0109 (10) |
C3 | 0.0270 (9) | 0.0405 (11) | 0.0284 (9) | −0.0014 (8) | 0.0162 (8) | −0.0031 (8) |
C4 | 0.0390 (12) | 0.0706 (17) | 0.0274 (11) | 0.0129 (11) | 0.0191 (10) | −0.0063 (10) |
C5 | 0.0388 (12) | 0.089 (2) | 0.0311 (12) | 0.0203 (12) | 0.0233 (11) | 0.0022 (11) |
C6 | 0.0419 (12) | 0.0596 (14) | 0.0324 (11) | 0.0185 (11) | 0.0178 (10) | 0.0020 (11) |
C7 | 0.0314 (10) | 0.0485 (13) | 0.0256 (10) | 0.0068 (9) | 0.0099 (9) | 0.0054 (9) |
C8 | 0.0284 (10) | 0.0633 (15) | 0.0339 (11) | −0.0104 (10) | 0.0170 (9) | −0.0013 (10) |
C9 | 0.0313 (10) | 0.0588 (14) | 0.0309 (10) | −0.0083 (10) | 0.0187 (9) | 0.0017 (10) |
C10 | 0.0263 (9) | 0.0397 (10) | 0.0281 (10) | −0.0016 (8) | 0.0144 (8) | 0.0021 (8) |
Cu1 | 0.02036 (18) | 0.0421 (2) | 0.02152 (19) | 0.000 | 0.01289 (15) | 0.000 |
N1 | 0.0239 (8) | 0.0408 (9) | 0.0241 (8) | 0.0015 (6) | 0.0147 (7) | −0.0004 (6) |
N2 | 0.0254 (8) | 0.0509 (10) | 0.0216 (8) | 0.0055 (7) | 0.0135 (7) | −0.0009 (7) |
N3 | 0.0252 (8) | 0.0453 (10) | 0.0258 (9) | 0.0011 (7) | 0.0116 (7) | 0.0020 (7) |
N4 | 0.0249 (8) | 0.0436 (9) | 0.0260 (8) | −0.0019 (7) | 0.0147 (7) | 0.0002 (7) |
N5 | 0.0477 (12) | 0.0460 (12) | 0.0739 (17) | 0.0010 (9) | 0.0430 (13) | 0.0065 (11) |
O1 | 0.098 (2) | 0.0383 (14) | 0.134 (3) | 0.000 | 0.095 (3) | 0.000 |
O2 | 0.162 (3) | 0.137 (3) | 0.090 (2) | −0.032 (3) | 0.086 (3) | −0.006 (2) |
O3 | 0.112 (6) | 0.045 (3) | 0.150 (7) | 0.023 (4) | 0.098 (6) | 0.024 (5) |
O4 | 0.109 (2) | 0.108 (2) | 0.0686 (16) | −0.0290 (19) | 0.0449 (16) | 0.0012 (16) |
O5 | 0.086 (2) | 0.0417 (14) | 0.097 (2) | 0.000 | 0.072 (2) | 0.000 |
O3' | 0.085 (5) | 0.043 (3) | 0.158 (8) | 0.002 (3) | 0.066 (6) | 0.001 (5) |
C1—C2 | 1.352 (3) | C8—C9 | 1.349 (3) |
C1—N1 | 1.374 (3) | C8—N3 | 1.370 (3) |
C1—H1 | 0.9300 | C8—H8 | 0.9300 |
C2—N2 | 1.365 (3) | C9—N4 | 1.372 (3) |
C2—H2 | 0.9300 | C9—H9 | 0.9300 |
C3—N1 | 1.325 (3) | C10—N4 | 1.322 (3) |
C3—N2 | 1.339 (3) | C10—N3 | 1.335 (3) |
C3—H3 | 0.9300 | C10—H10 | 0.9300 |
C4—N2 | 1.465 (3) | Cu1—N1 | 2.0120 (18) |
C4—C5 | 1.519 (4) | Cu1—N1i | 2.0120 (18) |
C4—H4A | 0.9700 | Cu1—N4ii | 2.020 (2) |
C4—H4B | 0.9700 | Cu1—N4iii | 2.020 (2) |
C5—C6 | 1.535 (3) | Cu1—O1 | 2.463 (3) |
C5—H5A | 0.9700 | Cu1—O5 | 2.608 (3) |
C5—H5B | 0.9700 | N4—Cu1ii | 2.0203 (19) |
C6—C7 | 1.510 (3) | N5—O4 | 1.228 (4) |
C6—H6A | 0.9700 | N5—O3 | 1.234 (7) |
C6—H6B | 0.9700 | N5—O2 | 1.239 (4) |
C7—N3 | 1.470 (3) | O1—H11 | 0.8500 |
C7—H7A | 0.9700 | O5—H12 | 0.8500 |
C7—H7B | 0.9700 | ||
C2—C1—N1 | 109.2 (2) | C8—C9—H9 | 125.1 |
C2—C1—H1 | 125.4 | N4—C9—H9 | 125.1 |
N1—C1—H1 | 125.4 | N4—C10—N3 | 111.30 (19) |
C1—C2—N2 | 106.46 (19) | N4—C10—H10 | 124.3 |
C1—C2—H2 | 126.8 | N3—C10—H10 | 124.3 |
N2—C2—H2 | 126.8 | N1—Cu1—N1i | 176.60 (10) |
N1—C3—N2 | 110.72 (19) | N1—Cu1—N4ii | 89.82 (8) |
N1—C3—H3 | 124.6 | N1i—Cu1—N4ii | 90.37 (8) |
N2—C3—H3 | 124.6 | N1—Cu1—N4iii | 90.37 (8) |
N2—C4—C5 | 112.4 (2) | N1i—Cu1—N4iii | 89.82 (8) |
N2—C4—H4A | 109.1 | N4ii—Cu1—N4iii | 173.60 (10) |
C5—C4—H4A | 109.1 | N1—Cu1—O1 | 88.30 (5) |
N2—C4—H4B | 109.1 | N1i—Cu1—O1 | 88.30 (5) |
C5—C4—H4B | 109.1 | N4ii—Cu1—O1 | 93.20 (5) |
H4A—C4—H4B | 107.8 | N4iii—Cu1—O1 | 93.20 (5) |
C4—C5—C6 | 114.7 (2) | N1—Cu1—O5 | 91.70 (5) |
C4—C5—H5A | 108.6 | N1i—Cu1—O5 | 91.70 (5) |
C6—C5—H5A | 108.6 | N4ii—Cu1—O5 | 86.80 (5) |
C4—C5—H5B | 108.6 | N4iii—Cu1—O5 | 86.80 (5) |
C6—C5—H5B | 108.6 | O1—Cu1—O5 | 180.000 (1) |
H5A—C5—H5B | 107.6 | C3—N1—C1 | 105.91 (18) |
C7—C6—C5 | 113.8 (2) | C3—N1—Cu1 | 126.85 (14) |
C7—C6—H6A | 108.8 | C1—N1—Cu1 | 127.24 (14) |
C5—C6—H6A | 108.8 | C3—N2—C2 | 107.66 (18) |
C7—C6—H6B | 108.8 | C3—N2—C4 | 126.1 (2) |
C5—C6—H6B | 108.8 | C2—N2—C4 | 126.2 (2) |
H6A—C6—H6B | 107.7 | C10—N3—C8 | 107.36 (18) |
N3—C7—C6 | 111.5 (2) | C10—N3—C7 | 126.27 (19) |
N3—C7—H7A | 109.3 | C8—N3—C7 | 126.33 (19) |
C6—C7—H7A | 109.3 | C10—N4—C9 | 105.44 (18) |
N3—C7—H7B | 109.3 | C10—N4—Cu1ii | 127.10 (15) |
C6—C7—H7B | 109.3 | C9—N4—Cu1ii | 127.43 (15) |
H7A—C7—H7B | 108.0 | O4—N5—O3 | 144.0 (5) |
C9—C8—N3 | 106.16 (19) | O4—N5—O2 | 113.1 (3) |
C9—C8—H8 | 126.9 | O3—N5—O2 | 103.0 (5) |
N3—C8—H8 | 126.9 | Cu1—O1—H11 | 127.1 |
C8—C9—N4 | 109.7 (2) | Cu1—O5—H12 | 131.6 |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1/2, −y+3/2, −z+1; (iii) x+1/2, −y+3/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H11···O4iv | 0.85 | 1.96 | 2.801 (4) | 170 |
O5—H12···O3i | 0.85 | 2.10 | 2.888 (8) | 153 |
Symmetry codes: (i) −x+1, y, −z+3/2; (iv) −x+1, y+1, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C10H14N4)2(H2O)2](NO3)2 |
Mr | 604.10 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 291 |
a, b, c (Å) | 22.161 (11), 10.334 (4), 14.366 (7) |
β (°) | 126.375 (18) |
V (Å3) | 2649 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.89 |
Crystal size (mm) | 0.48 × 0.36 × 0.25 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.673, 0.808 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12704, 3023, 2753 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.113, 1.07 |
No. of reflections | 3023 |
No. of parameters | 188 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.82, −0.55 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H11···O4i | 0.85 | 1.96 | 2.801 (4) | 170.0 |
O5—H12···O3ii | 0.85 | 2.10 | 2.888 (8) | 153.2 |
Symmetry codes: (i) −x+1, y+1, −z+3/2; (ii) −x+1, y, −z+3/2. |
Acknowledgements
The authors thank Jilin University for supporting this study.
References
Che, G.-B., Liu, H., Liu, C.-B. & Liu, B. (2006). Acta Cryst. E62, m286–m288. Web of Science CSD CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Ma, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531–7534. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The 1,1'-butane-1,4-diyldiimidazole can be used as a flexible ligand to construct coordination polymeric compounds (Ma et al., 2003; Che et al., 2006). In this paper, we report the new title compound, (I), synthesized by the reaction of 1,1'-butane-1,4-diyldiimidazole ligands and copper dinitrate in methanol.
The CuII atom is located on an inversion centre and is hexacoordinated by four N atoms of four different 1,1'-butane-1,4-diyldiimidazole ligands and two O atoms of two water molecules (Fig. 1). Adjacent Cu(II) ions are linked by pairs of 1,1'-butane-1,4- diyldiimidazole molecules, resulting in a ribbon motif (Fig. 2).
In the crystal structure, uncoordinated nitrate anions link these ribbons into a layer structure via O—H···O hydrogen bonds (Table 1,Figure 3).