metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ-Piperazine-1,4-dicarbodi­thioato-κ4S,S′:S′′,S′′′)bis­­[tri­phenyl­tin(IV)] di­chloro­methane solvate

aDepartment of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA
*Correspondence e-mail: edward.tiekink@utsa.edu

(Received 1 August 2008; accepted 11 August 2008; online 16 August 2008)

The dinuclear centrosymmetric title compound, [Sn2(C6H5)6(C6H8N2S4)]·CH2Cl2, features a distorted cis-trigonal–bipyramidal coordination geometry for Sn based on a C3S2 donor set. The dinuclear mol­ecule lies across a centre of inversion. The solvent dichloro­methane mol­ecule is disordered about a centre of inversion.

Related literature

For a review of tin dithio­carbamates, see: Tiekink (2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 553-550.]). For a related structure, see: Yin et al. (2002[Yin, H.-D., Ma, C.-L., Wang, Y., Fang, H.-X. & Shao, J.-X. (2002). Chin. J. Chem. 60, 897-903.]). For analysis of trigonal–bipyramidal geometries, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn2(C6H5)6(C6H8N2S4)]·CH2Cl2

  • Mr = 1021.37

  • Monoclinic, P 21 /c

  • a = 14.681 (5) Å

  • b = 10.758 (3) Å

  • c = 13.470 (4) Å

  • β = 90.379 (6)°

  • V = 2127.3 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 98 (2) K

  • 0.35 × 0.15 × 0.01 mm

Data collection
  • Rigaku AFC12κ/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.354, Tmax = 1 (expected range = 0.346–0.977)

  • 14400 measured reflections

  • 4389 independent reflections

  • 4021 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.113

  • S = 1.10

  • 4389 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −1.12 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tin dithiocarbamates continue to attract interest owing to their variety of applications (Tiekink, 2008). The title compound, Ph3SnS2CN(CH2CH2)2NCS2SnPh3, has been reported previously as a methanol solvate (Yin et al., 2002). The present structure (I) has been isolated as a dichloromethane solvate, Fig. 1. The molecule is centrosymmetric so that the Ph3Sn entities lie to either side of the pyrrolidine ring which adopts a chair conformation. The dithiocarbamate ligand coordinates in an asymmetric mode, forming Sn—S1 and Sn—S2 distances of 2.4699 (13) and 3.0715 (13) Å, respectively. The coordination geometry is based on a distorted trigonal bipyramid as indicated by the value of τ = 0.64 (Addison et al., 1984).

Related literature top

For a review of tin dithiocarbamates, see: Tiekink (2008). For a related structure, see: Yin et al. (2002). For analysis of trigonal–bipyramidal geometries, see: Addison et al. (1984).

Experimental top

The title compound was prepared by following a literature procedure (Yin et al., 2002). Colourless crystals were isolated by the slow evaporation of a dichloromethane solution of (I); m.p. 487–489 K (crystal turned opaque at 363–368 K). TGA: two steps, First mass loss 7.2% (onset 388.3 K, midpoint 392.6 K, endset 396.9 K) corresponds to loss CH2Cl2 (8.2% theoretical). Second mass loss 69.3% (onset 558.5 K, midpoint 620 K, endset 680 K), corresponds to decomposition to SnS (total experimental mass loss 76.5% cf. theoretical value 70.5%). IR (cm-1): 1427, 1416 (strong, CN), 1214 (strong, C—S).

Refinement top

The H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The solvent dichloromethane molecule was disordered about a centre of inversion and was modelled with anisotropic displacement parameters.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the crystallographic numbering scheme. Displacement ellipsoids are shown at the 70% probability level. Unlabelled atoms are related by the symmetry operation i: -x, 1-y, 1-z. The disordered dichloromethane molecule is omitted.
(µ-Piperazine-1,4-dicarbodithioto- κ4S,S':S'',S''')bis[triphenyltin(IV)] dichloromethane solvate top
Crystal data top
[Sn2(C6H5)6(C6H8N2S4)]·CH2Cl2F(000) = 1020
Mr = 1021.37Dx = 1.594 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 13756 reflections
a = 14.681 (5) Åθ = 2.4–40.7°
b = 10.758 (3) ŵ = 1.53 mm1
c = 13.470 (4) ÅT = 98 K
β = 90.379 (6)°Plate, colourless
V = 2127.3 (11) Å30.35 × 0.15 × 0.02 mm
Z = 2
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
4389 independent reflections
Radiation source: fine-focus sealed tube4021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 26.5°, θmin = 2.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1718
Tmin = 0.354, Tmax = 1k = 1313
14400 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.04P)2 + 8.4194P]
where P = (Fo2 + 2Fc2)/3
4389 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 1.12 e Å3
Crystal data top
[Sn2(C6H5)6(C6H8N2S4)]·CH2Cl2V = 2127.3 (11) Å3
Mr = 1021.37Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.681 (5) ŵ = 1.53 mm1
b = 10.758 (3) ÅT = 98 K
c = 13.470 (4) Å0.35 × 0.15 × 0.02 mm
β = 90.379 (6)°
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
4389 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4021 reflections with I > 2σ(I)
Tmin = 0.354, Tmax = 1Rint = 0.048
14400 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.10Δρmax = 0.77 e Å3
4389 reflectionsΔρmin = 1.12 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn0.23132 (2)0.37950 (3)0.17164 (2)0.02056 (11)
S10.10733 (8)0.32408 (10)0.28651 (9)0.0237 (3)
S20.12861 (8)0.59723 (11)0.26696 (9)0.0244 (3)
N10.0190 (3)0.4872 (4)0.3970 (3)0.0250 (9)
C10.0795 (3)0.4757 (4)0.3239 (3)0.0228 (9)
C20.0077 (3)0.6087 (4)0.4381 (4)0.0264 (11)
H2A0.07450.61930.43200.032*
H2B0.02200.67610.40020.032*
C30.0208 (3)0.6161 (4)0.5471 (4)0.0260 (10)
H3A0.08800.61280.55250.031*
H3B0.00010.69610.57560.031*
C40.2559 (3)0.1881 (4)0.1326 (3)0.0212 (9)
C50.2678 (3)0.1546 (5)0.0335 (4)0.0238 (10)
H50.26900.21740.01600.029*
C60.2780 (3)0.0316 (5)0.0060 (4)0.0284 (11)
H60.28460.01030.06200.034*
C70.2785 (3)0.0610 (4)0.0782 (4)0.0284 (11)
H70.28690.14530.05960.034*
C80.2666 (4)0.0303 (5)0.1768 (4)0.0320 (12)
H80.26640.09360.22590.038*
C90.2549 (3)0.0934 (4)0.2042 (4)0.0270 (10)
H90.24620.11390.27210.032*
C100.1869 (3)0.4710 (4)0.0402 (3)0.0231 (10)
C110.2262 (4)0.5821 (5)0.0088 (4)0.0413 (14)
H110.27670.61570.04420.050*
C120.1920 (4)0.6440 (5)0.0742 (5)0.0424 (15)
H120.21840.72050.09440.051*
C130.1199 (4)0.5948 (4)0.1273 (4)0.0272 (10)
H130.09660.63770.18360.033*
C140.0818 (4)0.4841 (5)0.0989 (4)0.0344 (12)
H140.03240.44970.13560.041*
C150.1166 (4)0.4223 (5)0.0151 (4)0.0307 (11)
H150.09080.34490.00380.037*
C160.3474 (3)0.4550 (4)0.2475 (4)0.0238 (10)
C170.4094 (3)0.3737 (5)0.2921 (4)0.0297 (11)
H170.40110.28650.28600.036*
C180.4830 (4)0.4199 (5)0.3453 (4)0.0369 (12)
H180.52470.36400.37590.044*
C190.4966 (4)0.5477 (5)0.3543 (4)0.0378 (13)
H190.54750.57910.39040.045*
C200.4352 (3)0.6280 (5)0.3103 (4)0.0308 (11)
H200.44390.71510.31650.037*
C210.3608 (3)0.5833 (4)0.2570 (4)0.0247 (10)
H210.31910.63970.22700.030*
C220.5409 (12)0.0134 (14)0.5721 (11)0.066 (4)0.50
H22A0.60460.04340.57640.080*0.50
H22B0.51720.00060.64000.080*0.50
Cl10.4667 (2)0.1259 (2)0.4994 (2)0.0958 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02652 (19)0.01628 (17)0.01887 (18)0.00089 (12)0.00114 (13)0.00000 (11)
S10.0281 (6)0.0167 (5)0.0263 (6)0.0002 (4)0.0029 (5)0.0026 (4)
S20.0294 (6)0.0191 (5)0.0247 (6)0.0000 (5)0.0020 (5)0.0025 (4)
N10.027 (2)0.0180 (19)0.030 (2)0.0038 (16)0.0035 (17)0.0006 (16)
C10.024 (2)0.023 (2)0.021 (2)0.0046 (18)0.0024 (18)0.0055 (18)
C20.025 (2)0.019 (2)0.035 (3)0.0045 (18)0.010 (2)0.0009 (19)
C30.024 (2)0.018 (2)0.036 (3)0.0017 (18)0.007 (2)0.001 (2)
C40.026 (2)0.015 (2)0.023 (2)0.0014 (17)0.0030 (18)0.0032 (17)
C50.024 (2)0.027 (2)0.021 (2)0.0037 (19)0.0010 (18)0.0005 (19)
C60.032 (3)0.030 (3)0.023 (3)0.001 (2)0.001 (2)0.008 (2)
C70.029 (3)0.018 (2)0.038 (3)0.0012 (19)0.002 (2)0.007 (2)
C80.043 (3)0.021 (2)0.032 (3)0.001 (2)0.007 (2)0.006 (2)
C90.035 (3)0.024 (2)0.022 (2)0.001 (2)0.003 (2)0.0007 (19)
C100.032 (2)0.018 (2)0.019 (2)0.0025 (18)0.0003 (19)0.0009 (17)
C110.057 (4)0.033 (3)0.034 (3)0.019 (3)0.024 (3)0.012 (2)
C120.060 (4)0.029 (3)0.039 (3)0.014 (3)0.013 (3)0.013 (2)
C130.041 (3)0.022 (2)0.019 (2)0.006 (2)0.001 (2)0.0006 (19)
C140.039 (3)0.029 (3)0.035 (3)0.004 (2)0.016 (2)0.002 (2)
C150.038 (3)0.024 (2)0.030 (3)0.007 (2)0.009 (2)0.003 (2)
C160.018 (2)0.027 (2)0.026 (3)0.0031 (18)0.0007 (18)0.0023 (19)
C170.028 (3)0.031 (3)0.030 (3)0.001 (2)0.004 (2)0.001 (2)
C180.029 (3)0.036 (3)0.045 (3)0.002 (2)0.006 (2)0.004 (3)
C190.032 (3)0.040 (3)0.041 (3)0.011 (2)0.005 (2)0.005 (3)
C200.026 (3)0.032 (3)0.034 (3)0.009 (2)0.002 (2)0.003 (2)
C210.023 (2)0.023 (2)0.027 (3)0.0027 (19)0.0017 (19)0.0021 (19)
C220.102 (12)0.050 (8)0.048 (9)0.001 (8)0.023 (8)0.001 (7)
Cl10.155 (3)0.0477 (11)0.0854 (17)0.0173 (13)0.0274 (17)0.0024 (11)
Geometric parameters (Å, º) top
Sn—C102.125 (5)C10—C151.373 (7)
Sn—C162.141 (5)C10—C111.394 (7)
Sn—C42.157 (4)C11—C121.392 (8)
Sn—S12.4699 (13)C11—H110.9500
Sn—S23.0715 (13)C12—C131.378 (8)
S1—C11.756 (5)C12—H120.9500
S2—C11.680 (5)C13—C141.370 (7)
N1—C11.337 (6)C13—H130.9500
N1—C3i1.466 (6)C14—C151.403 (7)
N1—C21.473 (6)C14—H140.9500
C2—C31.527 (7)C15—H150.9500
C2—H2A0.9900C16—C171.396 (7)
C2—H2B0.9900C16—C211.400 (7)
C3—N1i1.466 (6)C17—C181.385 (7)
C3—H3A0.9900C17—H170.9500
C3—H3B0.9900C18—C191.395 (8)
C4—C51.394 (6)C18—H180.9500
C4—C91.403 (7)C19—C201.380 (8)
C5—C61.382 (7)C19—H190.9500
C5—H50.9500C20—C211.389 (7)
C6—C71.392 (7)C20—H200.9500
C6—H60.9500C21—H210.9500
C7—C81.380 (7)C22—Cl1ii1.784 (15)
C7—H70.9500C22—Cl11.896 (16)
C8—C91.392 (7)C22—H22A0.9900
C8—H80.9500C22—H22B0.9900
C9—H90.9500Cl1—C22ii1.784 (15)
C10—Sn—C16117.43 (18)C8—C9—H9119.7
C10—Sn—C4106.86 (18)C4—C9—H9119.7
C16—Sn—C4110.16 (18)C15—C10—C11118.3 (5)
C10—Sn—S1114.23 (13)C15—C10—Sn120.1 (4)
C16—Sn—S1112.36 (13)C11—C10—Sn121.7 (4)
C4—Sn—S192.74 (12)C12—C11—C10120.4 (5)
C10—Sn—S281.15 (12)C12—C11—H11119.8
C16—Sn—S284.41 (13)C10—C11—H11119.8
C4—Sn—S2156.03 (12)C13—C12—C11120.3 (5)
S1—Sn—S263.66 (4)C13—C12—H12119.9
C1—S1—Sn97.41 (16)C11—C12—H12119.9
C1—S2—Sn79.09 (16)C14—C13—C12120.2 (5)
C1—N1—C3i125.3 (4)C14—C13—H13119.9
C1—N1—C2122.6 (4)C12—C13—H13119.9
C3i—N1—C2111.8 (4)C13—C14—C15119.3 (5)
N1—C1—S2123.6 (4)C13—C14—H14120.4
N1—C1—S1117.0 (4)C15—C14—H14120.4
S2—C1—S1119.4 (3)C10—C15—C14121.6 (5)
N1—C2—C3109.6 (4)C10—C15—H15119.2
N1—C2—H2A109.7C14—C15—H15119.2
C3—C2—H2A109.7C17—C16—C21119.2 (5)
N1—C2—H2B109.7C17—C16—Sn118.9 (4)
C3—C2—H2B109.7C21—C16—Sn121.9 (4)
H2A—C2—H2B108.2C18—C17—C16120.2 (5)
N1i—C3—C2110.3 (4)C18—C17—H17119.9
N1i—C3—H3A109.6C16—C17—H17119.9
C2—C3—H3A109.6C17—C18—C19120.6 (5)
N1i—C3—H3B109.6C17—C18—H18119.7
C2—C3—H3B109.6C19—C18—H18119.7
H3A—C3—H3B108.1C20—C19—C18119.1 (5)
C5—C4—C9118.2 (4)C20—C19—H19120.4
C5—C4—Sn120.2 (3)C18—C19—H19120.4
C9—C4—Sn121.5 (3)C19—C20—C21121.0 (5)
C6—C5—C4121.2 (5)C19—C20—H20119.5
C6—C5—H5119.4C21—C20—H20119.5
C4—C5—H5119.4C20—C21—C16119.8 (5)
C5—C6—C7119.8 (5)C20—C21—H21120.1
C5—C6—H6120.1C16—C21—H21120.1
C7—C6—H6120.1Cl1ii—C22—Cl1102.9 (8)
C8—C7—C6120.1 (5)Cl1ii—C22—H22A111.2
C8—C7—H7120.0Cl1—C22—H22A111.2
C6—C7—H7120.0Cl1ii—C22—H22B111.2
C7—C8—C9120.0 (5)Cl1—C22—H22B111.2
C7—C8—H8120.0H22A—C22—H22B109.1
C9—C8—H8120.0C22ii—Cl1—C2277.1 (8)
C8—C9—C4120.6 (5)
C10—Sn—S1—C169.6 (2)Sn—C4—C9—C8176.9 (4)
C16—Sn—S1—C167.4 (2)C16—Sn—C10—C15175.8 (4)
C4—Sn—S1—C1179.5 (2)C4—Sn—C10—C1551.5 (4)
S2—Sn—S1—C13.88 (16)S1—Sn—C10—C1549.5 (4)
C10—Sn—S2—C1126.8 (2)S2—Sn—C10—C15105.3 (4)
C16—Sn—S2—C1114.3 (2)C16—Sn—C10—C115.6 (5)
C4—Sn—S2—C115.0 (4)C4—Sn—C10—C11129.8 (5)
S1—Sn—S2—C14.10 (17)S1—Sn—C10—C11129.2 (4)
C3i—N1—C1—S2175.8 (4)S2—Sn—C10—C1173.4 (4)
C2—N1—C1—S22.8 (7)C15—C10—C11—C122.7 (9)
C3i—N1—C1—S14.6 (7)Sn—C10—C11—C12176.0 (5)
C2—N1—C1—S1177.6 (4)C10—C11—C12—C131.2 (10)
Sn—S2—C1—N1174.5 (4)C11—C12—C13—C140.4 (9)
Sn—S2—C1—S15.9 (2)C12—C13—C14—C150.5 (8)
Sn—S1—C1—N1173.0 (3)C11—C10—C15—C142.6 (8)
Sn—S1—C1—S27.3 (3)Sn—C10—C15—C14176.1 (4)
C1—N1—C2—C3116.5 (5)C13—C14—C15—C101.1 (8)
C3i—N1—C2—C357.4 (5)C10—Sn—C16—C17143.2 (4)
N1—C2—C3—N1i56.4 (5)C4—Sn—C16—C1720.6 (4)
C10—Sn—C4—C518.7 (4)S1—Sn—C16—C1781.2 (4)
C16—Sn—C4—C5110.0 (4)S2—Sn—C16—C17139.8 (4)
S1—Sn—C4—C5135.0 (4)C10—Sn—C16—C2139.4 (5)
S2—Sn—C4—C5125.3 (3)C4—Sn—C16—C21162.0 (4)
C10—Sn—C4—C9157.4 (4)S1—Sn—C16—C2196.1 (4)
C16—Sn—C4—C974.0 (4)S2—Sn—C16—C2137.6 (4)
S1—Sn—C4—C941.1 (4)C21—C16—C17—C180.2 (8)
S2—Sn—C4—C950.8 (6)Sn—C16—C17—C18177.2 (4)
C9—C4—C5—C60.3 (7)C16—C17—C18—C190.5 (9)
Sn—C4—C5—C6175.9 (4)C17—C18—C19—C200.6 (9)
C4—C5—C6—C71.4 (7)C18—C19—C20—C210.4 (9)
C5—C6—C7—C81.6 (8)C19—C20—C21—C160.0 (8)
C6—C7—C8—C90.5 (8)C17—C16—C21—C200.0 (7)
C7—C8—C9—C40.6 (8)Sn—C16—C21—C20177.4 (4)
C5—C4—C9—C80.7 (7)Cl1ii—C22—Cl1—C22ii0.000 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Sn2(C6H5)6(C6H8N2S4)]·CH2Cl2
Mr1021.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)98
a, b, c (Å)14.681 (5), 10.758 (3), 13.470 (4)
β (°) 90.379 (6)
V3)2127.3 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.35 × 0.15 × 0.02
Data collection
DiffractometerRigaku AFC12κ/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.354, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
14400, 4389, 4021
Rint0.048
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.113, 1.10
No. of reflections4389
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 1.12

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008.

 

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 553–550.  Web of Science CrossRef Google Scholar
First citationYin, H.-D., Ma, C.-L., Wang, Y., Fang, H.-X. & Shao, J.-X. (2002). Chin. J. Chem. 60, 897–903.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds