organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-2,4,6-tri­methyl-3-phenyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 15 August 2008; accepted 18 August 2008; online 23 August 2008)

The title compound, C17H15BrO2S, which was synthesized by the oxidation of 5-bromo-2,4,6-trimethyl-3-phenyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid, features a trigonally-coordinated S atom. The phenyl ring is approximately perpendicular to the plane of the benzofuran fragment [dihedral angle 75.11 (7)°]. The crystal structure is stabilized by non-classical C—H⋯O and Br⋯Br inter­actions [3.7169 (6) Å].

Related literature

For the crystal structures of similar 2-methyl-3-phenyl­sulfinyl-1-benzofuran derivatives, see: Seo et al. (2007[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o3204.]); Choi et al. (2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o486.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15BrO2S

  • Mr = 363.26

  • Monoclinic, C 2/c

  • a = 22.114 (2) Å

  • b = 10.4281 (8) Å

  • c = 16.675 (1) Å

  • β = 125.767 (1)°

  • V = 3120.1 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.77 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.528, Tmax = 0.762

  • 8646 measured reflections

  • 3055 independent reflections

  • 2607 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.081

  • S = 1.05

  • 3055 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2i 0.93 2.54 3.371 (3) 150
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to our communications on the synthesis and structures of 2-methyl-3-phenylsulfinyl-1-benzofuran analogues, viz. 5-bromo-2-methyl-3-phenylsulfinyl-1-benzofuran (Seo et al., 2007) and 5-iodo-2,7-dimethyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2008). Here we report the crystal structure of the title compound, 5-bromo-2,4,6-trimethyl-3-phenylsulfinyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.023 (2) Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9—C14) is almost perpendicular to the plane of the benzofuran ring system [75.11 (7)°]. The crystal packing (Fig. 2) is stabilized by intermolecular C—H···O interactions between a phenyl H atom of the phenylsulfinyl substituent and the oxygen of S?O unit, with a C14—H14···O2i separation of 2.54 Å (Fig. 2 and Table 1; symmetry code as in Fig. 2). Further stability comes from a Br···Brii interaction at 3.7169 (6) Å (Fig. 2).

Related literature top

For the crystal structures of similar 2-methyl-3-phenylsulfinyl-1-benzofuran derivatives, see: Seo et al. (2007); Choi et al. (2008).

Experimental top

77% 3-Chloroperoxybenzoic acid (123 mg, 0.55 mmol) was added in small portions to a stirred solution of 5-bromo-2,4,6-trimethyl-3-phenylsulfanyl-1-benzofuran (174 mg, 0.5 mmol) in dichloromethane (20 ml) at 273 K. After being stirred at room temperature for 4 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 78%, m.p. 446–447 K; Rf = 0.79 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.36 (s, 3H), 2.47 (s, 3H), 2.72 (s, 3H), 7.21 (s, 1H), 7.41–7.49 (m, 5H); EI—MS 364 [M+2], 362 [M+].

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H=0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. C—H···O and Br···Br interactions (dotted lines) in the title compound. [Symmetry code: (i) -x + 3/2, y + 1/2, -z + 3/2; (ii) -x + 1, y, -z + 1/2; (iii) -x + 3/2, y - 1/2, -z + 3/2.]
5-Bromo-2,4,6-trimethyl-3-phenylsulfinyl-1-benzofuran top
Crystal data top
C17H15BrO2SF(000) = 1472
Mr = 363.26Dx = 1.547 Mg m3
Monoclinic, C2/cMelting point = 446–447 K
Hall symbol: -C_2ycMo Kα radiation, λ = 0.71073 Å
a = 22.114 (2) ÅCell parameters from 4364 reflections
b = 10.4281 (8) Åθ = 2.3–27.6°
c = 16.675 (1) ŵ = 2.77 mm1
β = 125.767 (1)°T = 298 K
V = 3120.1 (4) Å3Block, colorless
Z = 80.30 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
3055 independent reflections
Radiation source: fine-focus sealed tube2607 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 3.0°
ϕ and ω scansh = 2726
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 912
Tmin = 0.528, Tmax = 0.762l = 2019
8646 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0445P)2 + 2.4497P]
where P = (Fo2 + 2Fc2)/3
3055 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
C17H15BrO2SV = 3120.1 (4) Å3
Mr = 363.26Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.114 (2) ŵ = 2.77 mm1
b = 10.4281 (8) ÅT = 298 K
c = 16.675 (1) Å0.30 × 0.20 × 0.10 mm
β = 125.767 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3055 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2607 reflections with I > 2σ(I)
Tmin = 0.528, Tmax = 0.762Rint = 0.015
8646 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
3055 reflectionsΔρmin = 0.65 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.533506 (16)0.68321 (3)0.38143 (2)0.06177 (12)
S0.74509 (3)0.26302 (5)0.71578 (4)0.03881 (14)
O10.64417 (8)0.49816 (16)0.78355 (11)0.0445 (4)
O20.70046 (10)0.17705 (14)0.62807 (13)0.0493 (4)
C10.68826 (11)0.3831 (2)0.71386 (15)0.0353 (4)
C20.63826 (11)0.48016 (19)0.64269 (15)0.0325 (4)
C30.61280 (11)0.5170 (2)0.54678 (15)0.0344 (4)
C40.56708 (11)0.6251 (2)0.51013 (16)0.0387 (5)
C50.54362 (12)0.6941 (2)0.55938 (18)0.0437 (5)
C60.56699 (12)0.6518 (2)0.65185 (18)0.0433 (5)
H60.55160.69270.68660.052*
C70.61363 (11)0.5474 (2)0.69097 (15)0.0368 (5)
C80.68938 (12)0.3992 (2)0.79549 (16)0.0426 (5)
C90.80112 (11)0.3609 (2)0.69393 (15)0.0354 (4)
C100.81357 (13)0.3179 (2)0.62659 (18)0.0434 (5)
H100.79140.24260.59150.052*
C110.85940 (14)0.3879 (3)0.6117 (2)0.0549 (6)
H110.86720.36080.56520.066*
C120.89331 (16)0.4973 (3)0.6653 (2)0.0638 (7)
H120.92450.54380.65580.077*
C130.88124 (15)0.5388 (3)0.7338 (2)0.0634 (7)
H130.90430.61320.76990.076*
C140.83519 (13)0.4705 (2)0.74880 (17)0.0477 (6)
H140.82720.49790.79500.057*
C150.63413 (14)0.4441 (2)0.48921 (17)0.0464 (5)
H15A0.59210.43950.42110.070*
H15B0.64940.35900.51560.070*
H15C0.67450.48730.49410.070*
C160.49532 (16)0.8122 (3)0.5165 (2)0.0644 (8)
H16A0.48910.84840.56420.097*
H16B0.44750.78930.45800.097*
H16C0.51870.87400.50010.097*
C170.73101 (17)0.3360 (3)0.89359 (19)0.0639 (8)
H17A0.75920.26540.89420.096*
H17B0.69650.30490.90640.096*
H17C0.76430.39660.94370.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.06404 (19)0.0623 (2)0.05692 (18)0.01291 (13)0.03418 (15)0.02859 (12)
S0.0454 (3)0.0340 (3)0.0419 (3)0.0069 (2)0.0283 (2)0.0079 (2)
O10.0456 (8)0.0564 (10)0.0369 (8)0.0034 (7)0.0271 (7)0.0034 (7)
O20.0603 (10)0.0352 (8)0.0607 (11)0.0054 (7)0.0400 (9)0.0046 (7)
C10.0386 (10)0.0360 (11)0.0338 (10)0.0023 (9)0.0226 (9)0.0029 (9)
C20.0326 (9)0.0303 (10)0.0366 (10)0.0017 (8)0.0214 (9)0.0003 (8)
C30.0342 (10)0.0333 (11)0.0367 (10)0.0025 (8)0.0214 (9)0.0011 (8)
C40.0359 (10)0.0351 (11)0.0411 (11)0.0027 (9)0.0203 (9)0.0058 (9)
C50.0334 (11)0.0353 (12)0.0542 (14)0.0009 (9)0.0209 (10)0.0011 (10)
C60.0348 (11)0.0436 (12)0.0509 (13)0.0014 (9)0.0247 (10)0.0110 (10)
C70.0342 (10)0.0400 (11)0.0377 (11)0.0045 (9)0.0219 (9)0.0047 (9)
C80.0443 (11)0.0491 (13)0.0372 (11)0.0020 (10)0.0254 (10)0.0040 (10)
C90.0354 (10)0.0327 (10)0.0371 (11)0.0051 (8)0.0206 (9)0.0033 (9)
C100.0488 (13)0.0405 (12)0.0452 (12)0.0009 (10)0.0298 (11)0.0044 (9)
C110.0593 (15)0.0597 (16)0.0608 (15)0.0007 (13)0.0437 (13)0.0003 (13)
C120.0615 (16)0.0614 (17)0.0824 (19)0.0138 (14)0.0499 (16)0.0009 (15)
C130.0581 (15)0.0517 (15)0.0765 (19)0.0172 (13)0.0371 (15)0.0170 (14)
C140.0487 (13)0.0460 (13)0.0479 (13)0.0011 (11)0.0279 (11)0.0100 (10)
C150.0559 (13)0.0511 (14)0.0396 (12)0.0086 (11)0.0320 (11)0.0078 (10)
C160.0557 (15)0.0468 (15)0.080 (2)0.0150 (12)0.0338 (15)0.0080 (13)
C170.0720 (18)0.082 (2)0.0390 (13)0.0163 (15)0.0334 (13)0.0139 (13)
Geometric parameters (Å, º) top
Br—Bri3.7169 (6)C9—C141.380 (3)
Br—C41.914 (2)C10—C111.385 (3)
S—O21.4930 (18)C10—H100.9300
S—C11.761 (2)C11—C121.371 (4)
S—C91.799 (2)C11—H110.9300
O1—C81.368 (3)C12—C131.385 (4)
O1—C71.373 (3)C12—H120.9300
C1—C81.357 (3)C13—C141.380 (4)
C1—C21.456 (3)C13—H130.9300
C2—C71.396 (3)C14—H140.9300
C2—C31.404 (3)C15—H15A0.9600
C3—C41.394 (3)C15—H15B0.9600
C3—C151.500 (3)C15—H15C0.9600
C4—C51.400 (3)C16—H16A0.9600
C5—C61.382 (4)C16—H16B0.9600
C5—C161.509 (3)C16—H16C0.9600
C6—C71.373 (3)C17—H17A0.9600
C6—H60.9300C17—H17B0.9600
C8—C171.483 (3)C17—H17C0.9600
C9—C101.378 (3)
O2—S—C1110.68 (10)C9—C10—H10120.3
O2—S—C9106.35 (10)C11—C10—H10120.3
C1—S—C999.28 (10)C12—C11—C10120.0 (2)
C8—O1—C7106.46 (16)C12—C11—H11120.0
C8—C1—C2106.94 (19)C10—C11—H11120.0
C8—C1—S118.37 (17)C11—C12—C13120.2 (2)
C2—C1—S134.65 (15)C11—C12—H12119.9
C7—C2—C3119.17 (19)C13—C12—H12119.9
C7—C2—C1104.22 (17)C14—C13—C12120.4 (2)
C3—C2—C1136.61 (19)C14—C13—H13119.8
C4—C3—C2115.22 (19)C12—C13—H13119.8
C4—C3—C15123.21 (19)C13—C14—C9118.8 (2)
C2—C3—C15121.57 (19)C13—C14—H14120.6
C3—C4—C5125.5 (2)C9—C14—H14120.6
C3—C4—Br117.02 (16)C3—C15—H15A109.5
C5—C4—Br117.45 (16)C3—C15—H15B109.5
C6—C5—C4117.7 (2)H15A—C15—H15B109.5
C6—C5—C16119.3 (2)C3—C15—H15C109.5
C4—C5—C16123.0 (2)H15A—C15—H15C109.5
C7—C6—C5118.1 (2)H15B—C15—H15C109.5
C7—C6—H6121.0C5—C16—H16A109.5
C5—C6—H6121.0C5—C16—H16B109.5
O1—C7—C6124.74 (19)H16A—C16—H16B109.5
O1—C7—C2111.03 (18)C5—C16—H16C109.5
C6—C7—C2124.2 (2)H16A—C16—H16C109.5
C1—C8—O1111.34 (19)H16B—C16—H16C109.5
C1—C8—C17133.4 (2)C8—C17—H17A109.5
O1—C8—C17115.2 (2)C8—C17—H17B109.5
C10—C9—C14121.2 (2)H17A—C17—H17B109.5
C10—C9—S118.02 (17)C8—C17—H17C109.5
C14—C9—S120.60 (17)H17A—C17—H17C109.5
C9—C10—C11119.4 (2)H17B—C17—H17C109.5
O2—S—C1—C8127.65 (18)C5—C6—C7—O1176.8 (2)
C9—S—C1—C8120.85 (19)C5—C6—C7—C20.9 (3)
O2—S—C1—C255.0 (2)C3—C2—C7—O1179.99 (17)
C9—S—C1—C256.5 (2)C1—C2—C7—O10.4 (2)
C8—C1—C2—C70.1 (2)C3—C2—C7—C62.0 (3)
S—C1—C2—C7177.40 (18)C1—C2—C7—C6177.5 (2)
C8—C1—C2—C3179.6 (2)C2—C1—C8—O10.2 (3)
S—C1—C2—C32.0 (4)S—C1—C8—O1178.23 (15)
C7—C2—C3—C43.4 (3)C2—C1—C8—C17177.0 (3)
C1—C2—C3—C4176.0 (2)S—C1—C8—C171.1 (4)
C7—C2—C3—C15176.74 (19)C7—O1—C8—C10.5 (2)
C1—C2—C3—C153.9 (4)C7—O1—C8—C17177.2 (2)
C2—C3—C4—C52.3 (3)O2—S—C9—C1020.6 (2)
C15—C3—C4—C5177.9 (2)C1—S—C9—C10135.45 (18)
C2—C3—C4—Br177.91 (14)O2—S—C9—C14164.37 (18)
C15—C3—C4—Br1.9 (3)C1—S—C9—C1449.5 (2)
C3—C4—C5—C60.5 (3)C14—C9—C10—C111.9 (3)
Br—C4—C5—C6179.28 (16)S—C9—C10—C11176.89 (19)
C3—C4—C5—C16178.7 (2)C9—C10—C11—C121.5 (4)
Br—C4—C5—C161.5 (3)C10—C11—C12—C130.7 (4)
C4—C5—C6—C72.1 (3)C11—C12—C13—C140.1 (5)
C16—C5—C6—C7177.1 (2)C12—C13—C14—C90.4 (4)
C8—O1—C7—C6177.4 (2)C10—C9—C14—C131.3 (4)
C8—O1—C7—C20.6 (2)S—C9—C14—C13176.2 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2ii0.932.543.371 (3)150
C15—H15A···Br0.962.753.118 (2)103
Symmetry code: (ii) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H15BrO2S
Mr363.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)22.114 (2), 10.4281 (8), 16.675 (1)
β (°) 125.767 (1)
V3)3120.1 (4)
Z8
Radiation typeMo Kα
µ (mm1)2.77
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.528, 0.762
No. of measured, independent and
observed [I > 2σ(I)] reflections
8646, 3055, 2607
Rint0.015
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.081, 1.05
No. of reflections3055
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.65

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.932.543.371 (3)149.6
C15—H15A···Br0.962.753.118 (2)103
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o486.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o3204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds