organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′,5-Di­nitro-2′-phenyl-2′,3′,5′,6′,7′,7a'-hexa­hydro­spiro­[indoline-3,3′-1′H-pyrrolizin]-2-one

aDepartment of Chemistry, University of Mazandaran, 47415 Babolsar, Iran
*Correspondence e-mail: ysarrafi@umz.ac.ir

(Received 23 July 2008; accepted 4 August 2008; online 13 August 2008)

In the title cyclo­adduct, C20H18N4O5, the rings of the pyrrolizine system adopt envelope conformations. A centrosymmetric dimer is formed via inter­molecular N—H⋯O hydrogen bonds between the indolinone rings.

Related literature

For related literature, see: De March et al. (2002[De March, P., Elias, L., Figueredo, M. & Font, J. (2002). Tetrahedron, 58, 2667-2672.]); Fejes et al. (2001[Fejes, I., Nyerges, M., Szollosy, A., Blasko, G. & Toke, L. (2001). Tetrahedron, 57, 1129-1137.]); Karthikeyan et al. (2007[Karthikeyan, K., Perumal, P. T., Etti, S. & Shanmugam, G. (2007). Tetrahedron, 63, 10581-10586.]); Usha et al. (2005a[Usha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K. & Raghunathan, R. (2005a). Acta Cryst. E61, o3299-o3301.],b[Usha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K. & Poornachandran, M. (2005b). Acta Cryst. E61, o3312-o3314.]); Liddell (1998[Liddell, J. R. (1998). Nat. Prod. Rep. 15, 363-370.]); Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 619-636.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N4O5

  • Mr = 394.38

  • Monoclinic, P 21 /c

  • a = 13.998 (4) Å

  • b = 7.963 (3) Å

  • c = 16.359 (6) Å

  • β = 99.695 (11)°

  • V = 1797.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 (2) K

  • 0.26 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: none

  • 13372 measured reflections

  • 4316 independent reflections

  • 2227 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.114

  • S = 1.00

  • 4316 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 1.97 2.808 (2) 164
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3-Dipolar cycloadditions form a subject of intensive research in organic synthesis in view of their great synthetic potential (Karthikeyan et al., 2007). Azomethine ylides are reactive and versatile 1,3-dipoles, which readily react with diverse dipolarophiles affording pyrrolizines, pyrrolidines and pyrazolidines (Fejes et al., 2001; De March et al., 2002). The pyrrolizine substructure occurs in many natural products of potential use in medicine and agriculture (Liddell, 1998; Michael, 1997). The title compound was synthesized by the multicomponent 1,3-dipolar cycloaddition of azomethine ylide, derived from 5-nitroisatin and proline by a decarboxylative route, and trans-β-nitrostyrene. The geometry of the crystal structure (Fig. 1) is similar to reported compounds (Usha et al., 2005a, 2005b). The molecular structure of the title compound shows a centrosymmetric dimer (Fig. 2) via N—H···O intermolecular interactions and crystal packing is stabilized through intermolecular C—H···O and C—H···π interactions.

Related literature top

For related literature, see: De March et al. (2002); Fejes et al. (2001); Karthikeyan et al. (2007); Usha et al. (2005a,b); Liddell (1998); Michael (1997).

Refinement top

All hydrogen atoms were refined in isotropic approximation in riding model with the Uiso(H) parameters equal to 1.2 Ueq(Ci) where U(Ci) are the equivalent thermal parameters of the atoms to which the corresponding H atoms are bonded and C-H = 0.93-0.98 Å.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the numbering scheme for the atoms and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. H-bonding dimer diagram of the molecules with hydrogen bonds shown as dashed lines.
1',5-Dinitro-2'-phenyl-2',3',5',6',7',7a'-hexahydrospiro[indoline-3,3'-1'H-pyrrolizin]-2-one top
Crystal data top
C20H18N4O5F(000) = 824
Mr = 394.38Dx = 1.457 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 438 reflections
a = 13.998 (4) Åθ = 2.1–19.3°
b = 7.963 (3) ŵ = 0.11 mm1
c = 16.359 (6) ÅT = 120 K
β = 99.695 (11)°Prism, yellow
V = 1797.5 (10) Å30.26 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2227 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 28.0°, θmin = 2.5°
ϕ and ω scansh = 1718
13372 measured reflectionsk = 1010
4316 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: difference Fourier map
wR(F2) = 0.114H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.02P)2 + 1.3P]
where P = (Fo2 + 2Fc2)/3
4316 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H18N4O5V = 1797.5 (10) Å3
Mr = 394.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.998 (4) ŵ = 0.11 mm1
b = 7.963 (3) ÅT = 120 K
c = 16.359 (6) Å0.26 × 0.18 × 0.12 mm
β = 99.695 (11)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2227 reflections with I > 2σ(I)
13372 measured reflectionsRint = 0.044
4316 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.00Δρmax = 0.31 e Å3
4316 reflectionsΔρmin = 0.25 e Å3
262 parameters
Special details top

Experimental. A mixture of 5-nitroisatin (0.192 g, 1 mmol), proline (0.115 g, 1 mmol), and trans-β-nitrostyrene (0.149 g, 1 mmol) in ethanol (10 ml) was stirred at refluxed for 1 h. After completion of the reaction, as indicated by TLC, to solution was added water (25 ml) and the precipitated solid was separated by filtration. The pure cycloadduct was obtained by recrystallization from ethanol.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42737 (11)0.8306 (2)0.53311 (9)0.0310 (4)
O20.02802 (13)1.0541 (3)0.22715 (12)0.0518 (5)
O30.03964 (13)1.2271 (2)0.15286 (11)0.0449 (5)
O40.27784 (16)0.2753 (2)0.54074 (12)0.0596 (6)
O50.17142 (13)0.3390 (2)0.43381 (11)0.0441 (5)
N10.39099 (13)1.0143 (2)0.42331 (11)0.0271 (5)
H1A0.44651.06250.42660.033*
N20.21896 (13)0.8303 (2)0.52112 (11)0.0276 (5)
N30.04377 (16)1.1279 (3)0.21107 (13)0.0366 (5)
N40.23870 (16)0.3752 (3)0.48895 (13)0.0360 (5)
C10.37153 (16)0.8895 (3)0.47458 (14)0.0260 (5)
C20.26499 (15)0.8336 (3)0.44673 (13)0.0240 (5)
C30.23048 (16)0.9555 (3)0.37701 (13)0.0247 (5)
C40.14310 (17)0.9760 (3)0.32541 (13)0.0277 (5)
H4A0.08960.91100.33150.033*
C50.13764 (17)1.0973 (3)0.26379 (14)0.0283 (6)
C60.21565 (18)1.1911 (3)0.24975 (15)0.0325 (6)
H6A0.20901.26810.20640.039*
C70.30444 (17)1.1698 (3)0.30081 (14)0.0304 (6)
H7A0.35861.23090.29240.036*
C80.30976 (16)1.0547 (3)0.36449 (13)0.0244 (5)
C90.12231 (17)0.9058 (3)0.52006 (15)0.0346 (6)
H9A0.08750.91540.46380.042*
H9B0.12791.01640.54530.042*
C100.07094 (18)0.7847 (3)0.57053 (16)0.0373 (6)
H10A0.08810.80640.62950.045*
H10B0.00110.79110.55440.045*
C110.10985 (18)0.6159 (3)0.54746 (17)0.0383 (6)
H11A0.09990.52930.58680.046*
H11B0.08010.58140.49220.046*
C120.21678 (17)0.6552 (3)0.55171 (14)0.0296 (6)
H12A0.24970.64970.60950.036*
C130.27408 (17)0.5532 (3)0.49667 (14)0.0297 (6)
H13A0.34290.55400.52150.036*
C140.26082 (16)0.6474 (3)0.41508 (13)0.0256 (5)
H14A0.19450.62640.38670.031*
C150.32836 (17)0.6039 (3)0.35484 (14)0.0272 (5)
C160.42558 (18)0.5628 (3)0.38008 (15)0.0371 (6)
H16A0.45130.56180.43630.044*
C170.48456 (19)0.5237 (3)0.32300 (16)0.0417 (7)
H17A0.54930.49690.34110.050*
C180.44760 (19)0.5243 (3)0.23930 (15)0.0387 (6)
H18A0.48700.49600.20100.046*
C190.35159 (19)0.5672 (3)0.21255 (15)0.0359 (6)
H19A0.32660.57020.15620.043*
C200.29304 (18)0.6057 (3)0.27026 (14)0.0311 (6)
H20A0.22850.63350.25190.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0260 (9)0.0382 (10)0.0268 (9)0.0038 (8)0.0010 (7)0.0041 (8)
O20.0293 (11)0.0701 (15)0.0526 (12)0.0004 (10)0.0030 (9)0.0051 (10)
O30.0505 (12)0.0470 (11)0.0340 (11)0.0179 (10)0.0023 (9)0.0041 (9)
O40.0802 (16)0.0409 (12)0.0554 (13)0.0026 (11)0.0053 (11)0.0165 (10)
O50.0453 (12)0.0390 (11)0.0477 (12)0.0096 (9)0.0067 (10)0.0070 (9)
N10.0195 (10)0.0318 (11)0.0292 (10)0.0042 (9)0.0018 (8)0.0027 (9)
N20.0246 (11)0.0306 (11)0.0281 (11)0.0027 (9)0.0060 (8)0.0001 (9)
N30.0357 (13)0.0423 (13)0.0299 (12)0.0116 (11)0.0001 (10)0.0051 (10)
N40.0405 (13)0.0319 (12)0.0369 (13)0.0016 (11)0.0105 (11)0.0010 (10)
C10.0254 (13)0.0306 (13)0.0226 (12)0.0000 (11)0.0056 (10)0.0012 (10)
C20.0192 (12)0.0285 (13)0.0243 (12)0.0016 (10)0.0037 (9)0.0010 (10)
C30.0234 (12)0.0260 (12)0.0246 (12)0.0010 (10)0.0033 (10)0.0023 (10)
C40.0261 (13)0.0287 (13)0.0282 (13)0.0024 (11)0.0039 (10)0.0048 (10)
C50.0254 (13)0.0328 (13)0.0243 (12)0.0068 (11)0.0023 (10)0.0042 (10)
C60.0379 (15)0.0292 (14)0.0294 (13)0.0040 (12)0.0028 (11)0.0026 (11)
C70.0283 (13)0.0313 (13)0.0315 (13)0.0008 (11)0.0051 (11)0.0013 (11)
C80.0239 (13)0.0244 (12)0.0241 (12)0.0011 (10)0.0016 (10)0.0040 (10)
C90.0328 (14)0.0361 (15)0.0370 (15)0.0037 (12)0.0116 (12)0.0014 (12)
C100.0324 (14)0.0451 (16)0.0360 (15)0.0002 (13)0.0099 (12)0.0006 (12)
C110.0349 (15)0.0368 (15)0.0457 (16)0.0088 (12)0.0141 (12)0.0021 (12)
C120.0322 (14)0.0326 (14)0.0243 (12)0.0009 (11)0.0057 (10)0.0022 (10)
C130.0281 (13)0.0275 (13)0.0340 (14)0.0035 (11)0.0062 (11)0.0013 (11)
C140.0227 (12)0.0287 (13)0.0250 (12)0.0018 (10)0.0029 (10)0.0012 (10)
C150.0263 (13)0.0256 (12)0.0304 (13)0.0023 (11)0.0072 (10)0.0010 (10)
C160.0297 (14)0.0531 (17)0.0275 (13)0.0015 (13)0.0021 (11)0.0005 (12)
C170.0239 (14)0.0599 (19)0.0413 (16)0.0031 (13)0.0054 (12)0.0014 (14)
C180.0427 (17)0.0420 (16)0.0351 (15)0.0024 (13)0.0171 (13)0.0005 (12)
C190.0437 (16)0.0397 (15)0.0241 (13)0.0025 (13)0.0049 (12)0.0081 (11)
C200.0317 (14)0.0287 (13)0.0316 (14)0.0051 (11)0.0018 (11)0.0029 (11)
Geometric parameters (Å, º) top
O1—C11.223 (2)C9—H9A0.9700
O2—N31.230 (3)C9—H9B0.9700
O3—N31.232 (3)C10—C111.521 (3)
O4—N41.223 (3)C10—H10A0.9700
O5—N41.224 (2)C10—H10B0.9700
N1—C11.357 (3)C11—C121.519 (3)
N1—C81.398 (3)C11—H11A0.9700
N1—H1A0.8600C11—H11B0.9700
N2—C21.470 (3)C12—C131.535 (3)
N2—C91.478 (3)C12—H12A0.9800
N2—C121.483 (3)C13—C141.515 (3)
N3—C51.466 (3)C13—H13A0.9800
N4—C131.500 (3)C14—C151.516 (3)
C1—C21.550 (3)C14—H14A0.9800
C2—C31.513 (3)C15—C201.389 (3)
C2—C141.568 (3)C15—C161.393 (3)
C3—C41.374 (3)C16—C171.382 (3)
C3—C81.405 (3)C16—H16A0.9300
C4—C51.389 (3)C17—C181.380 (3)
C4—H4A0.9300C17—H17A0.9300
C5—C61.374 (3)C18—C191.384 (3)
C6—C71.386 (3)C18—H18A0.9300
C6—H6A0.9300C19—C201.385 (3)
C7—C81.380 (3)C19—H19A0.9300
C7—H7A0.9300C20—H20A0.9300
C9—C101.526 (3)
C1—N1—C8111.68 (19)C9—C10—H10A111.4
C1—N1—H1A124.2C11—C10—H10B111.4
C8—N1—H1A124.2C9—C10—H10B111.4
C2—N2—C9120.73 (18)H10A—C10—H10B109.3
C2—N2—C12109.45 (18)C12—C11—C10101.42 (19)
C9—N2—C12108.40 (18)C12—C11—H11A111.5
O2—N3—O3122.6 (2)C10—C11—H11A111.5
O2—N3—C5118.6 (2)C12—C11—H11B111.5
O3—N3—C5118.8 (2)C10—C11—H11B111.5
O4—N4—O5123.8 (2)H11A—C11—H11B109.3
O4—N4—C13117.0 (2)N2—C12—C11104.72 (19)
O5—N4—C13119.1 (2)N2—C12—C13104.90 (18)
O1—C1—N1126.6 (2)C11—C12—C13118.2 (2)
O1—C1—C2125.2 (2)N2—C12—H12A109.5
N1—C1—C2108.18 (19)C11—C12—H12A109.5
N2—C2—C3120.44 (19)C13—C12—H12A109.5
N2—C2—C1107.23 (17)N4—C13—C14113.83 (19)
C3—C2—C1101.93 (18)N4—C13—C12110.60 (19)
N2—C2—C14105.01 (17)C14—C13—C12104.84 (19)
C3—C2—C14111.59 (18)N4—C13—H13A109.1
C1—C2—C14110.43 (18)C14—C13—H13A109.1
C4—C3—C8119.1 (2)C12—C13—H13A109.1
C4—C3—C2132.6 (2)C13—C14—C15117.51 (19)
C8—C3—C2108.11 (18)C13—C14—C2100.67 (17)
C3—C4—C5117.6 (2)C15—C14—C2116.00 (18)
C3—C4—H4A121.2C13—C14—H14A107.3
C5—C4—H4A121.2C15—C14—H14A107.3
C6—C5—C4123.5 (2)C2—C14—H14A107.3
C6—C5—N3118.1 (2)C20—C15—C16117.6 (2)
C4—C5—N3118.5 (2)C20—C15—C14119.3 (2)
C5—C6—C7119.3 (2)C16—C15—C14123.1 (2)
C5—C6—H6A120.3C17—C16—C15121.2 (2)
C7—C6—H6A120.3C17—C16—H16A119.4
C8—C7—C6117.7 (2)C15—C16—H16A119.4
C8—C7—H7A121.1C18—C17—C16120.2 (2)
C6—C7—H7A121.1C18—C17—H17A119.9
C7—C8—N1127.4 (2)C16—C17—H17A119.9
C7—C8—C3122.7 (2)C17—C18—C19119.8 (2)
N1—C8—C3109.93 (19)C17—C18—H18A120.1
N2—C9—C10104.50 (19)C19—C18—H18A120.1
N2—C9—H9A110.9C18—C19—C20119.6 (2)
C10—C9—H9A110.9C18—C19—H19A120.2
N2—C9—H9B110.9C20—C19—H19A120.2
C10—C9—H9B110.9C19—C20—C15121.6 (2)
H9A—C9—H9B108.9C19—C20—H20A119.2
C11—C10—C9101.72 (19)C15—C20—H20A119.2
C11—C10—H10A111.4
C8—N1—C1—O1178.1 (2)C12—N2—C9—C1013.3 (2)
C8—N1—C1—C21.6 (2)N2—C9—C10—C1135.4 (2)
C9—N2—C2—C318.2 (3)C9—C10—C11—C1243.5 (2)
C12—N2—C2—C3145.0 (2)C2—N2—C12—C11119.4 (2)
C9—N2—C2—C1133.9 (2)C9—N2—C12—C1114.2 (2)
C12—N2—C2—C199.3 (2)C2—N2—C12—C135.8 (2)
C9—N2—C2—C14108.6 (2)C9—N2—C12—C13139.27 (19)
C12—N2—C2—C1418.2 (2)C10—C11—C12—N235.9 (2)
O1—C1—C2—N248.8 (3)C10—C11—C12—C13152.1 (2)
N1—C1—C2—N2130.89 (19)O4—N4—C13—C14152.6 (2)
O1—C1—C2—C3176.2 (2)O5—N4—C13—C1429.7 (3)
N1—C1—C2—C33.5 (2)O4—N4—C13—C1289.7 (3)
O1—C1—C2—C1465.1 (3)O5—N4—C13—C1288.1 (3)
N1—C1—C2—C14115.2 (2)N2—C12—C13—N4151.47 (18)
N2—C2—C3—C461.6 (3)C11—C12—C13—N435.3 (3)
C1—C2—C3—C4180.0 (2)N2—C12—C13—C1428.4 (2)
C14—C2—C3—C462.1 (3)C11—C12—C13—C1487.8 (2)
N2—C2—C3—C8122.5 (2)N4—C13—C14—C1573.9 (3)
C1—C2—C3—C84.1 (2)C12—C13—C14—C15165.08 (19)
C14—C2—C3—C8113.7 (2)N4—C13—C14—C2159.14 (19)
C8—C3—C4—C51.1 (3)C12—C13—C14—C238.1 (2)
C2—C3—C4—C5176.5 (2)N2—C2—C14—C1334.7 (2)
C3—C4—C5—C63.1 (3)C3—C2—C14—C13166.78 (18)
C3—C4—C5—N3176.6 (2)C1—C2—C14—C1380.6 (2)
O2—N3—C5—C6174.4 (2)N2—C2—C14—C15162.62 (18)
O3—N3—C5—C65.0 (3)C3—C2—C14—C1565.3 (2)
O2—N3—C5—C45.3 (3)C1—C2—C14—C1547.3 (2)
O3—N3—C5—C4175.2 (2)C13—C14—C15—C20144.2 (2)
C4—C5—C6—C72.3 (4)C2—C14—C15—C2096.7 (2)
N3—C5—C6—C7177.4 (2)C13—C14—C15—C1636.4 (3)
C5—C6—C7—C80.5 (3)C2—C14—C15—C1682.7 (3)
C6—C7—C8—N1179.5 (2)C20—C15—C16—C170.6 (4)
C6—C7—C8—C32.5 (3)C14—C15—C16—C17179.9 (2)
C1—N1—C8—C7177.0 (2)C15—C16—C17—C180.2 (4)
C1—N1—C8—C31.2 (3)C16—C17—C18—C191.2 (4)
C4—C3—C8—C71.7 (3)C17—C18—C19—C201.4 (4)
C2—C3—C8—C7174.8 (2)C18—C19—C20—C150.6 (4)
C4—C3—C8—N1180.0 (2)C16—C15—C20—C190.4 (4)
C2—C3—C8—N13.5 (2)C14—C15—C20—C19179.9 (2)
C2—N2—C9—C10140.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.972.808 (2)164
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC20H18N4O5
Mr394.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)13.998 (4), 7.963 (3), 16.359 (6)
β (°) 99.695 (11)
V3)1797.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.26 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13372, 4316, 2227
Rint0.044
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.114, 1.00
No. of reflections4316
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.25

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.8601.9712.808 (2)164.29
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

We are grateful for the financial support of Mazandaran University, Islamic Republic of Iran.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe March, P., Elias, L., Figueredo, M. & Font, J. (2002). Tetrahedron, 58, 2667–2672.  CrossRef CAS Google Scholar
First citationFejes, I., Nyerges, M., Szollosy, A., Blasko, G. & Toke, L. (2001). Tetrahedron, 57, 1129–1137.  Web of Science CrossRef CAS Google Scholar
First citationKarthikeyan, K., Perumal, P. T., Etti, S. & Shanmugam, G. (2007). Tetrahedron, 63, 10581–10586.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiddell, J. R. (1998). Nat. Prod. Rep. 15, 363–370.  CrossRef CAS PubMed Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 619–636.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K. & Poornachandran, M. (2005b). Acta Cryst. E61, o3312–o3314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUsha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K. & Raghunathan, R. (2005a). Acta Cryst. E61, o3299–o3301.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds