organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl­sulfinyl-2-phenyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 24 July 2008; accepted 30 July 2008; online 6 August 2008)

The title compound, C15H12O2S, was prepared by the oxidation of 3-methyl­sulfanyl-2-phenyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The phenyl ring makes a dihedral angle of 37.65 (8)° with the plane of the benzofuran fragment. The O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran ring system. The crystal structure is stabilized by aromatic ππ inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.549 (2) Å] and by inter­molecular C—H⋯O inter­actions.

Related literature

For the crystal structures of similar 3-methyl­sulfinyl-2-phenyl-1-benzofuran compounds, see: Choi et al. (2007a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o1291-o1292.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o2922.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12O2S

  • Mr = 256.32

  • Triclinic, [P \overline 1]

  • a = 8.0185 (8) Å

  • b = 9.4381 (9) Å

  • c = 9.7749 (9) Å

  • α = 115.574 (2)°

  • β = 109.179 (2)°

  • γ = 94.296 (2)°

  • V = 609.51 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 (2) K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 3185 measured reflections

  • 2120 independent reflections

  • 1878 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.090

  • S = 1.10

  • 2120 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15C⋯O2i 0.98 2.34 3.290 (3) 164
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to our previous communications on the synthesis and structure of 3-methylsulfinyl-2-phenyl-1-benzofuran analogues, viz. 5-chloro-3-methylsulfinyl-2-phenyl-1-benzofuran (Choi et al., 2007a) and 5-methyl-3-methylsulfinyl-2-phenyl-1-benzofuran (Choi et al., 2007b). Here we report the crystal structure of 3-methylsulfinyl-2-phenyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.009 (2) Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9—C14) makes a dihedral angle of 37.65 (8)° with the plane of the benzofuran fragment. The molecular packing (Fig. 2) is stabilized by aromatic ππ stacking interactions between the benzene rings from the adjacent molecules. The Cg···Cgii distance is 3.549 (2) Å (Cg is the centroid of C2—C7 benzene ring, symmetry code as in Fig. 2). The crystal structure is further stabilized by C—H···O (Fig. 2) interactions between a methyl H atom and the oxygen of the S=O unit, with a C15—H15C···O2i separation of 2.36 Å (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Related literature top

For the crystal structures of similar 3-methylsulfinyl-2-phenyl-1-benzofuran compounds, see: Choi et al. (2007a,b).

Experimental top

77% 3-Chloroperoxybenzoic acid (359 mg, 1.6 mmol) was added in small portions to a stirred solution of 3-methylsulfanyl-2-phenyl-1-benzofuran (360 mg, 1.5 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 2 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1: 2 v/v) to afford the title compound as a colorless solid [yield 76%, m.p. 408–409 K; Rf = 0.79 (hexane-ethyl acetate, 1:2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 3.13 (s, 3H), 7.33–7.44 (m, 3H), 7.48–7.54 (m, 2H), 7.59 (d, J = 8.03 Hz, 1H), 7.84 (dd, J = 8.08 Hz and J = 1.48 Hz, 2H), 8.22 (d, J = 7.32 Hz, 1H); EI—MS 256 [M+].

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms, 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. ππ and C—H···O interactions (dotted lines) in the title compound. Cg denotes ring centroid. [Symmetry code: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y, -z + 1.]
3-Methylsulfinyl-2-phenyl-1-benzofuran top
Crystal data top
C15H12O2SZ = 2
Mr = 256.32F(000) = 268
Triclinic, P1Dx = 1.397 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0185 (8) ÅCell parameters from 2383 reflections
b = 9.4381 (9) Åθ = 2.5–28.2°
c = 9.7749 (9) ŵ = 0.26 mm1
α = 115.574 (2)°T = 173 K
β = 109.179 (2)°Block, colorless
γ = 94.296 (2)°0.30 × 0.10 × 0.10 mm
V = 609.51 (10) Å3
Data collection top
Bruker SMART CCD
diffractometer
1878 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
Detector resolution: 10.0 pixels mm-1h = 89
ϕ and ω scansk = 1111
3185 measured reflectionsl = 115
2120 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.3746P]
where P = (Fo2 + 2Fc2)/3
2120 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H12O2Sγ = 94.296 (2)°
Mr = 256.32V = 609.51 (10) Å3
Triclinic, P1Z = 2
a = 8.0185 (8) ÅMo Kα radiation
b = 9.4381 (9) ŵ = 0.26 mm1
c = 9.7749 (9) ÅT = 173 K
α = 115.574 (2)°0.30 × 0.10 × 0.10 mm
β = 109.179 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1878 reflections with I > 2σ(I)
3185 measured reflectionsRint = 0.030
2120 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.10Δρmax = 0.32 e Å3
2120 reflectionsΔρmin = 0.24 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.33893 (6)0.23694 (6)0.35764 (6)0.02368 (16)
O10.05250 (18)0.15771 (15)0.17293 (16)0.0238 (3)
O20.4116 (2)0.33041 (18)0.54205 (18)0.0356 (4)
C10.1412 (3)0.0880 (2)0.2927 (2)0.0210 (4)
C20.0021 (3)0.1096 (2)0.3590 (2)0.0219 (4)
C30.0353 (3)0.2390 (3)0.4755 (3)0.0280 (5)
H30.04200.34570.53360.034*
C40.1883 (3)0.2063 (3)0.5031 (3)0.0321 (5)
H40.21700.29280.58070.039*
C50.3018 (3)0.0500 (3)0.4202 (3)0.0326 (5)
H50.40600.03290.44250.039*
C60.2666 (3)0.0807 (3)0.3064 (3)0.0291 (5)
H60.34290.18770.25000.035*
C70.1131 (3)0.0453 (2)0.2802 (2)0.0226 (4)
C80.1044 (2)0.0725 (2)0.1847 (2)0.0212 (4)
C90.1918 (3)0.1716 (2)0.0813 (2)0.0221 (4)
C100.1916 (3)0.3292 (2)0.0565 (3)0.0299 (5)
H100.13930.36950.11100.036*
C110.2669 (3)0.4265 (3)0.0468 (3)0.0370 (5)
H110.26660.53310.06240.044*
C120.3428 (3)0.3693 (3)0.1276 (3)0.0364 (5)
H120.39310.43700.19950.044*
C130.3451 (3)0.2136 (3)0.1033 (3)0.0315 (5)
H130.39860.17380.15750.038*
C140.2695 (3)0.1150 (2)0.0000 (2)0.0255 (4)
H140.27070.00830.01540.031*
C150.2300 (3)0.3619 (3)0.2805 (3)0.0352 (5)
H15A0.13340.38960.32030.053*
H15B0.17680.30270.15920.053*
H15C0.32030.46160.32000.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0189 (3)0.0221 (3)0.0235 (3)0.00303 (19)0.0068 (2)0.0072 (2)
O10.0233 (7)0.0214 (7)0.0253 (7)0.0042 (5)0.0117 (6)0.0089 (6)
O20.0311 (8)0.0359 (9)0.0232 (8)0.0025 (7)0.0057 (7)0.0058 (7)
C10.0201 (10)0.0212 (10)0.0202 (10)0.0065 (8)0.0080 (8)0.0088 (8)
C20.0204 (10)0.0264 (10)0.0206 (10)0.0093 (8)0.0080 (8)0.0122 (9)
C30.0305 (11)0.0281 (11)0.0246 (11)0.0125 (9)0.0107 (9)0.0116 (9)
C40.0357 (12)0.0421 (13)0.0277 (11)0.0238 (10)0.0181 (10)0.0185 (10)
C50.0303 (12)0.0506 (14)0.0401 (13)0.0229 (10)0.0236 (10)0.0324 (12)
C60.0256 (11)0.0365 (12)0.0348 (12)0.0106 (9)0.0138 (9)0.0235 (10)
C70.0234 (10)0.0275 (10)0.0213 (10)0.0105 (8)0.0112 (8)0.0132 (9)
C80.0187 (9)0.0235 (10)0.0208 (10)0.0035 (8)0.0067 (8)0.0113 (8)
C90.0198 (9)0.0214 (10)0.0181 (10)0.0034 (8)0.0056 (8)0.0055 (8)
C100.0334 (12)0.0255 (11)0.0309 (12)0.0068 (9)0.0163 (10)0.0113 (9)
C110.0423 (13)0.0239 (11)0.0400 (14)0.0113 (10)0.0199 (11)0.0085 (10)
C120.0317 (12)0.0366 (13)0.0305 (12)0.0101 (10)0.0167 (10)0.0041 (10)
C130.0254 (11)0.0409 (12)0.0227 (11)0.0036 (9)0.0114 (9)0.0104 (9)
C140.0235 (10)0.0277 (11)0.0213 (10)0.0048 (8)0.0070 (8)0.0103 (9)
C150.0292 (11)0.0263 (11)0.0451 (14)0.0039 (9)0.0081 (10)0.0186 (11)
Geometric parameters (Å, º) top
S—O21.492 (2)C6—H60.9500
S—C11.769 (2)C8—C91.461 (3)
S—C151.792 (2)C9—C141.396 (3)
O1—C71.384 (2)C9—C101.400 (3)
O1—C81.384 (2)C10—C111.382 (3)
C1—C81.358 (3)C10—H100.9500
C1—C21.449 (3)C11—C121.386 (3)
C2—C71.394 (3)C11—H110.9500
C2—C31.398 (3)C12—C131.382 (3)
C3—C41.381 (3)C12—H120.9500
C3—H30.9500C13—C141.389 (3)
C4—C51.394 (3)C13—H130.9500
C4—H40.9500C14—H140.9500
C5—C61.383 (3)C15—H15A0.9800
C5—H50.9500C15—H15B0.9800
C6—C71.383 (3)C15—H15C0.9800
O2—S—C1106.42 (9)C1—C8—C9134.62 (17)
O2—S—C15107.19 (10)O1—C8—C9114.80 (16)
C1—S—C1598.28 (10)C14—C9—C10118.74 (18)
C7—O1—C8106.40 (14)C14—C9—C8121.25 (17)
C8—C1—C2107.57 (17)C10—C9—C8119.95 (18)
C8—C1—S125.35 (15)C11—C10—C9120.4 (2)
C2—C1—S126.67 (14)C11—C10—H10119.8
C7—C2—C3118.79 (18)C9—C10—H10119.8
C7—C2—C1104.81 (16)C10—C11—C12120.3 (2)
C3—C2—C1136.38 (19)C10—C11—H11119.8
C4—C3—C2117.8 (2)C12—C11—H11119.8
C4—C3—H3121.1C13—C12—C11119.9 (2)
C2—C3—H3121.1C13—C12—H12120.1
C3—C4—C5121.8 (2)C11—C12—H12120.1
C3—C4—H4119.1C12—C13—C14120.2 (2)
C5—C4—H4119.1C12—C13—H13119.9
C6—C5—C4121.76 (19)C14—C13—H13119.9
C6—C5—H5119.1C13—C14—C9120.40 (19)
C4—C5—H5119.1C13—C14—H14119.8
C7—C6—C5115.5 (2)C9—C14—H14119.8
C7—C6—H6122.3S—C15—H15A109.5
C5—C6—H6122.3S—C15—H15B109.5
C6—C7—O1125.00 (18)H15A—C15—H15B109.5
C6—C7—C2124.38 (18)S—C15—H15C109.5
O1—C7—C2110.62 (16)H15A—C15—H15C109.5
C1—C8—O1110.58 (16)H15B—C15—H15C109.5
O2—S—C1—C8130.84 (18)C1—C2—C7—O10.4 (2)
C15—S—C1—C8118.42 (19)C2—C1—C8—O11.2 (2)
O2—S—C1—C240.85 (19)S—C1—C8—O1174.25 (13)
C15—S—C1—C269.89 (19)C2—C1—C8—C9178.8 (2)
C8—C1—C2—C71.0 (2)S—C1—C8—C95.8 (3)
S—C1—C2—C7173.87 (15)C7—O1—C8—C11.0 (2)
C8—C1—C2—C3177.6 (2)C7—O1—C8—C9179.06 (16)
S—C1—C2—C34.7 (3)C1—C8—C9—C1438.8 (3)
C7—C2—C3—C41.6 (3)O1—C8—C9—C14141.18 (18)
C1—C2—C3—C4179.9 (2)C1—C8—C9—C10144.1 (2)
C2—C3—C4—C50.8 (3)O1—C8—C9—C1036.0 (3)
C3—C4—C5—C60.3 (3)C14—C9—C10—C110.0 (3)
C4—C5—C6—C70.4 (3)C8—C9—C10—C11177.18 (19)
C5—C6—C7—O1179.56 (18)C9—C10—C11—C120.3 (3)
C5—C6—C7—C20.5 (3)C10—C11—C12—C130.7 (4)
C8—O1—C7—C6179.69 (19)C11—C12—C13—C140.9 (3)
C8—O1—C7—C20.3 (2)C12—C13—C14—C90.5 (3)
C3—C2—C7—C61.5 (3)C10—C9—C14—C130.1 (3)
C1—C2—C7—C6179.59 (19)C8—C9—C14—C13177.25 (18)
C3—C2—C7—O1178.49 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O2i0.982.343.290 (3)164
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H12O2S
Mr256.32
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.0185 (8), 9.4381 (9), 9.7749 (9)
α, β, γ (°)115.574 (2), 109.179 (2), 94.296 (2)
V3)609.51 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3185, 2120, 1878
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.090, 1.10
No. of reflections2120
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O2i0.982.343.290 (3)163.6
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o1291–o1292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o2922.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds