metal-organic compounds
Bis[2-(2-pyridylmethyleneamino)benzenesulfonato-κ3N,N′,O]zinc(II) dihydrate
aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China, and bDepartment of Chemistry and Life Science, Baise University, Baise 533000, People's Republic of China
*Correspondence e-mail: ouyangmiao123456@126.com
In the title complex, [Zn(C12H9N2O3S)2]·2H2O, the ZnII ion lies on a crystallographic inversion center and is coordinated by four N atoms and two O atoms from two tridentate 2-(2-pyridylmethyleneamino)benzenesulfonate ligands in a slightly distorted octahedral environment. In the the complex forms a two-dimensional network through intermolecular O—H⋯O and C—H⋯O hydrogen bonds.
Related literature
For related literature, see: Casella & Gullotti (1981, 1986); Jiang et al. (2006); Li et al. (2006, 2007); Wang et al. (1994); Zhang et al. (2004, 2007, 2008); Correia et al. (2003); Zheng et al. (2001); Zhou et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808026342/pk2112sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808026342/pk2112Isup2.hkl
The potassium salt of 2-(pyridylmethyl)imine-2-benzenesulfonic acid (PabaK) was synthesized according to the literature method (Casella & Gullotti, 1986).
To prepare the title complex, the ligand PabaK (1 mmol, 0.30 g) was dissolved in methanol (10 mL) at 333 K and an aqueous solution (10 mL) containing ZnCl2(0.5 mmol, 0.068 g) was added. The resulting solution was stirred at 333 K for 4 h, then cooled to room temperature and filtered. Yellow crystals suitable for X-ray diffraction were obtained by slow evaporation over several days, with a yield of 55%. Elemental analysis, found (%): C, 46.05; H, 3.55; N, 8.95; S, 10.42; calc (%): C, 46.16; H, 3.53; N, 8.98; S, 10.26.
H atoms bonded to C atoms were positioned geometrically with the C-H distance of 0.93 Å, and treated as riding atoms, with Uiso(H) = 1.2Ueq(C). Water hydrogens were placed in fixed positions and assigned Uiso values of 1.5Ueq of the water oxygen atom.
Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn(C12H9N2O3S)2]·2H2O | F(000) = 1280 |
Mr = 623.95 | Dx = 1.594 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 7323 reflections |
a = 19.7090 (15) Å | θ = 2.5–28.2° |
b = 8.0722 (6) Å | µ = 1.16 mm−1 |
c = 16.3390 (13) Å | T = 295 K |
V = 2599.5 (3) Å3 | Block, yellow |
Z = 4 | 0.49 × 0.45 × 0.37 mm |
Bruker SMART CCD area-detector diffractometer | 2412 independent reflections |
Radiation source: fine-focus sealed tube | 2100 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ϕ and ω scans | θmax = 25.5°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −23→23 |
Tmin = 0.600, Tmax = 0.673 | k = −9→9 |
17894 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0373P)2 + 1.7627P] where P = (Fo2 + 2Fc2)/3 |
2412 reflections | (Δ/σ)max < 0.001 |
177 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
[Zn(C12H9N2O3S)2]·2H2O | V = 2599.5 (3) Å3 |
Mr = 623.95 | Z = 4 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 19.7090 (15) Å | µ = 1.16 mm−1 |
b = 8.0722 (6) Å | T = 295 K |
c = 16.3390 (13) Å | 0.49 × 0.45 × 0.37 mm |
Bruker SMART CCD area-detector diffractometer | 2412 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2100 reflections with I > 2σ(I) |
Tmin = 0.600, Tmax = 0.673 | Rint = 0.024 |
17894 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.46 e Å−3 |
2412 reflections | Δρmin = −0.42 e Å−3 |
177 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.5000 | 0.82446 (4) | 0.2500 | 0.02769 (11) | |
S1 | 0.37616 (2) | 0.67719 (6) | 0.34320 (3) | 0.03070 (14) | |
O1 | 0.45098 (7) | 0.67650 (18) | 0.33822 (8) | 0.0344 (3) | |
O2 | 0.34865 (8) | 0.84229 (19) | 0.33446 (10) | 0.0456 (4) | |
O3 | 0.35256 (7) | 0.5876 (2) | 0.41443 (8) | 0.0431 (4) | |
N1 | 0.49613 (8) | 1.0216 (2) | 0.16032 (10) | 0.0341 (4) | |
N2 | 0.40820 (8) | 0.7687 (2) | 0.17245 (9) | 0.0297 (4) | |
C1 | 0.44459 (10) | 1.0145 (3) | 0.10605 (12) | 0.0332 (4) | |
C2 | 0.43673 (13) | 1.1301 (3) | 0.04460 (14) | 0.0452 (6) | |
H2 | 0.4007 | 1.1223 | 0.0081 | 0.054* | |
C3 | 0.48322 (13) | 1.2579 (3) | 0.03809 (15) | 0.0506 (6) | |
H3 | 0.4786 | 1.3380 | −0.0025 | 0.061* | |
C4 | 0.53638 (13) | 1.2645 (3) | 0.09261 (15) | 0.0483 (6) | |
H4 | 0.5688 | 1.3480 | 0.0890 | 0.058* | |
C5 | 0.54084 (12) | 1.1447 (3) | 0.15295 (14) | 0.0420 (5) | |
H5 | 0.5766 | 1.1503 | 0.1900 | 0.050* | |
C6 | 0.39854 (10) | 0.8728 (3) | 0.11481 (12) | 0.0354 (5) | |
H6 | 0.3626 | 0.8590 | 0.0786 | 0.042* | |
C7 | 0.36755 (9) | 0.6238 (3) | 0.17777 (12) | 0.0313 (4) | |
C8 | 0.34696 (11) | 0.5353 (3) | 0.10925 (13) | 0.0437 (5) | |
H8 | 0.3579 | 0.5736 | 0.0572 | 0.052* | |
C9 | 0.31015 (12) | 0.3900 (3) | 0.11817 (15) | 0.0524 (6) | |
H9 | 0.2962 | 0.3320 | 0.0720 | 0.063* | |
C10 | 0.29391 (13) | 0.3306 (3) | 0.19512 (16) | 0.0516 (6) | |
H10 | 0.2698 | 0.2322 | 0.2005 | 0.062* | |
C11 | 0.31364 (11) | 0.4180 (3) | 0.26416 (13) | 0.0403 (5) | |
H11 | 0.3022 | 0.3792 | 0.3160 | 0.048* | |
C12 | 0.35039 (10) | 0.5632 (3) | 0.25581 (11) | 0.0300 (4) | |
O4 | 0.29845 (11) | 1.0939 (4) | 0.44343 (14) | 0.1079 (10) | |
H1W | 0.2572 | 1.1144 | 0.4394 | 0.162* | |
H2W | 0.3083 | 1.0105 | 0.4158 | 0.162* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.02732 (18) | 0.03263 (19) | 0.02311 (18) | 0.000 | −0.00389 (11) | 0.000 |
S1 | 0.0291 (3) | 0.0396 (3) | 0.0234 (2) | −0.0001 (2) | 0.00018 (18) | −0.0016 (2) |
O1 | 0.0287 (7) | 0.0462 (9) | 0.0285 (7) | −0.0028 (6) | −0.0034 (6) | 0.0038 (6) |
O2 | 0.0482 (9) | 0.0452 (9) | 0.0436 (9) | 0.0102 (7) | −0.0018 (7) | −0.0079 (7) |
O3 | 0.0416 (8) | 0.0620 (10) | 0.0257 (7) | −0.0062 (8) | 0.0039 (6) | 0.0035 (7) |
N1 | 0.0400 (9) | 0.0346 (9) | 0.0278 (9) | −0.0007 (7) | −0.0057 (7) | 0.0011 (7) |
N2 | 0.0278 (8) | 0.0375 (9) | 0.0238 (8) | −0.0006 (7) | 0.0004 (6) | 0.0004 (7) |
C1 | 0.0343 (10) | 0.0377 (11) | 0.0275 (10) | 0.0035 (9) | −0.0036 (8) | 0.0023 (8) |
C2 | 0.0519 (14) | 0.0471 (13) | 0.0367 (12) | 0.0017 (11) | −0.0113 (10) | 0.0096 (10) |
C3 | 0.0728 (17) | 0.0386 (13) | 0.0403 (13) | −0.0023 (12) | −0.0064 (12) | 0.0105 (11) |
C4 | 0.0628 (15) | 0.0363 (12) | 0.0458 (13) | −0.0117 (11) | −0.0019 (11) | 0.0022 (10) |
C5 | 0.0490 (13) | 0.0391 (12) | 0.0380 (12) | −0.0084 (10) | −0.0102 (10) | 0.0012 (9) |
C6 | 0.0310 (11) | 0.0475 (12) | 0.0276 (10) | 0.0001 (9) | −0.0057 (8) | 0.0034 (9) |
C7 | 0.0245 (10) | 0.0410 (11) | 0.0284 (10) | −0.0009 (8) | −0.0004 (8) | −0.0015 (9) |
C8 | 0.0417 (12) | 0.0609 (15) | 0.0286 (11) | −0.0085 (11) | 0.0014 (9) | −0.0050 (10) |
C9 | 0.0505 (14) | 0.0679 (16) | 0.0389 (13) | −0.0180 (13) | −0.0001 (11) | −0.0169 (12) |
C10 | 0.0464 (14) | 0.0552 (15) | 0.0530 (15) | −0.0211 (12) | 0.0021 (11) | −0.0085 (12) |
C11 | 0.0363 (12) | 0.0495 (13) | 0.0351 (11) | −0.0088 (10) | 0.0038 (9) | 0.0017 (10) |
C12 | 0.0232 (9) | 0.0399 (11) | 0.0270 (10) | −0.0007 (8) | −0.0001 (7) | −0.0023 (8) |
O4 | 0.0592 (13) | 0.168 (3) | 0.0964 (18) | 0.0323 (15) | −0.0209 (12) | −0.0725 (19) |
Zn1—O1 | 2.1065 (14) | C3—C4 | 1.376 (3) |
Zn1—O1i | 2.1065 (14) | C3—H3 | 0.9300 |
Zn1—N1i | 2.1643 (18) | C4—C5 | 1.384 (3) |
Zn1—N1 | 2.1643 (18) | C4—H4 | 0.9300 |
Zn1—N2 | 2.2544 (16) | C5—H5 | 0.9300 |
Zn1—N2i | 2.2544 (16) | C6—H6 | 0.9300 |
S1—O2 | 1.4459 (16) | C7—C8 | 1.389 (3) |
S1—O3 | 1.4470 (15) | C7—C12 | 1.407 (3) |
S1—O1 | 1.4769 (14) | C8—C9 | 1.387 (3) |
S1—C12 | 1.7730 (19) | C8—H8 | 0.9300 |
N1—C5 | 1.334 (3) | C9—C10 | 1.383 (3) |
N1—C1 | 1.350 (2) | C9—H9 | 0.9300 |
N2—C6 | 1.277 (3) | C10—C11 | 1.386 (3) |
N2—C7 | 1.421 (3) | C10—H10 | 0.9300 |
C1—C2 | 1.380 (3) | C11—C12 | 1.384 (3) |
C1—C6 | 1.467 (3) | C11—H11 | 0.9300 |
C2—C3 | 1.384 (3) | O4—H1W | 0.8332 |
C2—H2 | 0.9300 | O4—H2W | 0.8339 |
O1—Zn1—O1i | 110.92 (8) | C3—C2—H2 | 120.5 |
O1—Zn1—N1i | 88.27 (6) | C4—C3—C2 | 118.9 (2) |
O1i—Zn1—N1i | 149.76 (6) | C4—C3—H3 | 120.6 |
O1—Zn1—N1 | 149.76 (6) | C2—C3—H3 | 120.6 |
O1i—Zn1—N1 | 88.27 (6) | C3—C4—C5 | 118.9 (2) |
N1i—Zn1—N1 | 85.36 (9) | C3—C4—H4 | 120.6 |
O1—Zn1—N2 | 84.45 (5) | C5—C4—H4 | 120.6 |
O1i—Zn1—N2 | 82.55 (5) | N1—C5—C4 | 122.9 (2) |
N1i—Zn1—N2 | 123.75 (6) | N1—C5—H5 | 118.5 |
N1—Zn1—N2 | 74.81 (6) | C4—C5—H5 | 118.5 |
O1—Zn1—N2i | 82.55 (5) | N2—C6—C1 | 119.53 (18) |
O1i—Zn1—N2i | 84.45 (5) | N2—C6—H6 | 120.2 |
N1i—Zn1—N2i | 74.81 (6) | C1—C6—H6 | 120.2 |
N1—Zn1—N2i | 123.75 (6) | C8—C7—C12 | 118.80 (19) |
N2—Zn1—N2i | 156.97 (9) | C8—C7—N2 | 122.62 (18) |
O2—S1—O3 | 114.81 (10) | C12—C7—N2 | 118.51 (17) |
O2—S1—O1 | 111.87 (9) | C9—C8—C7 | 120.2 (2) |
O3—S1—O1 | 111.31 (9) | C9—C8—H8 | 119.9 |
O2—S1—C12 | 106.94 (9) | C7—C8—H8 | 119.9 |
O3—S1—C12 | 107.23 (9) | C10—C9—C8 | 120.7 (2) |
O1—S1—C12 | 103.86 (9) | C10—C9—H9 | 119.7 |
S1—O1—Zn1 | 119.57 (8) | C8—C9—H9 | 119.7 |
C5—N1—C1 | 118.00 (18) | C9—C10—C11 | 119.9 (2) |
C5—N1—Zn1 | 125.86 (14) | C9—C10—H10 | 120.1 |
C1—N1—Zn1 | 116.11 (14) | C11—C10—H10 | 120.1 |
C6—N2—C7 | 120.22 (17) | C12—C11—C10 | 119.8 (2) |
C6—N2—Zn1 | 113.76 (14) | C12—C11—H11 | 120.1 |
C7—N2—Zn1 | 125.63 (12) | C10—C11—H11 | 120.1 |
N1—C1—C2 | 122.3 (2) | C11—C12—C7 | 120.62 (18) |
N1—C1—C6 | 115.76 (17) | C11—C12—S1 | 120.65 (15) |
C2—C1—C6 | 121.93 (19) | C7—C12—S1 | 118.73 (15) |
C1—C2—C3 | 119.1 (2) | H1W—O4—H2W | 110.2 |
C1—C2—H2 | 120.5 |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H1W···O3ii | 0.83 | 2.21 | 3.014 (3) | 162 |
O4—H2W···O2 | 0.83 | 2.06 | 2.877 (3) | 166 |
C4—H4···O3iii | 0.93 | 2.48 | 3.407 (3) | 175 |
C6—H6···O4iv | 0.93 | 2.57 | 3.436 (3) | 155 |
Symmetry codes: (ii) −x+1/2, y+1/2, z; (iii) −x+1, y+1, −z+1/2; (iv) x, −y+2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C12H9N2O3S)2]·2H2O |
Mr | 623.95 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 295 |
a, b, c (Å) | 19.7090 (15), 8.0722 (6), 16.3390 (13) |
V (Å3) | 2599.5 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.16 |
Crystal size (mm) | 0.49 × 0.45 × 0.37 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.600, 0.673 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17894, 2412, 2100 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.074, 1.04 |
No. of reflections | 2412 |
No. of parameters | 177 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.46, −0.42 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H1W···O3i | 0.83 | 2.21 | 3.014 (3) | 161.9 |
O4—H2W···O2 | 0.83 | 2.06 | 2.877 (3) | 166.4 |
C4—H4···O3ii | 0.93 | 2.48 | 3.407 (3) | 175 |
C6—H6···O4iii | 0.93 | 2.57 | 3.436 (3) | 155 |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) −x+1, y+1, −z+1/2; (iii) x, −y+2, z−1/2. |
Acknowledgements
This work was funded by Guangxi Science Foundation, Guangxi Zhuang Autonomous Region of the People's Republic of China (grant No. 0731053).
References
Bruker (2004). SMART and SAINT. Bruker AXS inc., Madison, WI, USA. Google Scholar
Casella, L. & Gullotti, M. (1981). J. Am. Chem. Soc. 103, 6338–6347. CrossRef CAS Web of Science Google Scholar
Casella, L. & Gullotti, M. (1986). Inorg. Chem. 25, 1293–1303. CrossRef CAS Web of Science Google Scholar
Correia, V. R., Bortoluzzi, A. J., Neves, A., Joussef, A. C., Vieira, M. G. M. & Batista, S. C. (2003). Acta Cryst. E59, m464–m466. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jiang, Y.-M., Li, J.-M., Xie, F.-Q. & Wang, Y.-F. (2006). Chin. J. Struct. Chem. 25, 767–770. CAS Google Scholar
Li, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006). Acta Cryst. E62, m2984–m2986. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, H.-Y., Liao, B.-L., Jiang, Y.-M., Zhang, S.-H. & Li, J.-X. (2007). Chin. J. Struct. Chem. 26, 907–910. CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z., Wu, Z., Yen, Z., Le, Z., Zhu, X. & Huang, Q. (1994). Synth. React. Inorg. Metal Org. Chem. 24, 1453–1460. Google Scholar
Zhang, S. H., Jiang, Y.-M. & Liu, Z. M. (2008). J. Coord. Chem. 61, 1927–1934. Web of Science CSD CrossRef CAS Google Scholar
Zhang, S.-H., Jiang, Y.-M., Liu, Z. & Zhou, Z.-Y. (2004). Chin. J. Struct. Chem. 23, 882–885. CAS Google Scholar
Zhang, S. H., Li, G.-Z., Zhong, F. & Feng, X.-Z. (2007). Chin. J. Struct. Chem. 26, 1491–1494. CAS Google Scholar
Zheng, S.-L., Tong, M.-L., Yu, X.-L. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 586–592. Web of Science CSD CrossRef Google Scholar
Zhou, J.-S., Cai, J.-W., Wang, L. & Ng, S.-W. (2004). Dalton Trans. pp. 1493–1497. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and control of supermolecular coordination complex networks in which both coordination bonds and hydrogen bonds take part in the self-assembly chemistry (Zheng, et al., 2001; Zhou, et al., 2004) have recently garnered increasing interest. Schiff base complexes that contain both sulfur and amino acid functionalities have received much attention owing to their potential applications in pharmacy. (Casella & Gullotti, 1981, 1986; Wang et al., 1994; Li et al., 2006; Zhang et al., 2007, 2008).
Our group has focused on the exploration of the coordination chemistry of the sulfonate ligands for years (Zhang et al. 2004; Jiang et al. 2006; Li et al. 2007). We report here the synthesis and the structure of the mononuclear ZnII Paba complex (Fig. 1). The structure is composed of one ZnII, two deprotonated Paba- ligands and two guest water molecules. The six-coordinated ZnII atom has a distorted octahedral geometry, being coordinated by pyridine N, imine N and sulfonate O atoms from two deprotonated Paba- ligands in a tridentate facial arrangement. This structure is similar to those reported for complexes with N,N',O-tridentate donor ligands (Li et al., 2006; Correia et al., 2003).
There are extensive hydrogen bonds (O4-H2W···O2 and O4-H1W···O3), in which the donor is O-H of the guest water and S=O acts as acceptor, which forms a two-dimension sheet structure (Fig. 2).