metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(2-pyridylmethyl­ene­amino)benzene­sulfonato-κ3N,N′,O]zinc(II) dihydrate

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China, and bDepartment of Chemistry and Life Science, Baise University, Baise 533000, People's Republic of China
*Correspondence e-mail: ouyangmiao123456@126.com

(Received 26 July 2008; accepted 14 August 2008; online 23 August 2008)

In the title complex, [Zn(C12H9N2O3S)2]·2H2O, the ZnII ion lies on a crystallographic inversion center and is coordinated by four N atoms and two O atoms from two tridentate 2-(2-pyridylmethyl­eneamino)benzene­sulfonate ligands in a slightly distorted octa­hedral environment. In the crystal structure, the complex forms a two-dimensional network through inter­molecular O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Casella & Gullotti (1981[Casella, L. & Gullotti, M. (1981). J. Am. Chem. Soc. 103, 6338-6347.], 1986[Casella, L. & Gullotti, M. (1986). Inorg. Chem. 25, 1293-1303.]); Jiang et al. (2006[Jiang, Y.-M., Li, J.-M., Xie, F.-Q. & Wang, Y.-F. (2006). Chin. J. Struct. Chem. 25, 767-770.]); Li et al. (2006[Li, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006). Acta Cryst. E62, m2984-m2986.], 2007[Li, H.-Y., Liao, B.-L., Jiang, Y.-M., Zhang, S.-H. & Li, J.-X. (2007). Chin. J. Struct. Chem. 26, 907-910.]); Wang et al. (1994[Wang, Z., Wu, Z., Yen, Z., Le, Z., Zhu, X. & Huang, Q. (1994). Synth. React. Inorg. Metal Org. Chem. 24, 1453-1460.]); Zhang et al. (2004[Zhang, S.-H., Jiang, Y.-M., Liu, Z. & Zhou, Z.-Y. (2004). Chin. J. Struct. Chem. 23, 882-885.], 2007[Zhang, S. H., Li, G.-Z., Zhong, F. & Feng, X.-Z. (2007). Chin. J. Struct. Chem. 26, 1491-1494.], 2008[Zhang, S. H., Jiang, Y.-M. & Liu, Z. M. (2008). J. Coord. Chem. 61, 1927-1934.]); Correia et al. (2003[Correia, V. R., Bortoluzzi, A. J., Neves, A., Joussef, A. C., Vieira, M. G. M. & Batista, S. C. (2003). Acta Cryst. E59, m464-m466.]); Zheng et al. (2001[Zheng, S.-L., Tong, M.-L., Yu, X.-L. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 586-592.]); Zhou et al. (2004[Zhou, J.-S., Cai, J.-W., Wang, L. & Ng, S.-W. (2004). Dalton Trans. pp. 1493-1497.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C12H9N2O3S)2]·2H2O

  • Mr = 623.95

  • Orthorhombic, P b c n

  • a = 19.7090 (15) Å

  • b = 8.0722 (6) Å

  • c = 16.3390 (13) Å

  • V = 2599.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 295 (2) K

  • 0.49 × 0.45 × 0.37 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.600, Tmax = 0.673

  • 17894 measured reflections

  • 2412 independent reflections

  • 2100 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.074

  • S = 1.04

  • 2412 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1W⋯O3i 0.83 2.21 3.014 (3) 162
O4—H2W⋯O2 0.83 2.06 2.877 (3) 166
C4—H4⋯O3ii 0.93 2.48 3.407 (3) 175
C6—H6⋯O4iii 0.93 2.57 3.436 (3) 155
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+1, y+1, -z+{\script{1\over 2}}]; (iii) [x, -y+2, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS inc., Madison, WI, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS inc., Madison, WI, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and control of supermolecular coordination complex networks in which both coordination bonds and hydrogen bonds take part in the self-assembly chemistry (Zheng, et al., 2001; Zhou, et al., 2004) have recently garnered increasing interest. Schiff base complexes that contain both sulfur and amino acid functionalities have received much attention owing to their potential applications in pharmacy. (Casella & Gullotti, 1981, 1986; Wang et al., 1994; Li et al., 2006; Zhang et al., 2007, 2008).

Our group has focused on the exploration of the coordination chemistry of the sulfonate ligands for years (Zhang et al. 2004; Jiang et al. 2006; Li et al. 2007). We report here the synthesis and the structure of the mononuclear ZnII Paba complex (Fig. 1). The structure is composed of one ZnII, two deprotonated Paba- ligands and two guest water molecules. The six-coordinated ZnII atom has a distorted octahedral geometry, being coordinated by pyridine N, imine N and sulfonate O atoms from two deprotonated Paba- ligands in a tridentate facial arrangement. This structure is similar to those reported for complexes with N,N',O-tridentate donor ligands (Li et al., 2006; Correia et al., 2003).

There are extensive hydrogen bonds (O4-H2W···O2 and O4-H1W···O3), in which the donor is O-H of the guest water and S=O acts as acceptor, which forms a two-dimension sheet structure (Fig. 2).

Related literature top

For related literature, see: Casella & Gullotti (1981, 1986); Jiang et al. (2006); Li et al. (2006, 2007); Wang et al. (1994); Zhang et al. (2004, 2007, 2008); Correia et al. (2003); Zheng et al. (2001); Zhou et al. (2004).

Experimental top

The potassium salt of 2-(pyridylmethyl)imine-2-benzenesulfonic acid (PabaK) was synthesized according to the literature method (Casella & Gullotti, 1986).

To prepare the title complex, the ligand PabaK (1 mmol, 0.30 g) was dissolved in methanol (10 mL) at 333 K and an aqueous solution (10 mL) containing ZnCl2(0.5 mmol, 0.068 g) was added. The resulting solution was stirred at 333 K for 4 h, then cooled to room temperature and filtered. Yellow crystals suitable for X-ray diffraction were obtained by slow evaporation over several days, with a yield of 55%. Elemental analysis, found (%): C, 46.05; H, 3.55; N, 8.95; S, 10.42; calc (%): C, 46.16; H, 3.53; N, 8.98; S, 10.26.

Refinement top

H atoms bonded to C atoms were positioned geometrically with the C-H distance of 0.93 Å, and treated as riding atoms, with Uiso(H) = 1.2Ueq(C). Water hydrogens were placed in fixed positions and assigned Uiso values of 1.5Ueq of the water oxygen atom.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ellipsoid plot (30% probability) showing the numbering scheme. Dashed lines indicate hydrogen bonds. Symmetry code: (a) -x+1, y, -z+1/2.
[Figure 2] Fig. 2. 2-D structure, as viewed down the a axis. Dashed lines indicate hydrogen bonds.
Bis[2-(2-pyridylmethyleneamino)benzenesulfonato- κ3N,N',O]zinc(II) dihydrate top
Crystal data top
[Zn(C12H9N2O3S)2]·2H2OF(000) = 1280
Mr = 623.95Dx = 1.594 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 7323 reflections
a = 19.7090 (15) Åθ = 2.5–28.2°
b = 8.0722 (6) ŵ = 1.16 mm1
c = 16.3390 (13) ÅT = 295 K
V = 2599.5 (3) Å3Block, yellow
Z = 40.49 × 0.45 × 0.37 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2412 independent reflections
Radiation source: fine-focus sealed tube2100 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2323
Tmin = 0.600, Tmax = 0.673k = 99
17894 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0373P)2 + 1.7627P]
where P = (Fo2 + 2Fc2)/3
2412 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Zn(C12H9N2O3S)2]·2H2OV = 2599.5 (3) Å3
Mr = 623.95Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 19.7090 (15) ŵ = 1.16 mm1
b = 8.0722 (6) ÅT = 295 K
c = 16.3390 (13) Å0.49 × 0.45 × 0.37 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2412 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2100 reflections with I > 2σ(I)
Tmin = 0.600, Tmax = 0.673Rint = 0.024
17894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.04Δρmax = 0.46 e Å3
2412 reflectionsΔρmin = 0.42 e Å3
177 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.82446 (4)0.25000.02769 (11)
S10.37616 (2)0.67719 (6)0.34320 (3)0.03070 (14)
O10.45098 (7)0.67650 (18)0.33822 (8)0.0344 (3)
O20.34865 (8)0.84229 (19)0.33446 (10)0.0456 (4)
O30.35256 (7)0.5876 (2)0.41443 (8)0.0431 (4)
N10.49613 (8)1.0216 (2)0.16032 (10)0.0341 (4)
N20.40820 (8)0.7687 (2)0.17245 (9)0.0297 (4)
C10.44459 (10)1.0145 (3)0.10605 (12)0.0332 (4)
C20.43673 (13)1.1301 (3)0.04460 (14)0.0452 (6)
H20.40071.12230.00810.054*
C30.48322 (13)1.2579 (3)0.03809 (15)0.0506 (6)
H30.47861.33800.00250.061*
C40.53638 (13)1.2645 (3)0.09261 (15)0.0483 (6)
H40.56881.34800.08900.058*
C50.54084 (12)1.1447 (3)0.15295 (14)0.0420 (5)
H50.57661.15030.19000.050*
C60.39854 (10)0.8728 (3)0.11481 (12)0.0354 (5)
H60.36260.85900.07860.042*
C70.36755 (9)0.6238 (3)0.17777 (12)0.0313 (4)
C80.34696 (11)0.5353 (3)0.10925 (13)0.0437 (5)
H80.35790.57360.05720.052*
C90.31015 (12)0.3900 (3)0.11817 (15)0.0524 (6)
H90.29620.33200.07200.063*
C100.29391 (13)0.3306 (3)0.19512 (16)0.0516 (6)
H100.26980.23220.20050.062*
C110.31364 (11)0.4180 (3)0.26416 (13)0.0403 (5)
H110.30220.37920.31600.048*
C120.35039 (10)0.5632 (3)0.25581 (11)0.0300 (4)
O40.29845 (11)1.0939 (4)0.44343 (14)0.1079 (10)
H1W0.25721.11440.43940.162*
H2W0.30831.01050.41580.162*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02732 (18)0.03263 (19)0.02311 (18)0.0000.00389 (11)0.000
S10.0291 (3)0.0396 (3)0.0234 (2)0.0001 (2)0.00018 (18)0.0016 (2)
O10.0287 (7)0.0462 (9)0.0285 (7)0.0028 (6)0.0034 (6)0.0038 (6)
O20.0482 (9)0.0452 (9)0.0436 (9)0.0102 (7)0.0018 (7)0.0079 (7)
O30.0416 (8)0.0620 (10)0.0257 (7)0.0062 (8)0.0039 (6)0.0035 (7)
N10.0400 (9)0.0346 (9)0.0278 (9)0.0007 (7)0.0057 (7)0.0011 (7)
N20.0278 (8)0.0375 (9)0.0238 (8)0.0006 (7)0.0004 (6)0.0004 (7)
C10.0343 (10)0.0377 (11)0.0275 (10)0.0035 (9)0.0036 (8)0.0023 (8)
C20.0519 (14)0.0471 (13)0.0367 (12)0.0017 (11)0.0113 (10)0.0096 (10)
C30.0728 (17)0.0386 (13)0.0403 (13)0.0023 (12)0.0064 (12)0.0105 (11)
C40.0628 (15)0.0363 (12)0.0458 (13)0.0117 (11)0.0019 (11)0.0022 (10)
C50.0490 (13)0.0391 (12)0.0380 (12)0.0084 (10)0.0102 (10)0.0012 (9)
C60.0310 (11)0.0475 (12)0.0276 (10)0.0001 (9)0.0057 (8)0.0034 (9)
C70.0245 (10)0.0410 (11)0.0284 (10)0.0009 (8)0.0004 (8)0.0015 (9)
C80.0417 (12)0.0609 (15)0.0286 (11)0.0085 (11)0.0014 (9)0.0050 (10)
C90.0505 (14)0.0679 (16)0.0389 (13)0.0180 (13)0.0001 (11)0.0169 (12)
C100.0464 (14)0.0552 (15)0.0530 (15)0.0211 (12)0.0021 (11)0.0085 (12)
C110.0363 (12)0.0495 (13)0.0351 (11)0.0088 (10)0.0038 (9)0.0017 (10)
C120.0232 (9)0.0399 (11)0.0270 (10)0.0007 (8)0.0001 (7)0.0023 (8)
O40.0592 (13)0.168 (3)0.0964 (18)0.0323 (15)0.0209 (12)0.0725 (19)
Geometric parameters (Å, º) top
Zn1—O12.1065 (14)C3—C41.376 (3)
Zn1—O1i2.1065 (14)C3—H30.9300
Zn1—N1i2.1643 (18)C4—C51.384 (3)
Zn1—N12.1643 (18)C4—H40.9300
Zn1—N22.2544 (16)C5—H50.9300
Zn1—N2i2.2544 (16)C6—H60.9300
S1—O21.4459 (16)C7—C81.389 (3)
S1—O31.4470 (15)C7—C121.407 (3)
S1—O11.4769 (14)C8—C91.387 (3)
S1—C121.7730 (19)C8—H80.9300
N1—C51.334 (3)C9—C101.383 (3)
N1—C11.350 (2)C9—H90.9300
N2—C61.277 (3)C10—C111.386 (3)
N2—C71.421 (3)C10—H100.9300
C1—C21.380 (3)C11—C121.384 (3)
C1—C61.467 (3)C11—H110.9300
C2—C31.384 (3)O4—H1W0.8332
C2—H20.9300O4—H2W0.8339
O1—Zn1—O1i110.92 (8)C3—C2—H2120.5
O1—Zn1—N1i88.27 (6)C4—C3—C2118.9 (2)
O1i—Zn1—N1i149.76 (6)C4—C3—H3120.6
O1—Zn1—N1149.76 (6)C2—C3—H3120.6
O1i—Zn1—N188.27 (6)C3—C4—C5118.9 (2)
N1i—Zn1—N185.36 (9)C3—C4—H4120.6
O1—Zn1—N284.45 (5)C5—C4—H4120.6
O1i—Zn1—N282.55 (5)N1—C5—C4122.9 (2)
N1i—Zn1—N2123.75 (6)N1—C5—H5118.5
N1—Zn1—N274.81 (6)C4—C5—H5118.5
O1—Zn1—N2i82.55 (5)N2—C6—C1119.53 (18)
O1i—Zn1—N2i84.45 (5)N2—C6—H6120.2
N1i—Zn1—N2i74.81 (6)C1—C6—H6120.2
N1—Zn1—N2i123.75 (6)C8—C7—C12118.80 (19)
N2—Zn1—N2i156.97 (9)C8—C7—N2122.62 (18)
O2—S1—O3114.81 (10)C12—C7—N2118.51 (17)
O2—S1—O1111.87 (9)C9—C8—C7120.2 (2)
O3—S1—O1111.31 (9)C9—C8—H8119.9
O2—S1—C12106.94 (9)C7—C8—H8119.9
O3—S1—C12107.23 (9)C10—C9—C8120.7 (2)
O1—S1—C12103.86 (9)C10—C9—H9119.7
S1—O1—Zn1119.57 (8)C8—C9—H9119.7
C5—N1—C1118.00 (18)C9—C10—C11119.9 (2)
C5—N1—Zn1125.86 (14)C9—C10—H10120.1
C1—N1—Zn1116.11 (14)C11—C10—H10120.1
C6—N2—C7120.22 (17)C12—C11—C10119.8 (2)
C6—N2—Zn1113.76 (14)C12—C11—H11120.1
C7—N2—Zn1125.63 (12)C10—C11—H11120.1
N1—C1—C2122.3 (2)C11—C12—C7120.62 (18)
N1—C1—C6115.76 (17)C11—C12—S1120.65 (15)
C2—C1—C6121.93 (19)C7—C12—S1118.73 (15)
C1—C2—C3119.1 (2)H1W—O4—H2W110.2
C1—C2—H2120.5
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1W···O3ii0.832.213.014 (3)162
O4—H2W···O20.832.062.877 (3)166
C4—H4···O3iii0.932.483.407 (3)175
C6—H6···O4iv0.932.573.436 (3)155
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x+1, y+1, z+1/2; (iv) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C12H9N2O3S)2]·2H2O
Mr623.95
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)295
a, b, c (Å)19.7090 (15), 8.0722 (6), 16.3390 (13)
V3)2599.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.49 × 0.45 × 0.37
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.600, 0.673
No. of measured, independent and
observed [I > 2σ(I)] reflections
17894, 2412, 2100
Rint0.024
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.074, 1.04
No. of reflections2412
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.42

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1W···O3i0.832.213.014 (3)161.9
O4—H2W···O20.832.062.877 (3)166.4
C4—H4···O3ii0.932.483.407 (3)175
C6—H6···O4iii0.932.573.436 (3)155
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1, z+1/2; (iii) x, y+2, z1/2.
 

Acknowledgements

This work was funded by Guangxi Science Foundation, Guangxi Zhuang Autonomous Region of the People's Republic of China (grant No. 0731053).

References

First citationBruker (2004). SMART and SAINT. Bruker AXS inc., Madison, WI, USA.  Google Scholar
First citationCasella, L. & Gullotti, M. (1981). J. Am. Chem. Soc. 103, 6338–6347.  CrossRef CAS Web of Science Google Scholar
First citationCasella, L. & Gullotti, M. (1986). Inorg. Chem. 25, 1293–1303.  CrossRef CAS Web of Science Google Scholar
First citationCorreia, V. R., Bortoluzzi, A. J., Neves, A., Joussef, A. C., Vieira, M. G. M. & Batista, S. C. (2003). Acta Cryst. E59, m464–m466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiang, Y.-M., Li, J.-M., Xie, F.-Q. & Wang, Y.-F. (2006). Chin. J. Struct. Chem. 25, 767–770.  CAS Google Scholar
First citationLi, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006). Acta Cryst. E62, m2984–m2986.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H.-Y., Liao, B.-L., Jiang, Y.-M., Zhang, S.-H. & Li, J.-X. (2007). Chin. J. Struct. Chem. 26, 907–910.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Wu, Z., Yen, Z., Le, Z., Zhu, X. & Huang, Q. (1994). Synth. React. Inorg. Metal Org. Chem. 24, 1453–1460.  Google Scholar
First citationZhang, S. H., Jiang, Y.-M. & Liu, Z. M. (2008). J. Coord. Chem. 61, 1927–1934.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, S.-H., Jiang, Y.-M., Liu, Z. & Zhou, Z.-Y. (2004). Chin. J. Struct. Chem. 23, 882–885.  CAS Google Scholar
First citationZhang, S. H., Li, G.-Z., Zhong, F. & Feng, X.-Z. (2007). Chin. J. Struct. Chem. 26, 1491–1494.  CAS Google Scholar
First citationZheng, S.-L., Tong, M.-L., Yu, X.-L. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 586–592.  Web of Science CSD CrossRef Google Scholar
First citationZhou, J.-S., Cai, J.-W., Wang, L. & Ng, S.-W. (2004). Dalton Trans. pp. 1493–1497.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds