metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1181-m1182

{5,5′-Dihydr­­oxy-2,2′-[o-phenyl­enebis­(nitrilo­methyl­­idyne)]diphenolato}nickel(II) dihydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bChemistry Department, Isfahan University, Isfahan, 81746-73441, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 8 August 2008; accepted 13 August 2008; online 16 August 2008)

In the title complex, [Ni(C20H14N2O4)]·2H2O, the NiII ion is in an essentially square-planar geometry involving an N2O2 atom set of the tetra­dentate Schiff base ligand. The Ni atom lies on a crystallographic twofold rotation axis. The asymmetric unit contains one half-mol­ecule of the complex and a water mol­ecule. An inter­molecular O—H⋯O hydrogen bond forms a four-membered ring, producing an R12(4) ring motif involving a bifurcated hydrogen bond to the phenolate O atoms of the complex mol­ecule. In the crystal structure, mol­ecules are linked by ππ stacking inter­actions, with centroid–centroid distances in the range 3.5750 (11)–3.7750 (11) Å. As a result of the twofold symmetry, the central benzene ring makes the same dihedral angle of 15.75 (9)° with the two outer benzene rings. The dihedral angle between the two hydroxy­phenyl rings is 13.16 (5)°. In the crystal structure, mol­ecules are linked into infinite one-dimensional chains by directed four-membered O—H⋯O—H inter­actions along the c axis and are further connected by C—H⋯O and ππ stacking into a three-dimensional network. An inter­esting feature of the crystal structure is the short Ni⋯O, O⋯O and N⋯N inter­actions which are shorter than the sum of the van der Waals radii of the relevant atoms. The crystal structure is stabilized by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds and by ππ stacking inter­actions.

Related literature

For bond-length data, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see, for example: Clark et al. (1968[Clark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, pp. 223-226.], 1969[Clark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, pp. 823-829.], 1970[Clark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, pp. 396-399.]); Hodgson 1975[Hodgson, D. J. (1975). Prog. Inorg. Chem. 19, 173-202.]. For applications and bioactivities, see, for example: Elmali et al. (2000[Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423-424.]); Blower (1998[Blower, P. J. (1998). Transition Met. Chem. 23, 109-112.]); Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Li & Chang (1991[Li, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35-39.]); Shahrokhian et al. (2000[Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956-962.]); Fun & Kia (2008a[Fun, H.-K. & Kia, R. (2008a). Acta Cryst. E64, m1081-m1082.],b[Fun, H.-K. & Kia, R. (2008b). Acta Cryst. E64, m1116-m1117.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C20H14N2O4)]·2H2O

  • Mr = 441.07

  • Monoclinic, C 2/c

  • a = 10.9049 (2) Å

  • b = 17.6602 (3) Å

  • c = 9.0375 (3) Å

  • β = 101.150 (1)°

  • V = 1707.61 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 100.0 (1) K

  • 0.35 × 0.12 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.683, Tmax = 0.881

  • 14574 measured reflections

  • 3566 independent reflections

  • 2388 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.120

  • S = 1.12

  • 3566 reflections

  • 136 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Selected interatomic distances (Å)

Cg1, Cg2, Cg3, and Cg4 are the centroids of the Ni1/N1/C8/C8A/N1A, Ni1/O1/C1/C6/C7/N1, Ni1/O1A/C1A/C6A/C7A/N1A and C1–C6 rings, respectively.

Cg1⋯Cg4i 3.7364 (11)
Cg2⋯Cg2i 3.7380 (9)
Cg2⋯Cg3ii 3.7381 (9)
Cg3⋯Cg4iii 3.5766 (10)
Cg4⋯Cg4iv 3.7750 (11)
Ni1⋯O1Wv 3.7635 (13)
O1⋯O1v 2.4319 (18)
N1⋯N1v 2.525 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (iv) [-x, y, -z+{\script{5\over 2}}]; (v) [-x, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O1 0.88 2.40 3.0733 (18) 133
O1W—H1W1⋯O1v 0.88 1.97 2.8072 (19) 160
O1W—H2W1⋯O2vi 0.83 2.17 2.9985 (19) 173
C9—H9A⋯O2vii 0.93 2.60 3.394 (2) 144
Symmetry codes: (v) [-x, y, -z+{\script{3\over 2}}]; (vi) x, y, z-1; (vii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff base complexes are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993). Many of the reported structural investigations of these complexes are discussed in some details in a review (Hodgson, 1975). Metal derivatives of Schiff bases have been studied extensively, and Cu(II) and Ni(II) complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Blower, 1998; Fun & Kia, 2008a,b; Granovski et al., 1993; Li & Chang, 1991; Shahrokhian et al., 2000). Tetradentate Schiff base metal complexes may form trans or cis planar or tetrahedral structures (Elmali et al., 2000).

In the title compound (Fig. 1), the NiII ion, is in an essentially square-planar geometry involving a N2O2 atom set of the tetradentate Schiff base ligand. The Ni atom lies on a crystallographic twofold rotation axis. An intermolecular O—H···O hydrogen bond forms a four-membered ring, producing an R21(4) ring motif (Bernstein et al., 1995). The bond lengths are within the normal ranges (Allen et al., 1987). The asymmetric unit contains one-half of the molecule of the complex and a water molecule. The latter shows a bifurcated hydrogen bond which is connected to the phenolato oxygen atoms of the complex. The molecule is nearly planar, with a maximum deviation from the mean plane of 0.370 (2) Å for atom C9. As a result of the twofold symmetry, the central benzene ring makes the same dihedral angle of 15.75 (9)° with the two outer benzene rings. The dihedral angle between the two hydroxy phenyl rings is 13.16 (5)°. In the crystal structure, (Fig. 2) molecules are linked into infinite one-dimensional chains by directed four-membered O—H···O—H interactions along the c axis and are furthered connected by C—H···O and π-π stacking into a three-dimensional network.

An interesting feature of the crystal structure is the short Ni···O, O···O, and N···N interactions (Table 1), which are shorter than the sum of the van der Waals radii of the relevant atoms. The short distances between the centroids of the five- and six-membered rings indicate the existence of the π-π interactions (Table 1). The crystal structure is stabilized by intermolecular O—H···O, C—H···O hydrogen bonds (Table 2) and π-π interactions.

Related literature top

For bond-length data, see Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see, for example: Clark et al. (1968, 1969, 1970); Hodgson 1975. For applications and bioactivities, see, for example: Elmali et al. (2000); Blower (1998); Granovski et al. (1993); Li & Chang (1991); Shahrokhian et al. (2000); Fun & Kia (2008a,b). Cg1, Cg2, Cg3, and Cg4 are the centroids of Ni1/N1/C8/C8A/N1A, Ni1/O1/C6/C7/N1, Ni1/O1A/C1A/C6A/C7A/N1A, and C1–C6 rings, respectively.

Experimental top

A chloroform solution (40 ml) of the ligand (1 mmol, 354 mg) was added to a methanol solution (20 ml) of NiCl2.6H2O (1.05 mmol, 237 mg). The mixture was refluxed for 30 min and the resulting red precipitate was filtered, washed with cold ethanol and dried in air. Single crystals suitable for X-ray analysis were obtained from a THF solution at RT.

Refinement top

The water H-atoms were located in a difference Fourier map and refined as riding on the parent atom with an isotropic displacement parameter of 1.5Ueq of the water oxygen. The hydroxyl H atoms were also located in a difference Fourier map and refined freely. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.93 Å] and refined using a riding model.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme. Intermolecular hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing viewed down the b axis, showing one-dimensional extended chains involving the directed four membered O—H···O—H hydrogen bonds along the c axis. Intermolecular interactions are drawn as dashed lines.
{5,5'-Dihydroxy-2,2'-[o-phenylenebis(nitrilomethylidyne)]diphenolato}nickel(II) dihydrate top
Crystal data top
[Ni(C20H14N2O4)]·2H2OF(000) = 912
Mr = 441.07Dx = 1.716 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3113 reflections
a = 10.9049 (2) Åθ = 2.3–29.1°
b = 17.6602 (3) ŵ = 1.18 mm1
c = 9.0375 (3) ÅT = 100 K
β = 101.150 (1)°Block, red
V = 1707.61 (7) Å30.35 × 0.12 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3566 independent reflections
Radiation source: fine-focus sealed tube2388 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 34.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1717
Tmin = 0.683, Tmax = 0.881k = 2327
14574 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0492P)2]
where P = (Fo2 + 2Fc2)/3
3566 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Ni(C20H14N2O4)]·2H2OV = 1707.61 (7) Å3
Mr = 441.07Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.9049 (2) ŵ = 1.18 mm1
b = 17.6602 (3) ÅT = 100 K
c = 9.0375 (3) Å0.35 × 0.12 × 0.11 mm
β = 101.150 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3566 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2388 reflections with I > 2σ(I)
Tmin = 0.683, Tmax = 0.881Rint = 0.046
14574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.61 e Å3
3566 reflectionsΔρmin = 0.74 e Å3
136 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cryosystem Cobra low-temperature attachment

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.246535 (17)0.75000.01493 (11)
O10.04391 (12)0.32501 (7)0.88434 (14)0.0174 (3)
O20.18665 (13)0.44913 (8)1.35074 (15)0.0215 (3)
N10.06039 (14)0.17016 (8)0.88409 (17)0.0152 (3)
C10.09715 (16)0.32009 (10)1.0287 (2)0.0159 (4)
C20.11546 (17)0.38691 (10)1.1132 (2)0.0175 (4)
H2A0.09080.43291.06680.021*
C30.16965 (17)0.38546 (10)1.2647 (2)0.0161 (4)
C40.21006 (17)0.31684 (11)1.3364 (2)0.0200 (4)
H4A0.24740.31601.43800.024*
C50.1937 (2)0.25113 (10)1.2545 (2)0.0192 (4)
H5A0.22180.20581.30150.023*
C60.13518 (18)0.25029 (10)1.1002 (2)0.0160 (3)
C70.11768 (17)0.17979 (10)1.0251 (2)0.0172 (4)
H7A0.14900.13691.07930.021*
C80.03852 (17)0.09645 (10)0.8211 (2)0.0181 (4)
C90.08370 (18)0.02822 (10)0.8878 (2)0.0206 (4)
H9A0.14040.02810.97900.025*
C100.04344 (18)0.03919 (11)0.8171 (2)0.0232 (4)
H10A0.07480.08490.85980.028*
O1W0.15531 (13)0.42836 (7)0.67062 (15)0.0240 (3)
H1W10.09710.39500.67740.036*
H2W10.16300.43800.58290.036*
H1O20.170 (2)0.4836 (15)1.304 (3)0.047 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01935 (18)0.01096 (18)0.01281 (16)0.0000.00102 (12)0.000
O10.0240 (7)0.0128 (6)0.0126 (6)0.0004 (5)0.0033 (5)0.0004 (5)
O20.0320 (8)0.0146 (7)0.0156 (6)0.0001 (6)0.0007 (6)0.0040 (6)
N10.0177 (7)0.0109 (7)0.0161 (7)0.0006 (6)0.0012 (6)0.0003 (6)
C10.0189 (8)0.0149 (9)0.0129 (8)0.0002 (7)0.0002 (7)0.0020 (7)
C20.0201 (9)0.0156 (9)0.0148 (8)0.0007 (7)0.0012 (7)0.0009 (7)
C30.0192 (9)0.0142 (9)0.0145 (8)0.0009 (7)0.0020 (7)0.0020 (7)
C40.0260 (10)0.0209 (10)0.0111 (8)0.0015 (8)0.0011 (7)0.0013 (7)
C50.0256 (10)0.0168 (9)0.0139 (8)0.0010 (7)0.0006 (7)0.0047 (7)
C60.0189 (8)0.0154 (9)0.0126 (7)0.0004 (7)0.0004 (6)0.0010 (7)
C70.0215 (9)0.0132 (9)0.0158 (8)0.0007 (7)0.0009 (7)0.0040 (7)
C80.0192 (9)0.0151 (9)0.0188 (9)0.0006 (7)0.0011 (7)0.0016 (7)
C90.0224 (9)0.0173 (9)0.0207 (9)0.0005 (8)0.0007 (7)0.0022 (8)
C100.0293 (11)0.0153 (9)0.0252 (10)0.0014 (8)0.0055 (8)0.0039 (8)
O1W0.0312 (8)0.0175 (7)0.0232 (7)0.0055 (6)0.0050 (6)0.0009 (6)
Geometric parameters (Å, º) top
Ni1—O11.8436 (12)C4—C51.369 (3)
Ni1—O1i1.8436 (12)C4—H4A0.9300
Ni1—N1i1.8474 (15)C5—C61.417 (3)
Ni1—N11.8474 (15)C5—H5A0.9300
O1—C11.324 (2)C6—C71.414 (2)
O2—C31.359 (2)C7—H7A0.9300
O2—H1O20.74 (3)C8—C8i1.392 (4)
N1—C71.317 (2)C8—C91.394 (2)
N1—C81.422 (2)C9—C101.382 (3)
C1—C21.399 (2)C9—H9A0.9300
C1—C61.416 (2)C10—C10i1.387 (4)
C2—C31.383 (2)C10—H10A0.9300
C2—H2A0.9300O1W—H1W10.8771
C3—C41.404 (3)O1W—H2W10.8309
Cg1···Cg4ii3.7364 (11)Cg4···Cg4v3.7750 (11)
Cg2···Cg2ii3.7380 (9)Ni1···O1Wi3.7635 (13)
Cg2···Cg3iii3.7381 (9)O1···O1i2.4319 (18)
Cg3···Cg4iv3.5766 (10)N1···N1i2.525 (2)
O1—Ni1—O1i82.53 (8)C5—C4—H4A120.5
O1—Ni1—N1i174.29 (5)C3—C4—H4A120.5
O1i—Ni1—N1i95.89 (7)C4—C5—C6121.82 (17)
O1—Ni1—N195.89 (7)C4—C5—H5A119.1
O1i—Ni1—N1174.29 (6)C6—C5—H5A119.1
N1i—Ni1—N186.21 (9)C7—C6—C1123.15 (17)
C1—O1—Ni1127.44 (11)C7—C6—C5118.38 (16)
C3—O2—H1O2111 (2)C1—C6—C5118.47 (16)
C7—N1—C8121.12 (15)N1—C7—C6124.97 (17)
C7—N1—Ni1125.63 (13)N1—C7—H7A117.5
C8—N1—Ni1113.24 (12)C6—C7—H7A117.5
O1—C1—C2118.13 (16)C8i—C8—C9119.92 (11)
O1—C1—C6122.74 (16)C8i—C8—N1113.20 (9)
C2—C1—C6119.12 (17)C9—C8—N1126.87 (17)
C3—C2—C1120.89 (17)C10—C9—C8119.37 (18)
C3—C2—H2A119.6C10—C9—H9A120.3
C1—C2—H2A119.6C8—C9—H9A120.3
O2—C3—C2122.42 (17)C9—C10—C10i120.43 (11)
O2—C3—C4117.00 (16)C9—C10—H10A119.8
C2—C3—C4120.59 (17)C10i—C10—H10A119.8
C5—C4—C3119.06 (17)H1W1—O1W—H2W1114.3
O1i—Ni1—O1—C1176.47 (18)O1—C1—C6—C5178.70 (17)
N1i—Ni1—N1—C7176.59 (19)C2—C1—C6—C51.7 (3)
O1—Ni1—N1—C8177.60 (12)C4—C5—C6—C7177.71 (18)
N1i—Ni1—N1—C82.93 (9)C4—C5—C6—C12.4 (3)
Ni1—O1—C1—C2176.01 (12)C8—N1—C7—C6175.09 (17)
Ni1—O1—C1—C63.6 (3)Ni1—N1—C7—C64.4 (3)
O1—C1—C2—C3179.49 (17)C1—C6—C7—N13.0 (3)
C6—C1—C2—C30.1 (3)C5—C6—C7—N1177.10 (18)
C1—C2—C3—O2178.73 (16)C7—N1—C8—C8i171.2 (2)
C1—C2—C3—C41.4 (3)Ni1—N1—C8—C8i8.3 (3)
O2—C3—C4—C5179.35 (17)C7—N1—C8—C97.6 (3)
C2—C3—C4—C50.8 (3)Ni1—N1—C8—C9172.86 (16)
C3—C4—C5—C61.1 (3)C8i—C8—C9—C105.1 (3)
O1—C1—C6—C71.2 (3)N1—C8—C9—C10173.65 (18)
C2—C1—C6—C7178.37 (17)C8—C9—C10—C10i1.6 (3)
Symmetry codes: (i) x, y, z+3/2; (ii) x+1/2, y+1/2, z+2; (iii) x+1/2, y+1/2, z1/2; (iv) x1/2, y+1/2, z3/2; (v) x, y, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O10.882.403.0733 (18)133
O1W—H1W1···O1i0.881.972.8072 (19)160
O1W—H2W1···O2vi0.832.172.9985 (19)173
C9—H9A···O2vii0.932.603.394 (2)144
Symmetry codes: (i) x, y, z+3/2; (vi) x, y, z1; (vii) x+1/2, y1/2, z+5/2.

Experimental details

Crystal data
Chemical formula[Ni(C20H14N2O4)]·2H2O
Mr441.07
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)10.9049 (2), 17.6602 (3), 9.0375 (3)
β (°) 101.150 (1)
V3)1707.61 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.35 × 0.12 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.683, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
14574, 3566, 2388
Rint0.046
(sin θ/λ)max1)0.793
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.121, 1.12
No. of reflections3566
No. of parameters136
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.74

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected interatomic distances (Å) top
Cg1···Cg4i3.7364 (11)Cg4···Cg4iv3.7750 (11)
Cg2···Cg2i3.7380 (9)Ni1···O1Wv3.7635 (13)
Cg2···Cg3ii3.7381 (9)O1···O1v2.4319 (18)
Cg3···Cg4iii3.5766 (10)N1···N1v2.525 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x+1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z3/2; (iv) x, y, z+5/2; (v) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O10.88002.40003.0733 (18)133.00
O1W—H1W1···O1v0.88001.97002.8072 (19)160.00
O1W—H2W1···O2vi0.83002.17002.9985 (19)173.00
C9—H9A···O2vii0.93002.60003.394 (2)144.00
Symmetry codes: (v) x, y, z+3/2; (vi) x, y, z1; (vii) x+1/2, y1/2, z+5/2.
 

Footnotes

Additional correspondance author, e-mail: zsrkk@yahoo.com.

§Additional correspondance author, e-mail: mirkhani@sci.ui.ac.ir.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem. 23, 109–112.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, pp. 223–226.  CSD CrossRef Google Scholar
First citationClark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, pp. 823–829.  CSD CrossRef Google Scholar
First citationClark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, pp. 396–399.  Google Scholar
First citationElmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008a). Acta Cryst. E64, m1081–m1082.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008b). Acta Cryst. E64, m1116–m1117.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationHodgson, D. J. (1975). Prog. Inorg. Chem. 19, 173–202.  CrossRef CAS Google Scholar
First citationLi, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35–39.  CrossRef CAS Web of Science Google Scholar
First citationShahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956–962.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1181-m1182
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds