organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­anilino)pyridine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 13 August 2008; accepted 14 August 2008; online 20 August 2008)

The two aromatic rings of each of the four independent molecules in the asymmetric unit of the title compound, C11H9ClN2, are approximately coplanar; the four mol­ecules are arranged into two amino–pyridyl N—H⋯N hydrogen-bonded pairs. The structure has a 15% twin component related by a twofold rotation about [100].

Related literature

The title compound exhibits fluorescence; see: Abdullah (2005[Abdullah, Z. (2005). Int. J. Chem. Sci. 3, 9-15.]); Kawai et al. (2001[Kawai, M., Lee, M. J., Evans, K. O. & Norlund, T. (2001). J. Fluoresc. 11, 23-32.]); Mohd Salleh et al. (2007[Mohd Salleh, N., Ling, L. P., Abdullah, Z. M. A. A. & Aiyub, Z. (2007). Malays. J. Anal. Sci. 11, 229-236.]). For the use of PLATON in the preparation of the diffraction data, see: Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9ClN2

  • Mr = 204.65

  • Triclinic, [P \overline 1]

  • a = 7.3926 (3) Å

  • b = 15.3577 (5) Å

  • c = 17.6093 (6) Å

  • α = 73.723 (2)°

  • β = 87.360 (3)°

  • γ = 87.128 (3)°

  • V = 1915.6 (1) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 100 (2) K

  • 0.26 × 0.16 × 0.03 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.913, Tmax = 0.989

  • 14371 measured reflections

  • 6679 independent reflections

  • 4259 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.201

  • S = 1.04

  • 6679 reflections

  • 506 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯N3 0.88 2.19 3.019 (5) 156
N4—H4n⋯N1 0.88 2.17 3.010 (5) 160
N6—H6n⋯N7 0.88 2.13 2.968 (5) 158
N8—H8n⋯N5 0.88 2.25 3.096 (5) 161

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The class of compounds represented by the title compound (Scheme I, Fig. 1) exhibit fluorescence (Abdullah, 2005; Kawai et al., 2001; Mohd Salleh et al., 2007). The compound crystallizes with four indepedent molecules; in each molecule, the two aromatic rings are approximately coplanar. The four molecules are arranged into two H–Hamino–Npyridyl hydrogen-bonded pairs.

Related literature top

The title compound exhibits fluorescence; see: Abdullah (2005); Kawai et al. (2001); Mohd Salleh et al. (2007). For the use of PLATON in the preparation of the diffraction data, see: Spek (2003).

Experimental top

2-Chloropyridine (0.5 ml, 5.28 mmol) and 4-chloroaniline (0.67 g, 5.28 mmol) were heated for 5 h. The mixture was cooled and extracted with ether (3 x 100 ml). The ether extract was washed with water and then dried over sodium sulfate. Evaporation of the solvent gave a purple colored powder. Recrystallization from chloroform yielded colorless prisms.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement using the riding model approximation, with U(H) fixed at 1.2U(C). The amino H-atoms were similarly treated as riding (N–H 0.88 Å).

The structure initially refined to a rather high R index of 8.26%, and the difference Fourier map showed relatively large peaks for an all-light atom structure, although none were larger than 1 e Å-3. A preliminary check with the TwinRotMat routine of PLATON (Spek, 2003) showed strong evidence twofold twinning about [1 0 0]. Refinement against the TwinRotMat-generated data gave a lower R index of 7.26% along with a considerably flatter final difference Fourier map (no peak larger than ca 0.5 e Å-3). According to TwinRotMat, twinning should cause split reflections on the (n,k,l) layers with n = +/-1,2,3,4 although on some of these (e.g., n =+/- 1,4) the spot splitting was marginal. With n = -5,0,5 and on all (h,n,l) and (h,k,n) layers, the overlap was essentially perfect.

On the other hand, the reciprocal lattice diffraction data, when examined with the proprietary RLATT (Bruker, 2007) did not show any evidence of split reflections, most likely because the twin component is small.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the two pairs of hydrogen-bonded C11H9N2Cl molecules.
2-(4-Chloroanilino)pyridine top
Crystal data top
C11H9ClN2Z = 8
Mr = 204.65F(000) = 848
Triclinic, P1Dx = 1.419 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3926 (3) ÅCell parameters from 1607 reflections
b = 15.3577 (5) Åθ = 2.7–22.1°
c = 17.6093 (6) ŵ = 0.36 mm1
α = 73.723 (2)°T = 100 K
β = 87.360 (3)°Plate, colorless
γ = 87.128 (3)°0.26 × 0.16 × 0.03 mm
V = 1915.6 (1) Å3
Data collection top
Bruker SMART APEX
diffractometer
6679 independent reflections
Radiation source: fine-focus sealed tube4259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω scansθmax = 25.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.913, Tmax = 0.989k = 1818
14371 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.201H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0956P)2]
where P = (Fo2 + 2Fc2)/3
6679 reflections(Δ/σ)max = 0.001
506 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C11H9ClN2γ = 87.128 (3)°
Mr = 204.65V = 1915.6 (1) Å3
Triclinic, P1Z = 8
a = 7.3926 (3) ÅMo Kα radiation
b = 15.3577 (5) ŵ = 0.36 mm1
c = 17.6093 (6) ÅT = 100 K
α = 73.723 (2)°0.26 × 0.16 × 0.03 mm
β = 87.360 (3)°
Data collection top
Bruker SMART APEX
diffractometer
6679 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4259 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.989Rint = 0.068
14371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.201H-atom parameters constrained
S = 1.04Δρmax = 0.52 e Å3
6679 reflectionsΔρmin = 0.52 e Å3
506 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.63490 (18)0.33288 (8)0.13449 (6)0.0313 (3)
Cl20.86940 (19)0.47050 (8)0.93970 (7)0.0348 (4)
Cl30.85771 (18)0.82618 (8)0.64005 (7)0.0323 (3)
Cl40.68780 (19)0.97391 (8)1.44898 (7)0.0344 (4)
N10.7638 (5)0.2816 (2)0.6012 (2)0.0235 (9)
N20.7050 (5)0.3289 (2)0.4689 (2)0.0241 (9)
H2N0.67670.38120.47850.029*
N30.7168 (6)0.5220 (2)0.4778 (2)0.0274 (10)
N40.8145 (6)0.4735 (2)0.6050 (2)0.0266 (10)
H4N0.82590.41920.59750.032*
N50.6763 (5)0.7791 (2)1.1073 (2)0.0242 (9)
N60.7641 (5)0.8237 (2)0.97657 (19)0.0232 (9)
H6N0.79370.87420.98640.028*
N70.7819 (6)1.0150 (2)0.9807 (2)0.0264 (10)
N80.6946 (6)0.9785 (2)1.1120 (2)0.0253 (10)
H8N0.66480.92631.10560.030*
C10.7593 (6)0.2583 (3)0.5324 (2)0.0198 (10)
C20.8080 (6)0.1703 (3)0.5277 (3)0.0231 (11)
H20.80220.15520.47920.028*
C30.8645 (7)0.1062 (3)0.5954 (3)0.0268 (11)
H30.89960.04650.59340.032*
C40.8702 (7)0.1288 (3)0.6660 (3)0.0256 (11)
H40.90760.08540.71310.031*
C50.8195 (7)0.2166 (3)0.6653 (3)0.0241 (11)
H50.82440.23240.71360.029*
C60.6904 (7)0.3257 (3)0.3904 (2)0.0234 (11)
C70.6014 (6)0.2570 (3)0.3717 (3)0.0224 (11)
H70.55060.20920.41260.027*
C80.5873 (6)0.2588 (3)0.2926 (3)0.0243 (11)
H80.53120.21080.27950.029*
C90.6547 (6)0.3301 (3)0.2336 (2)0.0221 (11)
C100.7396 (6)0.4008 (3)0.2509 (2)0.0219 (11)
H100.78470.45000.20980.026*
C110.7564 (7)0.3970 (3)0.3299 (2)0.0236 (11)
H110.81450.44450.34280.028*
C120.7827 (6)0.5452 (3)0.5387 (2)0.0225 (11)
C130.8204 (6)0.6354 (3)0.5341 (3)0.0242 (11)
H130.86990.65020.57750.029*
C140.7839 (6)0.7019 (3)0.4651 (2)0.0250 (11)
H140.80770.76350.46040.030*
C150.7119 (7)0.6780 (3)0.4026 (3)0.0284 (12)
H150.68390.72280.35470.034*
C160.6823 (7)0.5882 (3)0.4117 (3)0.0267 (11)
H160.63450.57200.36850.032*
C170.8306 (6)0.4777 (3)0.6828 (2)0.0197 (10)
C180.7407 (6)0.5441 (3)0.7125 (2)0.0225 (11)
H180.66890.59060.67850.027*
C190.7548 (6)0.5429 (3)0.7910 (2)0.0234 (11)
H190.69540.58890.81050.028*
C200.8569 (6)0.4734 (3)0.8409 (2)0.0232 (11)
C210.9467 (6)0.4064 (3)0.8133 (2)0.0235 (11)
H211.01670.35940.84770.028*
C220.9327 (7)0.4092 (3)0.7348 (3)0.0242 (11)
H220.99380.36340.71550.029*
C230.6090 (7)0.7168 (3)1.1698 (3)0.0258 (11)
H230.59380.73241.21830.031*
C240.5600 (7)0.6317 (3)1.1694 (3)0.0270 (12)
H240.50980.59041.21540.032*
C250.5872 (7)0.6088 (3)1.0989 (2)0.0259 (12)
H250.55810.55021.09630.031*
C260.6557 (7)0.6702 (3)1.0330 (3)0.0257 (11)
H260.67310.65540.98430.031*
C270.7002 (6)0.7565 (3)1.0396 (2)0.0230 (11)
C280.7872 (6)0.8202 (3)0.8975 (2)0.0179 (10)
C290.8870 (6)0.7517 (3)0.8758 (3)0.0235 (11)
H290.94200.70360.91530.028*
C300.9073 (6)0.7526 (3)0.7969 (3)0.0252 (11)
H300.97300.70470.78230.030*
C310.8304 (6)0.8243 (3)0.7398 (2)0.0221 (11)
C320.7343 (6)0.8940 (3)0.7592 (2)0.0212 (11)
H320.68460.94320.71900.025*
C330.7101 (6)0.8919 (3)0.8391 (2)0.0203 (10)
H330.64140.93910.85350.024*
C340.8266 (7)1.0766 (3)0.9131 (3)0.0280 (12)
H340.85871.05530.86840.034*
C350.8294 (7)1.1685 (3)0.9036 (3)0.0276 (12)
H350.86881.20920.85500.033*
C360.7723 (7)1.1994 (3)0.9681 (3)0.0307 (12)
H360.76661.26260.96370.037*
C370.7243 (6)1.1380 (3)1.0383 (3)0.0251 (11)
H370.68461.15801.08290.030*
C380.7346 (7)1.0458 (3)1.0431 (2)0.0239 (11)
C390.6953 (6)0.9824 (3)1.1897 (2)0.0213 (10)
C400.7925 (7)1.0447 (3)1.2151 (2)0.0240 (11)
H400.86221.08831.17780.029*
C410.7873 (6)1.0427 (3)1.2940 (3)0.0248 (11)
H410.85081.08601.31070.030*
C420.6890 (6)0.9773 (3)1.3491 (3)0.0239 (11)
C430.5945 (7)0.9148 (3)1.3258 (2)0.0234 (11)
H430.52930.86971.36370.028*
C440.5958 (6)0.9185 (3)1.2462 (2)0.0230 (11)
H440.52750.87671.22980.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0369 (8)0.0382 (7)0.0208 (6)0.0045 (6)0.0054 (5)0.0120 (5)
Cl20.0479 (9)0.0381 (7)0.0209 (6)0.0003 (6)0.0111 (6)0.0113 (5)
Cl30.0375 (8)0.0411 (7)0.0217 (6)0.0116 (6)0.0039 (5)0.0132 (5)
Cl40.0421 (9)0.0412 (7)0.0214 (6)0.0039 (6)0.0045 (6)0.0114 (5)
N10.026 (2)0.0204 (19)0.022 (2)0.0022 (17)0.0010 (17)0.0023 (16)
N20.040 (3)0.0166 (18)0.0154 (19)0.0009 (18)0.0052 (17)0.0041 (15)
N30.038 (3)0.022 (2)0.020 (2)0.0031 (19)0.0047 (18)0.0027 (16)
N40.043 (3)0.0176 (19)0.0169 (19)0.0005 (19)0.0004 (18)0.0021 (15)
N50.028 (2)0.0214 (19)0.021 (2)0.0015 (18)0.0023 (17)0.0025 (16)
N60.034 (3)0.0211 (19)0.0137 (18)0.0044 (18)0.0002 (17)0.0037 (15)
N70.039 (3)0.023 (2)0.017 (2)0.0059 (19)0.0035 (18)0.0050 (16)
N80.042 (3)0.0178 (19)0.0151 (19)0.0064 (18)0.0036 (17)0.0014 (15)
C10.021 (3)0.021 (2)0.017 (2)0.008 (2)0.0024 (19)0.0021 (18)
C20.028 (3)0.025 (2)0.017 (2)0.004 (2)0.000 (2)0.0063 (19)
C30.027 (3)0.021 (2)0.030 (3)0.000 (2)0.001 (2)0.002 (2)
C40.030 (3)0.023 (2)0.021 (2)0.004 (2)0.005 (2)0.0004 (19)
C50.032 (3)0.021 (2)0.017 (2)0.004 (2)0.006 (2)0.0001 (18)
C60.031 (3)0.020 (2)0.019 (2)0.000 (2)0.007 (2)0.0049 (19)
C70.020 (3)0.022 (2)0.025 (2)0.002 (2)0.002 (2)0.0064 (19)
C80.024 (3)0.020 (2)0.032 (3)0.004 (2)0.007 (2)0.012 (2)
C90.024 (3)0.023 (2)0.020 (2)0.003 (2)0.005 (2)0.0074 (18)
C100.025 (3)0.019 (2)0.020 (2)0.001 (2)0.002 (2)0.0016 (18)
C110.032 (3)0.019 (2)0.019 (2)0.003 (2)0.003 (2)0.0032 (18)
C120.026 (3)0.025 (2)0.016 (2)0.004 (2)0.003 (2)0.0036 (18)
C130.028 (3)0.022 (2)0.021 (2)0.000 (2)0.000 (2)0.0029 (19)
C140.028 (3)0.022 (2)0.023 (2)0.004 (2)0.001 (2)0.0031 (19)
C150.038 (3)0.024 (2)0.018 (2)0.007 (2)0.002 (2)0.0020 (19)
C160.032 (3)0.027 (3)0.022 (2)0.003 (2)0.007 (2)0.008 (2)
C170.027 (3)0.014 (2)0.017 (2)0.003 (2)0.002 (2)0.0027 (17)
C180.026 (3)0.020 (2)0.021 (2)0.003 (2)0.003 (2)0.0026 (18)
C190.023 (3)0.022 (2)0.025 (2)0.005 (2)0.001 (2)0.0060 (19)
C200.024 (3)0.025 (2)0.019 (2)0.011 (2)0.001 (2)0.0030 (19)
C210.027 (3)0.022 (2)0.020 (2)0.003 (2)0.005 (2)0.0028 (19)
C220.032 (3)0.013 (2)0.025 (2)0.001 (2)0.000 (2)0.0026 (18)
C230.037 (3)0.020 (2)0.018 (2)0.000 (2)0.000 (2)0.0022 (19)
C240.034 (3)0.021 (2)0.021 (2)0.003 (2)0.001 (2)0.0028 (19)
C250.031 (3)0.021 (2)0.025 (3)0.006 (2)0.008 (2)0.0032 (19)
C260.033 (3)0.020 (2)0.022 (2)0.001 (2)0.006 (2)0.0027 (19)
C270.026 (3)0.023 (2)0.018 (2)0.001 (2)0.007 (2)0.0010 (19)
C280.020 (3)0.019 (2)0.016 (2)0.0062 (19)0.0003 (19)0.0056 (17)
C290.024 (3)0.019 (2)0.027 (2)0.001 (2)0.003 (2)0.0050 (19)
C300.024 (3)0.027 (2)0.027 (3)0.003 (2)0.004 (2)0.011 (2)
C310.027 (3)0.025 (2)0.015 (2)0.008 (2)0.004 (2)0.0062 (18)
C320.025 (3)0.021 (2)0.017 (2)0.005 (2)0.0010 (19)0.0025 (18)
C330.020 (3)0.017 (2)0.023 (2)0.0011 (19)0.000 (2)0.0051 (18)
C340.040 (3)0.024 (2)0.019 (2)0.005 (2)0.004 (2)0.0048 (19)
C350.038 (3)0.025 (2)0.015 (2)0.004 (2)0.005 (2)0.0011 (19)
C360.039 (3)0.023 (2)0.028 (3)0.003 (2)0.010 (2)0.001 (2)
C370.027 (3)0.026 (2)0.020 (2)0.001 (2)0.005 (2)0.0006 (19)
C380.029 (3)0.023 (2)0.017 (2)0.003 (2)0.004 (2)0.0005 (19)
C390.025 (3)0.018 (2)0.018 (2)0.004 (2)0.003 (2)0.0002 (18)
C400.028 (3)0.020 (2)0.022 (2)0.003 (2)0.003 (2)0.0026 (19)
C410.021 (3)0.025 (2)0.025 (3)0.002 (2)0.000 (2)0.002 (2)
C420.023 (3)0.026 (2)0.020 (2)0.006 (2)0.001 (2)0.0024 (19)
C430.028 (3)0.020 (2)0.020 (2)0.004 (2)0.005 (2)0.0034 (19)
C440.027 (3)0.019 (2)0.022 (2)0.005 (2)0.004 (2)0.0028 (18)
Geometric parameters (Å, º) top
Cl1—C91.747 (4)C15—H150.9500
Cl2—C201.734 (4)C16—H160.9500
Cl3—C311.751 (4)C17—C181.397 (6)
Cl4—C421.744 (5)C17—C221.400 (6)
N1—C51.345 (5)C18—C191.385 (6)
N1—C11.359 (5)C18—H180.9500
N2—C11.380 (5)C19—C201.391 (6)
N2—C61.406 (5)C19—H190.9500
N2—H2N0.8800C20—C211.386 (7)
N3—C161.338 (5)C21—C221.378 (6)
N3—C121.340 (6)C21—H210.9500
N4—C121.381 (5)C22—H220.9500
N4—C171.401 (5)C23—C241.376 (6)
N4—H4N0.8800C23—H230.9500
N5—C271.334 (6)C24—C251.385 (6)
N5—C231.335 (5)C24—H240.9500
N6—C271.370 (5)C25—C261.368 (6)
N6—C281.411 (5)C25—H250.9500
N6—H6N0.8800C26—C271.419 (6)
N7—C341.336 (5)C26—H260.9500
N7—C381.340 (6)C28—C291.385 (6)
N8—C391.386 (5)C28—C331.397 (6)
N8—C381.387 (5)C29—C301.387 (6)
N8—H8N0.8800C29—H290.9500
C1—C21.405 (6)C30—C311.385 (6)
C2—C31.382 (6)C30—H300.9500
C2—H20.9500C31—C321.369 (6)
C3—C41.384 (6)C32—C331.401 (6)
C3—H30.9500C32—H320.9500
C4—C51.378 (6)C33—H330.9500
C4—H40.9500C34—C351.376 (6)
C5—H50.9500C34—H340.9500
C6—C111.387 (5)C35—C361.389 (7)
C6—C71.393 (6)C35—H350.9500
C7—C81.394 (6)C36—C371.373 (6)
C7—H70.9500C36—H360.9500
C8—C91.377 (6)C37—C381.392 (6)
C8—H80.9500C37—H370.9500
C9—C101.391 (6)C39—C441.397 (6)
C10—C111.387 (6)C39—C401.403 (6)
C10—H100.9500C40—C411.381 (6)
C11—H110.9500C40—H400.9500
C12—C131.406 (6)C41—C421.393 (6)
C13—C141.377 (6)C41—H410.9500
C13—H130.9500C42—C431.376 (6)
C14—C151.390 (6)C43—C441.386 (6)
C14—H140.9500C43—H430.9500
C15—C161.371 (6)C44—H440.9500
C5—N1—C1117.0 (4)C21—C20—Cl2119.7 (3)
C1—N2—C6126.6 (4)C19—C20—Cl2119.1 (4)
C1—N2—H2N116.7C22—C21—C20118.7 (4)
C6—N2—H2N116.7C22—C21—H21120.6
C16—N3—C12117.9 (4)C20—C21—H21120.6
C12—N4—C17127.2 (4)C21—C22—C17121.8 (5)
C12—N4—H4N116.4C21—C22—H22119.1
C17—N4—H4N116.4C17—C22—H22119.1
C27—N5—C23117.4 (4)N5—C23—C24125.0 (4)
C27—N6—C28126.6 (4)N5—C23—H23117.5
C27—N6—H6N116.7C24—C23—H23117.5
C28—N6—H6N116.7C23—C24—C25117.0 (4)
C34—N7—C38117.1 (4)C23—C24—H24121.5
C39—N8—C38128.7 (4)C25—C24—H24121.5
C39—N8—H8N115.7C26—C25—C24120.4 (4)
C38—N8—H8N115.7C26—C25—H25119.8
N1—C1—N2113.7 (4)C24—C25—H25119.8
N1—C1—C2122.1 (4)C25—C26—C27118.2 (4)
N2—C1—C2124.2 (4)C25—C26—H26120.9
C3—C2—C1118.5 (4)C27—C26—H26120.9
C3—C2—H2120.7N5—C27—N6115.1 (4)
C1—C2—H2120.7N5—C27—C26122.1 (4)
C2—C3—C4120.2 (4)N6—C27—C26122.7 (4)
C2—C3—H3119.9C29—C28—C33119.6 (4)
C4—C3—H3119.9C29—C28—N6123.2 (4)
C5—C4—C3117.5 (4)C33—C28—N6117.2 (4)
C5—C4—H4121.2C28—C29—C30120.6 (4)
C3—C4—H4121.2C28—C29—H29119.7
N1—C5—C4124.7 (4)C30—C29—H29119.7
N1—C5—H5117.6C31—C30—C29119.0 (5)
C4—C5—H5117.6C31—C30—H30120.5
C11—C6—C7119.4 (4)C29—C30—H30120.5
C11—C6—N2118.3 (4)C32—C31—C30121.8 (4)
C7—C6—N2122.1 (4)C32—C31—Cl3119.1 (3)
C6—C7—C8119.5 (4)C30—C31—Cl3119.1 (4)
C6—C7—H7120.3C31—C32—C33119.2 (4)
C8—C7—H7120.3C31—C32—H32120.4
C9—C8—C7120.0 (4)C33—C32—H32120.4
C9—C8—H8120.0C28—C33—C32119.9 (4)
C7—C8—H8120.0C28—C33—H33120.1
C8—C9—C10121.5 (4)C32—C33—H33120.1
C8—C9—Cl1119.9 (3)N7—C34—C35124.7 (5)
C10—C9—Cl1118.6 (3)N7—C34—H34117.6
C11—C10—C9117.9 (4)C35—C34—H34117.6
C11—C10—H10121.0C34—C35—C36117.2 (4)
C9—C10—H10121.0C34—C35—H35121.4
C10—C11—C6121.7 (4)C36—C35—H35121.4
C10—C11—H11119.2C37—C36—C35119.5 (4)
C6—C11—H11119.2C37—C36—H36120.2
N3—C12—N4114.8 (4)C35—C36—H36120.2
N3—C12—C13122.1 (4)C36—C37—C38119.0 (5)
N4—C12—C13123.1 (4)C36—C37—H37120.5
C14—C13—C12118.5 (4)C38—C37—H37120.5
C14—C13—H13120.7N7—C38—N8114.3 (4)
C12—C13—H13120.7N7—C38—C37122.4 (4)
C13—C14—C15119.3 (4)N8—C38—C37123.2 (4)
C13—C14—H14120.4N8—C39—C44117.4 (4)
C15—C14—H14120.4N8—C39—C40124.2 (4)
C16—C15—C14118.3 (4)C44—C39—C40118.3 (4)
C16—C15—H15120.8C41—C40—C39120.2 (4)
C14—C15—H15120.8C41—C40—H40119.9
N3—C16—C15123.8 (4)C39—C40—H40119.9
N3—C16—H16118.1C40—C41—C42120.0 (4)
C15—C16—H16118.1C40—C41—H41120.0
C18—C17—C22118.2 (4)C42—C41—H41120.0
C18—C17—N4123.1 (4)C43—C42—C41120.8 (4)
C22—C17—N4118.6 (4)C43—C42—Cl4119.6 (3)
C19—C18—C17120.8 (4)C41—C42—Cl4119.6 (4)
C19—C18—H18119.6C42—C43—C44119.0 (4)
C17—C18—H18119.6C42—C43—H43120.5
C18—C19—C20119.2 (5)C44—C43—H43120.5
C18—C19—H19120.4C43—C44—C39121.6 (4)
C20—C19—H19120.4C43—C44—H44119.2
C21—C20—C19121.2 (4)C39—C44—H44119.2
C5—N1—C1—N2178.5 (4)C27—N5—C23—C241.1 (7)
C5—N1—C1—C20.8 (6)N5—C23—C24—C251.6 (8)
C6—N2—C1—N1178.8 (4)C23—C24—C25—C261.5 (7)
C6—N2—C1—C20.5 (7)C24—C25—C26—C271.0 (7)
N1—C1—C2—C30.9 (7)C23—N5—C27—N6178.0 (4)
N2—C1—C2—C3178.3 (4)C23—N5—C27—C260.4 (7)
C1—C2—C3—C40.8 (7)C28—N6—C27—N5174.5 (4)
C2—C3—C4—C50.6 (7)C28—N6—C27—C263.1 (7)
C1—N1—C5—C40.6 (7)C25—C26—C27—N50.4 (7)
C3—C4—C5—N10.5 (7)C25—C26—C27—N6177.8 (4)
C1—N2—C6—C11136.0 (5)C27—N6—C28—C2954.0 (6)
C1—N2—C6—C748.5 (7)C27—N6—C28—C33128.5 (5)
C11—C6—C7—C82.9 (7)C33—C28—C29—C301.5 (6)
N2—C6—C7—C8178.4 (4)N6—C28—C29—C30179.0 (4)
C6—C7—C8—C92.6 (7)C28—C29—C30—C311.7 (6)
C7—C8—C9—C100.8 (7)C29—C30—C31—C320.3 (7)
C7—C8—C9—Cl1179.3 (4)C29—C30—C31—Cl3179.4 (3)
C8—C9—C10—C110.6 (7)C30—C31—C32—C331.2 (7)
Cl1—C9—C10—C11179.2 (4)Cl3—C31—C32—C33179.1 (3)
C9—C10—C11—C60.3 (7)C29—C28—C33—C320.0 (6)
C7—C6—C11—C101.5 (7)N6—C28—C33—C32177.6 (4)
N2—C6—C11—C10177.1 (4)C31—C32—C33—C281.4 (6)
C16—N3—C12—N4179.8 (4)C38—N7—C34—C350.9 (7)
C16—N3—C12—C131.8 (7)N7—C34—C35—C363.6 (8)
C17—N4—C12—N3159.7 (5)C34—C35—C36—C372.9 (7)
C17—N4—C12—C1321.9 (8)C35—C36—C37—C380.2 (7)
N3—C12—C13—C141.6 (8)C34—N7—C38—N8178.3 (4)
N4—C12—C13—C14179.9 (5)C34—N7—C38—C372.6 (7)
C12—C13—C14—C150.2 (7)C39—N8—C38—N7158.5 (5)
C13—C14—C15—C161.0 (8)C39—N8—C38—C3722.4 (8)
C12—N3—C16—C150.6 (8)C36—C37—C38—N73.1 (7)
C14—C15—C16—N30.8 (8)C36—C37—C38—N8177.9 (5)
C12—N4—C17—C1830.0 (7)C38—N8—C39—C44159.5 (5)
C12—N4—C17—C22153.9 (4)C38—N8—C39—C4022.0 (8)
C22—C17—C18—C191.1 (6)N8—C39—C40—C41179.1 (5)
N4—C17—C18—C19177.1 (4)C44—C39—C40—C410.6 (7)
C17—C18—C19—C201.4 (6)C39—C40—C41—C421.6 (7)
C18—C19—C20—C211.0 (6)C40—C41—C42—C430.8 (7)
C18—C19—C20—Cl2178.3 (3)C40—C41—C42—Cl4178.5 (4)
C19—C20—C21—C220.3 (6)C41—C42—C43—C441.0 (7)
Cl2—C20—C21—C22179.0 (3)Cl4—C42—C43—C44179.7 (4)
C20—C21—C22—C170.0 (7)C42—C43—C44—C392.1 (7)
C18—C17—C22—C210.4 (6)N8—C39—C44—C43177.3 (4)
N4—C17—C22—C21176.6 (4)C40—C39—C44—C431.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···N30.882.193.019 (5)156
N4—H4n···N10.882.173.010 (5)160
N6—H6n···N70.882.132.968 (5)158
N8—H8n···N50.882.253.096 (5)161

Experimental details

Crystal data
Chemical formulaC11H9ClN2
Mr204.65
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.3926 (3), 15.3577 (5), 17.6093 (6)
α, β, γ (°)73.723 (2), 87.360 (3), 87.128 (3)
V3)1915.6 (1)
Z8
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.26 × 0.16 × 0.03
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.913, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
14371, 6679, 4259
Rint0.068
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.201, 1.04
No. of reflections6679
No. of parameters506
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.52

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···N30.882.193.019 (5)156
N4—H4n···N10.882.173.010 (5)160
N6—H6n···N70.882.132.968 (5)158
N8—H8n···N50.882.253.096 (5)161
 

Acknowledgements

We thank Dr Sean Parkin of the University of Kentucky for discussion of the twinning problem, and we thank the University of Malaya for supporting this study (grant No. FS358/2008 A).

References

First citationAbdullah, Z. (2005). Int. J. Chem. Sci. 3, 9–15.  CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKawai, M., Lee, M. J., Evans, K. O. & Norlund, T. (2001). J. Fluoresc. 11, 23–32.  Web of Science CrossRef CAS Google Scholar
First citationMohd Salleh, N., Ling, L. P., Abdullah, Z. M. A. A. & Aiyub, Z. (2007). Malays. J. Anal. Sci. 11, 229–236.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds