organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Diazo­niabi­cyclo­[2.2.2]octane terephthalate

aCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: yangeli66@yahoo.com.cn

(Received 18 July 2008; accepted 6 August 2008; online 16 August 2008)

In the title compound, C6H14N2+·C8H4O42−, the protonated 1,4-diazo­niabicyclo­[2.2.2]octane cations and the deprotonated terephthalate anions are alternately linked by N—H⋯O hydrogen bonds into chains.

[Scheme 1]

Experimental

Crystal data
  • C6H14N22+·C8H4O42−

  • Mr = 278.30

  • Triclinic, [P \overline 1]

  • a = 7.8046 (10) Å

  • b = 9.5482 (2) Å

  • c = 10.8075 (2) Å

  • α = 65.900 (10)°

  • β = 78.360 (10)°

  • γ = 66.800 (10)°

  • V = 672.39 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.23 × 0.13 × 0.08 mm

Data collection
  • Siemens SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.900, Tmax = 0.950

  • 7312 measured reflections

  • 2377 independent reflections

  • 1779 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 1.04

  • 2377 reflections

  • 188 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.954 (15) 1.623 (15) 2.5757 (19) 176.8 (17)
N2—H2N⋯O4i 0.959 (15) 1.600 (15) 2.5589 (19) 177.9 (18)
Symmetry code: (i) x-2, y+1, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Bergerhoff et al., 1996[Bergerhoff, G., Berndt, M. & Brandenburg, K. (1996). J. Res. Natl Inst. Stand. Technol. 101, 221-225.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The asymmetric unit of the title compound, (I), consists of a protonated 1,4-diazoniabicyclo[2.2.2]octane cation, C6H14N2+, and a deprotonated terephthalate anion, C8H4O42-, (Figure 1). Single N—H···O hydrogen bond was formed between the protonated N end of the cation and the deprotonated carboxylate group of the anion, which generates the hydrogen bonding chains (Table 1 & Figure 2).

Related literature top

Please supply any relevant related literature.

Experimental top

A mixture of 1,4-diazoniabicyclo[2.2.2]octane (0.072 g), terephthalic acid (0.08 g) and H2O (10 ml) was sealed in a 25 ml stainless-steel reactor with a Teflon-lined stainless steel reactor and was heated at 373 K for 3 d. On completion of the reaction, the reactor was cooled slowly to room temperature and the mixture was filtered, giving collorless single crystals suitable for X-ray analysis.

Refinement top

The H atoms bonded to C atoms were placed at calculated positions at C—H distances 0.93 and 0.97 Å for the aryl and methylene H-atoms, respectively, and Uiso(H) = 1.2Ueq(C) using a riding model. The H atoms bonded to N atoms were refined freely.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bergerhoff et al., 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The unit-cell packing of the title compound, showing the hydrogen bonding chains (symmetry code: a = 2 + x, -1 + y, z).
1,4-Diazoniabicyclo[2.2.2]octane terephthalate top
Crystal data top
C6H14N22+·C8H4O42Z = 2
Mr = 278.30F(000) = 296
Triclinic, P1Dx = 1.375 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8046 (10) ÅCell parameters from 98 reflections
b = 9.5482 (2) Åθ = 2.1–25.0°
c = 10.8075 (2) ŵ = 0.10 mm1
α = 65.99 (1)°T = 293 K
β = 78.436 (10)°Prism, colorless
γ = 66.18 (1)°0.23 × 0.13 × 0.08 mm
V = 672.39 (2) Å3
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
2377 independent reflections
Radiation source: fine-focus sealed tube1779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.900, Tmax = 0.950k = 1111
7312 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.1475P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
2377 reflectionsΔρmax = 0.21 e Å3
188 parametersΔρmin = 0.27 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (4)
Crystal data top
C6H14N22+·C8H4O42γ = 66.18 (1)°
Mr = 278.30V = 672.39 (2) Å3
Triclinic, P1Z = 2
a = 7.8046 (10) ÅMo Kα radiation
b = 9.5482 (2) ŵ = 0.10 mm1
c = 10.8075 (2) ÅT = 293 K
α = 65.99 (1)°0.23 × 0.13 × 0.08 mm
β = 78.436 (10)°
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
2377 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1779 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.950Rint = 0.026
7312 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.21 e Å3
2377 reflectionsΔρmin = 0.27 e Å3
188 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2883 (2)0.8953 (2)0.60534 (16)0.0691 (5)
O20.25555 (18)0.84559 (17)0.82616 (14)0.0489 (4)
O31.1805 (2)0.27977 (19)0.89737 (15)0.0629 (5)
O41.23265 (18)0.40326 (18)0.67751 (14)0.0519 (4)
N10.0871 (2)1.03609 (18)0.77218 (15)0.0328 (4)
H1N0.040 (2)0.964 (2)0.7898 (18)0.039*
N20.4239 (2)1.21700 (18)0.72154 (14)0.0317 (4)
H2N0.553 (2)1.285 (2)0.7069 (18)0.038*
C10.5526 (2)0.7124 (2)0.73811 (18)0.0315 (4)
C20.6233 (2)0.6175 (2)0.86638 (18)0.0345 (4)
H2A0.54550.62560.94250.041*
C30.8080 (3)0.5111 (2)0.88253 (18)0.0354 (4)
H3A0.85240.44640.96920.042*
C40.9270 (2)0.5006 (2)0.77020 (17)0.0303 (4)
C50.8571 (3)0.5980 (2)0.64181 (18)0.0352 (4)
H5A0.93620.59320.56570.042*
C60.6722 (3)0.7017 (2)0.62577 (19)0.0376 (5)
H6A0.62730.76490.53910.045*
C70.3509 (3)0.8265 (2)0.71843 (19)0.0376 (5)
C81.1275 (3)0.3846 (2)0.78670 (19)0.0356 (4)
C90.3943 (3)1.0480 (2)0.7369 (2)0.0389 (5)
H9A0.43151.04930.65590.047*
H9B0.47091.00340.81320.047*
C100.1869 (3)0.9399 (2)0.7601 (2)0.0407 (5)
H10A0.17520.84380.84220.049*
H10B0.13220.90320.68470.049*
C110.3778 (3)1.2165 (3)0.84800 (19)0.0419 (5)
H11A0.46431.18270.92130.050*
H11B0.38971.32640.83600.050*
C120.1769 (3)1.0977 (2)0.88353 (18)0.0377 (5)
H12A0.10621.15380.89650.045*
H12B0.17811.00640.96720.045*
C130.3010 (3)1.2820 (2)0.60835 (19)0.0404 (5)
H13A0.32561.39540.59390.048*
H13B0.32621.27830.52560.048*
C140.0959 (3)1.1773 (2)0.64345 (19)0.0411 (5)
H14A0.02991.13770.57110.049*
H14B0.03561.24350.65260.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0381 (9)0.0919 (13)0.0523 (10)0.0164 (8)0.0141 (7)0.0364 (9)
O20.0265 (7)0.0596 (10)0.0459 (8)0.0020 (7)0.0000 (6)0.0230 (7)
O30.0341 (8)0.0626 (10)0.0484 (9)0.0015 (7)0.0034 (7)0.0032 (8)
O40.0259 (7)0.0630 (10)0.0413 (8)0.0009 (7)0.0016 (6)0.0126 (7)
N10.0195 (8)0.0335 (9)0.0379 (9)0.0030 (7)0.0017 (6)0.0122 (7)
N20.0203 (8)0.0342 (9)0.0353 (8)0.0016 (7)0.0034 (6)0.0145 (7)
C10.0242 (9)0.0320 (10)0.0394 (10)0.0070 (8)0.0002 (8)0.0177 (8)
C20.0277 (10)0.0387 (11)0.0348 (10)0.0085 (8)0.0063 (8)0.0181 (8)
C30.0316 (10)0.0363 (10)0.0305 (9)0.0076 (8)0.0022 (8)0.0091 (8)
C40.0248 (9)0.0272 (9)0.0360 (10)0.0076 (8)0.0007 (8)0.0116 (8)
C50.0270 (10)0.0388 (11)0.0329 (10)0.0059 (8)0.0043 (8)0.0149 (8)
C60.0297 (10)0.0403 (11)0.0325 (10)0.0027 (8)0.0048 (8)0.0115 (8)
C70.0270 (10)0.0403 (11)0.0456 (11)0.0045 (8)0.0033 (9)0.0226 (9)
C80.0263 (10)0.0344 (10)0.0399 (11)0.0069 (8)0.0030 (8)0.0108 (9)
C90.0333 (11)0.0375 (11)0.0475 (11)0.0130 (9)0.0045 (9)0.0156 (9)
C100.0378 (11)0.0316 (10)0.0518 (12)0.0081 (9)0.0050 (9)0.0173 (9)
C110.0308 (11)0.0532 (13)0.0422 (11)0.0041 (9)0.0019 (8)0.0285 (10)
C120.0311 (10)0.0438 (11)0.0365 (10)0.0076 (9)0.0059 (8)0.0170 (9)
C130.0360 (11)0.0348 (11)0.0397 (10)0.0087 (9)0.0027 (8)0.0068 (9)
C140.0303 (10)0.0420 (11)0.0414 (11)0.0105 (9)0.0028 (8)0.0104 (9)
Geometric parameters (Å, º) top
O1—C71.221 (2)C4—C81.503 (2)
O2—C71.288 (2)C5—C61.378 (3)
O3—C81.222 (2)C5—H5A0.9300
O4—C81.287 (2)C6—H6A0.9300
N1—C101.478 (2)C9—C101.533 (3)
N1—C121.480 (2)C9—H9A0.9700
N1—C141.482 (2)C9—H9B0.9700
N1—H1N0.954 (15)C10—H10A0.9700
N2—C91.477 (2)C10—H10B0.9700
N2—C111.479 (2)C11—C121.531 (3)
N2—C131.481 (2)C11—H11A0.9700
N2—H2N0.959 (15)C11—H11B0.9700
C1—C61.388 (2)C12—H12A0.9700
C1—C21.388 (3)C12—H12B0.9700
C1—C71.507 (2)C13—C141.532 (3)
C2—C31.383 (3)C13—H13A0.9700
C2—H2A0.9300C13—H13B0.9700
C3—C41.385 (2)C14—H14A0.9700
C3—H3A0.9300C14—H14B0.9700
C4—C51.390 (2)
C10—N1—C12109.46 (14)N2—C9—C10109.63 (14)
C10—N1—C14109.60 (14)N2—C9—H9A109.7
C12—N1—C14109.29 (14)C10—C9—H9A109.7
C10—N1—H1N106.8 (11)N2—C9—H9B109.7
C12—N1—H1N111.5 (11)C10—C9—H9B109.7
C14—N1—H1N110.1 (11)H9A—C9—H9B108.2
C9—N2—C11109.82 (14)N1—C10—C9109.09 (14)
C9—N2—C13109.48 (14)N1—C10—H10A109.9
C11—N2—C13109.17 (15)C9—C10—H10A109.9
C9—N2—H2N109.9 (11)N1—C10—H10B109.9
C11—N2—H2N106.9 (11)C9—C10—H10B109.9
C13—N2—H2N111.5 (11)H10A—C10—H10B108.3
C6—C1—C2118.69 (16)N2—C11—C12109.40 (14)
C6—C1—C7119.60 (16)N2—C11—H11A109.8
C2—C1—C7121.71 (16)C12—C11—H11A109.8
C3—C2—C1120.90 (16)N2—C11—H11B109.8
C3—C2—H2A119.6C12—C11—H11B109.8
C1—C2—H2A119.6H11A—C11—H11B108.2
C2—C3—C4120.26 (17)N1—C12—C11109.31 (14)
C2—C3—H3A119.9N1—C12—H12A109.8
C4—C3—H3A119.9C11—C12—H12A109.8
C3—C4—C5118.80 (16)N1—C12—H12B109.8
C3—C4—C8120.66 (16)C11—C12—H12B109.8
C5—C4—C8120.54 (16)H12A—C12—H12B108.3
C6—C5—C4120.92 (16)N2—C13—C14108.99 (15)
C6—C5—H5A119.5N2—C13—H13A109.9
C4—C5—H5A119.5C14—C13—H13A109.9
C5—C6—C1120.40 (17)N2—C13—H13B109.9
C5—C6—H6A119.8C14—C13—H13B109.9
C1—C6—H6A119.8H13A—C13—H13B108.3
O1—C7—O2124.21 (17)N1—C14—C13109.66 (14)
O1—C7—C1120.01 (17)N1—C14—H14A109.7
O2—C7—C1115.77 (16)C13—C14—H14A109.7
O3—C8—O4124.30 (17)N1—C14—H14B109.7
O3—C8—C4120.41 (17)C13—C14—H14B109.7
O4—C8—C4115.28 (16)H14A—C14—H14B108.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.95 (2)1.62 (2)2.5757 (19)177 (2)
N2—H2N···O4i0.96 (2)1.60 (2)2.5589 (19)178 (2)
Symmetry code: (i) x2, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H14N22+·C8H4O42
Mr278.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8046 (10), 9.5482 (2), 10.8075 (2)
α, β, γ (°)65.99 (1), 78.436 (10), 66.18 (1)
V3)672.39 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.13 × 0.08
Data collection
DiffractometerSiemens SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.900, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
7312, 2377, 1779
Rint0.026
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.125, 1.04
No. of reflections2377
No. of parameters188
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.27

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Bergerhoff et al., 1996), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.954 (15)1.623 (15)2.5757 (19)176.8 (17)
N2—H2N···O4i0.959 (15)1.600 (15)2.5589 (19)177.9 (18)
Symmetry code: (i) x2, y+1, z.
 

Acknowledgements

The authors acknowledge the financial support from the Natural Science Foundation of Fujian Province (No. 2006 F3042).

References

First citationBergerhoff, G., Berndt, M. & Brandenburg, K. (1996). J. Res. Natl Inst. Stand. Technol. 101, 221–225.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds