organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(±)-Ethyl 6,7-dimeth­­oxy-1-(1H-pyrrol-2-yl)-1,2,3,4-tetra­hydroiso­quinoline-2-car­boxyl­ate

aDepartment of Advanced Materials Science and Engineering, Faculty of Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan, bBulgarian Academy of Sciences, Institute of Organic Chemistry, Acad G. Bonchev Str. build. 9, 1113 Sofia, Bulgaria, cPlovdiv University, Department of Organic Chemistry, 4000 Plovdiv, Bulgaria, and dDepartment of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Ave., Pittsburgh 15260, USA
*Correspondence e-mail: blc53@pitt.edu

(Received 29 July 2008; accepted 12 August 2008; online 20 August 2008)

In the title compound, C18H22N2O4, the dihedral angle between the pyrrolyl and quinolinyl fragments is 68.97 (2)°. Two non-classical intra­molecular C—H⋯O hydrogen bonds stabilize the mol­ecular geometry. In the crystal structure, mol­ecules form infinite chains via moderate inter­molecular N—H⋯O(CH3) hydrogen bonds.

Related literature

For related crystal structures, see: Kolev et al. (2007[Kolev, T., Shivachev, B., Petrova, R., Ivanov, I., Atanasova, S. & Statkova, S. (2007). Acta Cryst. E63, o3353-o3354.]); Petrova et al. (2007[Petrova, R., Titorenkova, R. & Shivachev, B. (2007). Acta Cryst. E63, o4751.]); Petrova et al. (2005[Petrova, R., Shivachev, B., Kosev, K., Stoyanova, M. & Angelova, S. (2005). Acta Cryst. E61, o2248-o2250.]); Rajnikant et al. (2002[Rajnikant, Gupta, V. K., Deshmukh, M. B., Varghese, B. & Dinesh (2002). Crystallogr. Rep. 47, 494-496.]); Shishkina et al. (2005[Shishkina, S. V., Shishkin, O. V., Ukrainets, I. V. & Sidorenko, L. V. (2005). Acta Cryst. E61, o4180-o4182.]); Venkov et al. (2004[Venkov, A. P., Statkova-Abeghe, St. & Donova, A. (2004). Cent. Eur. J. Chem. 2, 234-246.]); Vincente et al. (2005[Vincente, J., Abad, J.-A., López, J.-A., Jones, P. J., Najera, C. & Botella-Segura, L. (2005). Organometallics, 24, 5044-5057.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22N2O4

  • Mr = 330.38

  • Monoclinic, P 21 /c

  • a = 8.403 (3) Å

  • b = 17.046 (3) Å

  • c = 11.6486 (13) Å

  • β = 95.260 (13)°

  • V = 1661.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 290 (2) K

  • 0.32 × 0.32 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 6852 measured reflections

  • 3263 independent reflections

  • 1828 reflections with I > 2σ(I)

  • Rint = 0.110

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.156

  • S = 1.07

  • 3263 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.86 2.49 3.225 (4) 145
N3—H3⋯O2i 0.86 2.38 3.018 (4) 132
C7—H7⋯O4 0.98 2.34 2.784 (4) 107
C8—H8B⋯O3 0.97 2.29 2.653 (4) 101
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our research program on tetrahydroisoquinolines (Kolev et al., 2007; Petrova et al., 2007; Petrova et al., 2005) the crystal structure of the title compound,(I), has been solved. The molecule possesses regular geometry with two nearly planar ring systems. The r.m.s. deviation of pyrrolyl and quinolin-2(1H)-fragments is 0.161 (7) Å and 0.002 (2) Å, respectively, and the dihedral angle between their mean planes is 68.97 (2)°. The geometrical parameters of both rings are comparable to those observed in other quinoline derivatives (Rajnikant et al., 2002; Vincente et al., 2005; Shishkina et al., 2005). Two non-classsical intramolecular hydrogen bonds (C7—H7···O4 and C8—H8···O3) stabilize the molecular geometry. Only the methoxy O atoms are realised as hydrogen bond acceptors and together with the only possible donor form a bifurcated hydrogen bond of the N—H···(O,O) type. Thus neighboring molecules are oriented head-to-tail and connected to form infinite chains along the b-axis (Fig. 2).

Related literature top

For related crystal structures, see: Kolev et al. (2007); Petrova et al. (2007); Petrova et al. (2005); Rajnikant et al. (2002); Shishkina et al. (2005); Venkov et al. (2004); Vincente et al. (2005).

Experimental top

The title compound has been obtained following the procedure described by Venkov et al., 2004. Colorless crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation from ethanol/water (2:1) solution.

Refinement top

All H atoms were placed in idealized positions (C—Hmethyl = 0.96 Å, C—Hmethylen = 0.97 Å, C—Haromatic = 0.93Å and N—H = 0.86 Å) and were constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(Cmethyl) or Uiso(H) = 1.2Ueq(Caromatic, Cmethylen ~ or N). The high Rint value (0.11) and relatively low ratio (0.55) of observed to unique reflections may be a result of the poor diffraction quality of the crystal.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the structure and the atom-numbering scheme of (I) showing 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecular packing in (I). Hydrogen bonds are represented by dotted lines. H atoms not involved in hydrogen bonding interactions have been omitted. [Symmetry code: (i) -x, -1/2 + y, 1/2 - z].
(±)-Ethyl 6,7-dimethoxy-1-(1H-pyrrol-2-yl)-1,2,3,4-tetrahydroisoquinoline- 2-carboxylate top
Crystal data top
C18H22N2O4F(000) = 704
Mr = 330.38Dx = 1.321 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 22 reflections
a = 8.403 (3) Åθ = 18.3–18.8°
b = 17.046 (3) ŵ = 0.09 mm1
c = 11.6486 (13) ÅT = 290 K
β = 95.260 (13)°Prism, colorless
V = 1661.5 (7) Å30.32 × 0.32 × 0.30 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.110
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 2.1°
Graphite monochromatorh = 010
Nonprofiled ω/2θ scansk = 2020
6852 measured reflectionsl = 1414
3263 independent reflections3 standard reflections every 120 min
1828 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0293P)2 + 2.0348P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3263 reflectionsΔρmax = 0.21 e Å3
218 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0075 (10)
Crystal data top
C18H22N2O4V = 1661.5 (7) Å3
Mr = 330.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.403 (3) ŵ = 0.09 mm1
b = 17.046 (3) ÅT = 290 K
c = 11.6486 (13) Å0.32 × 0.32 × 0.30 mm
β = 95.260 (13)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.110
6852 measured reflections3 standard reflections every 120 min
3263 independent reflections intensity decay: 1%
1828 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
3263 reflectionsΔρmin = 0.20 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2084 (3)0.63581 (14)0.3413 (2)0.0474 (7)
O20.3254 (3)0.65266 (14)0.1467 (2)0.0443 (7)
O30.2237 (3)0.20530 (14)0.1157 (2)0.0476 (7)
O40.2206 (3)0.23765 (16)0.3033 (2)0.0573 (8)
N10.0630 (3)0.30217 (16)0.1633 (2)0.0336 (7)
C20.2399 (4)0.5223 (2)0.0832 (3)0.0339 (8)
H20.28150.52900.01260.041*
C190.1547 (4)0.37433 (19)0.2412 (3)0.0339 (8)
C60.1037 (4)0.44139 (19)0.2113 (3)0.0329 (8)
C30.2542 (4)0.58174 (19)0.1623 (3)0.0337 (8)
C130.2492 (4)0.4391 (2)0.2366 (3)0.0415 (9)
H130.21540.49060.22770.050*
C70.0237 (4)0.36515 (18)0.2422 (3)0.0347 (8)
H70.06590.35030.32040.042*
C90.1515 (4)0.3882 (2)0.0146 (3)0.0408 (9)
H9A0.25640.36570.00850.049*
H9B0.11570.41150.05930.049*
C50.1184 (4)0.5026 (2)0.2922 (3)0.0352 (8)
H50.07800.49560.36320.042*
N30.2512 (3)0.31109 (17)0.2555 (2)0.0418 (8)
H30.21970.26310.26160.050*
C100.1731 (4)0.2482 (2)0.2028 (3)0.0395 (9)
C40.1907 (4)0.5724 (2)0.2694 (3)0.0349 (8)
C180.4219 (5)0.6587 (2)0.0526 (3)0.0555 (11)
H18A0.46480.71090.04990.083*
H18B0.35800.64790.01820.083*
H18C0.50800.62160.06260.083*
C10.1642 (4)0.45151 (19)0.1057 (3)0.0323 (8)
C150.4056 (5)0.3361 (2)0.2588 (3)0.0498 (10)
H150.49360.30420.26720.060*
C80.0366 (4)0.3237 (2)0.0414 (3)0.0356 (8)
H8A0.07250.34150.02400.043*
H8B0.05290.27820.00610.043*
C170.1649 (5)0.6268 (2)0.4555 (3)0.0527 (11)
H17A0.18160.67540.49650.079*
H17B0.22940.58650.49410.079*
H17C0.05430.61230.45320.079*
C140.4078 (5)0.4148 (2)0.2476 (3)0.0491 (10)
H140.49710.44710.24710.059*
C110.3387 (6)0.1452 (3)0.1464 (4)0.0675 (14)
H11A0.29720.10940.20100.081*
H11B0.43610.16850.18240.081*
C120.3725 (6)0.1029 (3)0.0433 (4)0.0812 (16)
H12A0.45080.06300.06330.122*
H12B0.41290.13870.01060.122*
H12C0.27610.07900.00900.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0666 (18)0.0391 (15)0.0374 (14)0.0089 (13)0.0099 (13)0.0089 (12)
O20.0514 (15)0.0414 (15)0.0412 (14)0.0117 (12)0.0110 (12)0.0012 (12)
O30.0551 (17)0.0418 (15)0.0455 (15)0.0201 (13)0.0028 (13)0.0023 (13)
O40.073 (2)0.0578 (18)0.0403 (16)0.0254 (15)0.0029 (14)0.0079 (14)
N10.0403 (17)0.0308 (16)0.0298 (14)0.0073 (14)0.0035 (13)0.0008 (13)
C20.0360 (19)0.039 (2)0.0275 (17)0.0023 (16)0.0060 (15)0.0038 (15)
C190.043 (2)0.0306 (19)0.0297 (18)0.0011 (16)0.0094 (16)0.0005 (15)
C60.0326 (19)0.0323 (19)0.0339 (18)0.0051 (15)0.0040 (16)0.0011 (15)
C30.0330 (19)0.0326 (19)0.0351 (19)0.0019 (15)0.0009 (16)0.0030 (16)
C130.046 (2)0.037 (2)0.043 (2)0.0064 (18)0.0088 (18)0.0034 (17)
C70.044 (2)0.0297 (18)0.0317 (18)0.0025 (16)0.0092 (16)0.0011 (15)
C90.047 (2)0.042 (2)0.0335 (19)0.0006 (18)0.0074 (18)0.0034 (17)
C50.037 (2)0.041 (2)0.0289 (17)0.0009 (17)0.0065 (15)0.0007 (17)
N30.0453 (19)0.0350 (17)0.0460 (18)0.0009 (15)0.0084 (15)0.0054 (15)
C100.043 (2)0.037 (2)0.039 (2)0.0001 (18)0.0094 (18)0.0029 (17)
C40.041 (2)0.0339 (19)0.0297 (18)0.0008 (16)0.0014 (16)0.0043 (16)
C180.053 (3)0.064 (3)0.052 (2)0.016 (2)0.016 (2)0.000 (2)
C10.0322 (19)0.0352 (19)0.0299 (17)0.0062 (15)0.0043 (15)0.0019 (15)
C150.041 (2)0.060 (3)0.050 (2)0.009 (2)0.0124 (19)0.001 (2)
C80.041 (2)0.0345 (19)0.0306 (18)0.0032 (16)0.0010 (15)0.0055 (16)
C170.067 (3)0.054 (3)0.038 (2)0.003 (2)0.009 (2)0.011 (2)
C140.044 (2)0.057 (3)0.047 (2)0.013 (2)0.009 (2)0.000 (2)
C110.077 (3)0.052 (3)0.073 (3)0.030 (2)0.006 (3)0.004 (2)
C120.083 (4)0.076 (3)0.084 (4)0.035 (3)0.004 (3)0.023 (3)
Geometric parameters (Å, º) top
O1—C41.367 (4)C9—C81.515 (5)
O1—C171.420 (4)C9—H9A0.9700
O2—C31.369 (4)C9—H9B0.9700
O2—C181.426 (4)C5—C41.374 (5)
O3—C101.350 (4)C5—H50.9300
O3—C111.431 (5)N3—C151.369 (5)
O4—C101.216 (4)N3—H30.8600
N1—C101.355 (4)C18—H18A0.9600
N1—C81.464 (4)C18—H18B0.9600
N1—C71.470 (4)C18—H18C0.9600
C2—C31.367 (5)C15—C141.349 (5)
C2—C11.399 (4)C15—H150.9300
C2—H20.9300C8—H8A0.9700
C19—C131.359 (5)C8—H8B0.9700
C19—N31.368 (4)C17—H17A0.9600
C19—C71.506 (5)C17—H17B0.9600
C6—C11.385 (4)C17—H17C0.9600
C6—C51.403 (4)C14—H140.9300
C6—C71.521 (4)C11—C121.451 (6)
C3—C41.410 (4)C11—H11A0.9700
C13—C141.413 (5)C11—H11B0.9700
C13—H130.9300C12—H12A0.9600
C7—H70.9800C12—H12B0.9600
C9—C11.510 (4)C12—H12C0.9600
C4—O1—C17117.8 (3)O1—C4—C5126.3 (3)
C3—O2—C18116.9 (3)O1—C4—C3115.1 (3)
C10—O3—C11116.9 (3)C5—C4—C3118.6 (3)
C10—N1—C8122.5 (3)O2—C18—H18A109.5
C10—N1—C7118.0 (3)O2—C18—H18B109.5
C8—N1—C7113.6 (3)H18A—C18—H18B109.5
C3—C2—C1121.8 (3)O2—C18—H18C109.5
C3—C2—H2119.1H18A—C18—H18C109.5
C1—C2—H2119.1H18B—C18—H18C109.5
C13—C19—N3107.1 (3)C6—C1—C2118.9 (3)
C13—C19—C7131.5 (3)C6—C1—C9121.8 (3)
N3—C19—C7121.2 (3)C2—C1—C9119.3 (3)
C1—C6—C5119.2 (3)C14—C15—N3108.2 (3)
C1—C6—C7121.5 (3)C14—C15—H15125.9
C5—C6—C7119.3 (3)N3—C15—H15125.9
O2—C3—C2125.3 (3)N1—C8—C9109.8 (3)
O2—C3—C4115.0 (3)N1—C8—H8A109.7
C2—C3—C4119.7 (3)C9—C8—H8A109.7
C19—C13—C14108.1 (3)N1—C8—H8B109.7
C19—C13—H13125.9C9—C8—H8B109.7
C14—C13—H13125.9H8A—C8—H8B108.2
N1—C7—C19110.6 (3)O1—C17—H17A109.5
N1—C7—C6110.3 (2)O1—C17—H17B109.5
C19—C7—C6111.7 (3)H17A—C17—H17B109.5
N1—C7—H7108.0O1—C17—H17C109.5
C19—C7—H7108.0H17A—C17—H17C109.5
C6—C7—H7108.0H17B—C17—H17C109.5
C1—C9—C8112.3 (3)C15—C14—C13107.2 (3)
C1—C9—H9A109.1C15—C14—H14126.4
C8—C9—H9A109.1C13—C14—H14126.4
C1—C9—H9B109.1O3—C11—C12109.2 (4)
C8—C9—H9B109.1O3—C11—H11A109.8
H9A—C9—H9B107.9C12—C11—H11A109.8
C4—C5—C6121.8 (3)O3—C11—H11B109.8
C4—C5—H5119.1C12—C11—H11B109.8
C6—C5—H5119.1H11A—C11—H11B108.3
C19—N3—C15109.4 (3)C11—C12—H12A109.5
C19—N3—H3125.3C11—C12—H12B109.5
C15—N3—H3125.3H12A—C12—H12B109.5
O4—C10—O3123.1 (3)C11—C12—H12C109.5
O4—C10—N1125.5 (3)H12A—C12—H12C109.5
O3—C10—N1111.4 (3)H12B—C12—H12C109.5
C18—O2—C3—C214.4 (5)C8—N1—C10—O314.8 (5)
C18—O2—C3—C4166.3 (3)C7—N1—C10—O3166.0 (3)
C1—C2—C3—O2179.6 (3)C17—O1—C4—C57.6 (5)
C1—C2—C3—C40.4 (5)C17—O1—C4—C3172.4 (3)
N3—C19—C13—C140.4 (4)C6—C5—C4—O1178.8 (3)
C7—C19—C13—C14175.2 (4)C6—C5—C4—C31.2 (5)
C10—N1—C7—C19132.3 (3)O2—C3—C4—O10.6 (5)
C8—N1—C7—C1974.0 (3)C2—C3—C4—O1178.7 (3)
C10—N1—C7—C6103.6 (3)O2—C3—C4—C5179.4 (3)
C8—N1—C7—C650.1 (4)C2—C3—C4—C51.3 (5)
C13—C19—C7—N1135.5 (4)C5—C6—C1—C20.7 (5)
N3—C19—C7—N150.3 (4)C7—C6—C1—C2178.5 (3)
C13—C19—C7—C612.3 (5)C5—C6—C1—C9179.6 (3)
N3—C19—C7—C6173.6 (3)C7—C6—C1—C91.2 (5)
C1—C6—C7—N116.3 (5)C3—C2—C1—C60.6 (5)
C5—C6—C7—N1162.9 (3)C3—C2—C1—C9179.7 (3)
C1—C6—C7—C19107.1 (4)C8—C9—C1—C612.8 (5)
C5—C6—C7—C1973.7 (4)C8—C9—C1—C2167.5 (3)
C1—C6—C5—C40.2 (5)C19—N3—C15—C140.5 (4)
C7—C6—C5—C4179.4 (3)C10—N1—C8—C986.6 (4)
C13—C19—N3—C150.6 (4)C7—N1—C8—C965.8 (4)
C7—C19—N3—C15176.0 (3)C1—C9—C8—N144.0 (4)
C11—O3—C10—O40.0 (5)N3—C15—C14—C130.2 (5)
C11—O3—C10—N1179.1 (3)C19—C13—C14—C150.1 (4)
C8—N1—C10—O4166.2 (4)C10—O3—C11—C12177.0 (4)
C7—N1—C10—O415.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.862.493.225 (4)145
N3—H3···O2i0.862.383.018 (4)132
C7—H7···O40.982.342.784 (4)107
C8—H8B···O30.972.292.653 (4)101
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H22N2O4
Mr330.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)8.403 (3), 17.046 (3), 11.6486 (13)
β (°) 95.260 (13)
V3)1661.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.32 × 0.30
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6852, 3263, 1828
Rint0.110
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.156, 1.07
No. of reflections3263
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.862.493.225 (4)144.7
N3—H3···O2i0.862.383.018 (4)131.7
C7—H7···O40.982.342.784 (4)106.8
C8—H8B···O30.972.292.653 (4)101.1
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Science Fund of Bulgaria (Project TK357&TK358).

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKolev, T., Shivachev, B., Petrova, R., Ivanov, I., Atanasova, S. & Statkova, S. (2007). Acta Cryst. E63, o3353–o3354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetrova, R., Shivachev, B., Kosev, K., Stoyanova, M. & Angelova, S. (2005). Acta Cryst. E61, o2248–o2250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPetrova, R., Titorenkova, R. & Shivachev, B. (2007). Acta Cryst. E63, o4751.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRajnikant, Gupta, V. K., Deshmukh, M. B., Varghese, B. & Dinesh (2002). Crystallogr. Rep. 47, 494–496.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShishkina, S. V., Shishkin, O. V., Ukrainets, I. V. & Sidorenko, L. V. (2005). Acta Cryst. E61, o4180–o4182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenkov, A. P., Statkova-Abeghe, St. & Donova, A. (2004). Cent. Eur. J. Chem. 2, 234–246.  Web of Science CrossRef CAS Google Scholar
First citationVincente, J., Abad, J.-A., López, J.-A., Jones, P. J., Najera, C. & Botella-Segura, L. (2005). Organometallics, 24, 5044–5057.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds