metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-Ferrocenyl-3-(4-meth­oxy­phen­yl)­prop-2-en-1-one

aCollege of Life Sciences and Chemistry, Tianshui Normal University, Tianshui 741000, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China
*Correspondence e-mail: yhliuyzu@yahoo.com.cn

(Received 29 July 2008; accepted 8 August 2008; online 13 August 2008)

In the title compound, [Fe(C5H5)(C15H13O2)], a conjugated substituent group bridges a five-membered η5-C5H4 ring and a benzene ring. In the ferrocene unit, the substituted (Cps) and unsubstituted (Cp) cyclo­penta­dienyl rings are eclipsed and almost parallel [Cps—Fe—Cps angle = 176.1 (2)°]. The mol­ecule is linked into an S(5) motif via intra­molecular C—H⋯O hydrogen bonds. The mol­ecules are arranged into a three-dimensional framework by five inter­molecular C—H⋯O hydrogen bonds and one inter­molecular C—H⋯π(Cps) inter­action.

Related literature

For related literature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew Chem. Int. Ed. Engl. 34, 1555-1573.]); Edwards et al. (1975[Edwards, E. I., Epton, R. & Marr, G. (1975). J. Organomet. Chem. 85, C23.]); Huang et al. (1998[Huang, G.-S., Chen, B.-H., Liu, C.-M., Ma, Y.-X. & Liu, Y.-H. (1998). Transition Met. Chem. 23, 589-592.]); Liang et al. (1998[Liang, Y.-M., Chen, B.-H., Jin, H.-W., Ma, Y.-X. & Liu, Y.-H. (1998). Synth. React. Inorg. Met. Org. Chem. 28, 803-810.]); Liu et al. (2001[Liu, M., Wilairat, P. & Go, M. L. (2001). J. Med. Chem. 44, 4443-4452.], 2003[Liu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M.-L. (2003). Bioorg. Med. Chem. 11, 2729-2738.], 2008[Liu, Y.-H., Liu, J.-F., Jian, P.-M. & Liu, X.-L. (2008). Acta Cryst. E64, m1001-m1002.]); Shi et al. (2004[Shi, Y. C., Yang, H.-M., Song, H.-B. & Liu, Y.-H. (2004). Polyhedron, 23, 1541-1546.]); Yarishkin et al. (2008[Yarishkin, O. V., Ryu, H. W., Park, J. Y., Yang, M. S., Hong, S. G. & Park, K. H. (2008). Bioorg. Med. Chem. Lett. 18, 137-140.]); Zhai et al. (1999[Zhai, L., Chen, M., Blom, J., Theander, T. G., Christensen, S. B. & Kharazmi, A. (1999). Antimicrob. Agents Chemother. 43, 793-803.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C15H13O2)]

  • Mr = 346.19

  • Orthorhombic, P b c a

  • a = 12.3124 (14) Å

  • b = 10.2316 (11) Å

  • c = 25.914 (3) Å

  • V = 3264.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 296 (2) K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.768, Tmax = 0.836

  • 26999 measured reflections

  • 3787 independent reflections

  • 2662 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.02

  • 3787 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the substituted cyclo­penta­dienyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1 0.93 2.50 2.830 (2) 101
C8—H8⋯O1i 0.93 2.60 3.345 (2) 137
C9—H9⋯O1ii 0.93 2.54 3.414 (2) 156
C12—H12⋯O1ii 0.93 2.46 3.346 (2) 160
C15—H15⋯O1ii 0.93 2.65 3.441 (2) 143
C19—H19⋯O2iii 0.93 2.59 3.472 (3) 157
C3—H3⋯Cg1i 0.93 3.24 3.808 (2) 121
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Chalcone and its derivatives, as natural products, have attracted considerable attention for their stronge antibacterial, antifungal, antitumor and anti-inflammatory properties, especially antileishmanial and antimalarial (Zhai et al.,1999; Liu et al., 2001, 2003) over the past years. Some chalcones demonstrated the ability to block voltage-dependent potassium channels (Yarishkin et al., 2008). It was proved that the replacement of the aromatic group by the ferrocenyl moiety in penicillins and cephalosporins improves their antibiotic activity (Edwards et al., 1975). As part of our search for new biologically active compounds (Liu et al.,2008; Shi et al., 2004; Liang et al., 1998), we have synthesized the title compound (I) and describe its structure in this paper.

The molecule of the title compound (I) exists as the most stable configuration of (E)-isomer (Scheme 1, Fig.1) and all carbon atoms (except that of methoxyl group) and O1 are sp2-hybridized and form two large conjugated systems; one is formed by C1 to C5 and the other C6 to C19 including O1, just as its parent compound II (Scheme 2) (Liu et al., 2008). In the molecule there is a C(5) (Bernstein et al., 1995) C–H···O intra-molecular hydrogen-bond which makes the four atoms O1, C11, C12 and C13 be coplanar (plane-1). The Cps (the substituted cyclopentadienyl ring) plane, the plane-1 and plane-2 (the phenyl ring plane) are not coplanar. In the ferrocene moiety, the Cps and the Cp (the unsubstituted cyclopentadienyl ring) planes are almost parallel and the C-atoms of these tings are in an eclipsed conformation. The Fe atom lies in the middle of the two planes of Cp and Cps. The Cgs—Fe—Cg angle is 176.1 (2)°, where Cgs and Cg are the centroids of Cps and Cp rings, respectively.

The molecules are linked into C(5) (Bernstein et al., 1995) chains via C19–H19···O1 inter-molecular hydrogen-bonds, forming zigzag chains (Fig. 2, Table 1) along the b axis. In addition, there are three inter-molecular hydrogen-bonds C9–H9···O1, C12–H12···O1 and C15–H15···O1, thus forming cross edge-fused zigzag C(5), C(4), C(7) chains (Fig. 2) along the b axis. Furthermore, the molecules are linked into C(6) (Bernstein et al., 1995) chains via C8–H8···O1 and C3–H3···π(Cps ring) inter-molecular hydrogen-bonds, along the a axis thus resulting in other zigzag chains (Fig. 3, Table 1). All of the above mentioned inter-molecular hydrogen-bonds link the molecules into a three-dimensional structure of considerable complexity.

Related literature top

For related literature, see: Bernstein et al. (1995); Edwards et al. (1975); Huang et al. (1998); Liang et al. (1998); Liu et al. (2001, 2003, 2008); Shi et al. (2004); Yarishkin et al. (2008); Zhai et al. (1999).

Experimental top

The title compound was synthesized according to the literature procedure (Huang et al. 1998). Crystals of I suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in dichloromethane / ether (5:1 v/v) at room temperature over a period of 6 days.

Refinement top

After their location in a difference map, all H atoms were fixed geometrically at ideal positions and allowed to ride on the parent C atoms, with C—H distances of 0.93 – 0.96, and with Uĩso(H) values of 1.2Ueq (C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The C–H···O intra-molecular hydrogen bond is shown as dashed lines.
[Figure 2] Fig. 2. Unit cell packing of (I) showing the hydrogen bonded chains (dashed lines). For clarity, H atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. Unit cell packing of (I) showing the hydrogen bonded chains via C8–H8···O1 and C3–H3···π(Cps ring) inter-molecular interactions; for clarity, H atoms not involved in hydrogen bonding have been omitted.
[Figure 4] Fig. 4. Schematic representations of the structures of (I) and (II).
(E)-1-Ferrocenyl-3-(4-methoxyphenyl)prop-2-en-1-one top
Crystal data top
[Fe(C5H5)(C15H13O2)]F(000) = 1440
Mr = 346.19Dx = 1.409 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6158 reflections
a = 12.3124 (14) Åθ = 3.0–25.5°
b = 10.2316 (11) ŵ = 0.93 mm1
c = 25.914 (3) ÅT = 296 K
V = 3264.5 (6) Å3Block, red
Z = 80.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3787 independent reflections
Radiation source: fine-focus sealed tube2662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 27.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1416
Tmin = 0.768, Tmax = 0.836k = 1313
26999 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.9963P]
where P = (Fo2 + 2Fc2)/3
3787 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Fe(C5H5)(C15H13O2)]V = 3264.5 (6) Å3
Mr = 346.19Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.3124 (14) ŵ = 0.93 mm1
b = 10.2316 (11) ÅT = 296 K
c = 25.914 (3) Å0.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3787 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2662 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.836Rint = 0.037
26999 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
3787 reflectionsΔρmin = 0.28 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.47330 (2)0.24558 (2)0.447598 (9)0.03889 (10)
O10.17057 (11)0.14263 (12)0.41478 (5)0.0509 (3)
C140.14386 (15)0.45292 (18)0.30462 (7)0.0423 (4)
C120.22120 (15)0.35247 (17)0.38469 (7)0.0424 (4)
H120.26710.42350.38980.051*
C170.12977 (17)0.6313 (2)0.22287 (7)0.0502 (5)
C150.22061 (16)0.5508 (2)0.29796 (7)0.0502 (5)
H150.27770.55740.32130.060*
C130.15074 (15)0.35526 (18)0.34563 (7)0.0433 (4)
H130.10040.28760.34440.052*
C160.21475 (17)0.6392 (2)0.25751 (7)0.0530 (5)
H160.26770.70330.25370.064*
C190.05897 (17)0.4478 (2)0.26898 (8)0.0552 (5)
H190.00620.38330.27230.066*
C110.22818 (15)0.23985 (17)0.41997 (7)0.0405 (4)
C180.05177 (18)0.5362 (2)0.22907 (8)0.0589 (6)
H180.00620.53160.20610.071*
C70.43869 (17)0.1790 (2)0.52041 (8)0.0553 (5)
H70.48290.12670.54090.066*
C90.36118 (15)0.35924 (19)0.48277 (7)0.0454 (4)
H90.34590.44550.47400.055*
C10.54687 (18)0.1382 (2)0.39076 (8)0.0580 (5)
H10.53080.05230.38180.070*
C60.36007 (15)0.13343 (19)0.48474 (8)0.0495 (5)
H60.34360.04650.47780.059*
C100.31062 (15)0.24527 (17)0.46128 (7)0.0418 (4)
C50.49898 (18)0.2505 (2)0.36970 (8)0.0548 (5)
H50.44550.25210.34430.066*
C20.62385 (17)0.1786 (2)0.42794 (8)0.0600 (6)
H20.66740.12400.44780.072*
C30.62294 (17)0.3156 (2)0.42965 (8)0.0582 (6)
H30.66580.36770.45090.070*
C80.43881 (17)0.3170 (2)0.51975 (7)0.0529 (5)
H80.48220.37090.54000.064*
C40.54580 (18)0.3608 (2)0.39360 (8)0.0569 (5)
H40.52880.44770.38680.068*
O20.11598 (14)0.71299 (17)0.18152 (6)0.0679 (4)
C200.1979 (2)0.8096 (3)0.17227 (11)0.0906 (9)
H20A0.19960.87030.20050.136*
H20B0.18180.85550.14090.136*
H20C0.26740.76770.16920.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03704 (16)0.03933 (16)0.04030 (15)0.00167 (11)0.00085 (10)0.00384 (11)
O10.0463 (7)0.0378 (7)0.0686 (8)0.0054 (6)0.0019 (7)0.0049 (6)
C140.0404 (10)0.0407 (10)0.0458 (10)0.0023 (8)0.0012 (8)0.0031 (8)
C120.0399 (10)0.0333 (9)0.0541 (10)0.0000 (8)0.0016 (8)0.0020 (8)
C170.0562 (12)0.0520 (12)0.0425 (10)0.0149 (10)0.0028 (9)0.0008 (9)
C150.0477 (11)0.0524 (12)0.0506 (11)0.0053 (10)0.0095 (9)0.0036 (9)
C130.0391 (10)0.0364 (10)0.0545 (10)0.0007 (8)0.0011 (8)0.0001 (8)
C160.0561 (13)0.0490 (12)0.0541 (11)0.0040 (10)0.0012 (10)0.0052 (9)
C190.0453 (11)0.0578 (13)0.0626 (13)0.0075 (10)0.0082 (10)0.0002 (10)
C110.0362 (9)0.0348 (9)0.0504 (10)0.0040 (8)0.0076 (7)0.0014 (8)
C180.0518 (12)0.0698 (15)0.0552 (12)0.0036 (11)0.0159 (10)0.0025 (11)
C70.0519 (12)0.0666 (14)0.0475 (11)0.0084 (11)0.0023 (10)0.0179 (10)
C90.0462 (10)0.0434 (10)0.0466 (10)0.0056 (9)0.0033 (9)0.0014 (8)
C10.0591 (13)0.0538 (13)0.0613 (13)0.0016 (11)0.0120 (11)0.0105 (11)
C60.0465 (11)0.0434 (11)0.0586 (11)0.0025 (9)0.0083 (10)0.0162 (9)
C100.0360 (9)0.0413 (10)0.0481 (9)0.0032 (8)0.0064 (8)0.0073 (8)
C50.0491 (11)0.0756 (16)0.0397 (10)0.0032 (11)0.0015 (8)0.0007 (10)
C20.0431 (12)0.0792 (17)0.0578 (12)0.0134 (11)0.0053 (10)0.0048 (12)
C30.0454 (12)0.0774 (16)0.0516 (12)0.0177 (11)0.0040 (10)0.0041 (11)
C80.0526 (12)0.0649 (14)0.0412 (10)0.0058 (10)0.0021 (9)0.0020 (10)
C40.0665 (14)0.0525 (13)0.0518 (11)0.0069 (11)0.0112 (10)0.0099 (10)
O20.0735 (11)0.0751 (10)0.0552 (8)0.0178 (9)0.0000 (8)0.0171 (8)
C200.0817 (19)0.103 (2)0.0877 (18)0.0128 (17)0.0247 (16)0.0454 (17)
Geometric parameters (Å, º) top
Fe1—C92.0220 (18)C11—C101.476 (3)
Fe1—C32.031 (2)C18—H180.9300
Fe1—C102.0341 (18)C7—C81.412 (3)
Fe1—C42.036 (2)C7—C61.417 (3)
Fe1—C22.041 (2)C7—H70.9300
Fe1—C52.044 (2)C9—C81.421 (3)
Fe1—C62.0462 (18)C9—C101.434 (3)
Fe1—C12.049 (2)C9—H90.9300
Fe1—C72.0507 (19)C1—C51.403 (3)
Fe1—C82.052 (2)C1—C21.414 (3)
O1—C111.229 (2)C1—H10.9300
C14—C151.388 (3)C6—C101.432 (2)
C14—C191.396 (3)C6—H60.9300
C14—C131.461 (2)C5—C41.410 (3)
C12—C131.333 (2)C5—H50.9300
C12—C111.473 (2)C2—C31.403 (3)
C12—H120.9300C2—H20.9300
C17—O21.369 (2)C3—C41.410 (3)
C17—C181.377 (3)C3—H30.9300
C17—C161.381 (3)C8—H80.9300
C15—C161.386 (3)C4—H40.9300
C15—H150.9300O2—C201.433 (3)
C13—H130.9300C20—H20A0.9600
C16—H160.9300C20—H20B0.9600
C19—C181.377 (3)C20—H20C0.9600
C19—H190.9300
C9—Fe1—C3121.31 (9)C19—C18—H18119.8
C9—Fe1—C1041.42 (7)C17—C18—H18119.8
C3—Fe1—C10159.03 (9)C8—C7—C6108.78 (18)
C9—Fe1—C4106.03 (9)C8—C7—Fe169.92 (11)
C3—Fe1—C440.57 (9)C6—C7—Fe169.59 (11)
C10—Fe1—C4123.54 (8)C8—C7—H7125.6
C9—Fe1—C2157.77 (9)C6—C7—H7125.6
C3—Fe1—C240.30 (10)Fe1—C7—H7126.5
C10—Fe1—C2159.61 (9)C8—C9—C10107.85 (17)
C4—Fe1—C267.95 (9)C8—C9—Fe170.72 (11)
C9—Fe1—C5122.45 (8)C10—C9—Fe169.74 (10)
C3—Fe1—C567.96 (9)C8—C9—H9126.1
C10—Fe1—C5108.94 (8)C10—C9—H9126.1
C4—Fe1—C540.44 (8)Fe1—C9—H9125.1
C2—Fe1—C567.74 (9)C5—C1—C2107.9 (2)
C9—Fe1—C669.23 (8)C5—C1—Fe169.76 (12)
C3—Fe1—C6157.48 (9)C2—C1—Fe169.47 (12)
C10—Fe1—C641.08 (7)C5—C1—H1126.1
C4—Fe1—C6161.23 (9)C2—C1—H1126.1
C2—Fe1—C6123.23 (9)Fe1—C1—H1126.3
C5—Fe1—C6125.73 (9)C7—C6—C10107.71 (18)
C9—Fe1—C1159.13 (9)C7—C6—Fe169.93 (11)
C3—Fe1—C167.89 (9)C10—C6—Fe169.00 (10)
C10—Fe1—C1124.04 (8)C7—C6—H6126.1
C4—Fe1—C167.83 (10)C10—C6—H6126.1
C2—Fe1—C140.44 (9)Fe1—C6—H6126.5
C5—Fe1—C140.09 (8)C6—C10—C9107.48 (17)
C6—Fe1—C1109.79 (9)C6—C10—C11124.77 (17)
C9—Fe1—C768.56 (8)C9—C10—C11127.62 (16)
C3—Fe1—C7121.09 (9)C6—C10—Fe169.91 (10)
C10—Fe1—C768.56 (8)C9—C10—Fe168.84 (10)
C4—Fe1—C7156.32 (9)C11—C10—Fe1123.41 (13)
C2—Fe1—C7107.87 (9)C1—C5—C4108.2 (2)
C5—Fe1—C7161.64 (9)C1—C5—Fe170.15 (12)
C6—Fe1—C740.48 (8)C4—C5—Fe169.47 (11)
C1—Fe1—C7125.11 (9)C1—C5—H5125.9
C9—Fe1—C840.82 (8)C4—C5—H5125.9
C3—Fe1—C8105.71 (9)Fe1—C5—H5126.1
C10—Fe1—C868.77 (8)C3—C2—C1108.00 (19)
C4—Fe1—C8120.73 (9)C3—C2—Fe169.48 (12)
C2—Fe1—C8122.34 (9)C1—C2—Fe170.09 (12)
C5—Fe1—C8157.40 (9)C3—C2—H2126.0
C6—Fe1—C868.28 (9)C1—C2—H2126.0
C1—Fe1—C8159.65 (9)Fe1—C2—H2126.0
C7—Fe1—C840.25 (9)C2—C3—C4108.18 (19)
C15—C14—C19117.06 (18)C2—C3—Fe170.23 (12)
C15—C14—C13123.00 (17)C4—C3—Fe169.89 (12)
C19—C14—C13119.92 (18)C2—C3—H3125.9
C13—C12—C11121.71 (17)C4—C3—H3125.9
C13—C12—H12119.1Fe1—C3—H3125.5
C11—C12—H12119.1C7—C8—C9108.16 (19)
O2—C17—C18115.87 (19)C7—C8—Fe169.83 (12)
O2—C17—C16124.5 (2)C9—C8—Fe168.47 (11)
C18—C17—C16119.58 (18)C7—C8—H8125.9
C16—C15—C14121.96 (18)C9—C8—H8125.9
C16—C15—H15119.0Fe1—C8—H8127.4
C14—C15—H15119.0C3—C4—C5107.7 (2)
C12—C13—C14127.19 (17)C3—C4—Fe169.53 (11)
C12—C13—H13116.4C5—C4—Fe170.09 (12)
C14—C13—H13116.4C3—C4—H4126.1
C17—C16—C15119.55 (19)C5—C4—H4126.1
C17—C16—H16120.2Fe1—C4—H4125.8
C15—C16—H16120.2C17—O2—C20117.68 (19)
C18—C19—C14121.4 (2)O2—C20—H20A109.5
C18—C19—H19119.3O2—C20—H20B109.5
C14—C19—H19119.3H20A—C20—H20B109.5
O1—C11—C12122.11 (17)O2—C20—H20C109.5
O1—C11—C10120.43 (16)H20A—C20—H20C109.5
C12—C11—C10117.43 (16)H20B—C20—H20C109.5
C19—C18—C17120.48 (19)
C19—C14—C15—C160.7 (3)C8—Fe1—C10—C938.10 (11)
C13—C14—C15—C16177.32 (18)C9—Fe1—C10—C11121.93 (19)
C11—C12—C13—C14172.39 (17)C3—Fe1—C10—C1181.7 (3)
C15—C14—C13—C127.6 (3)C4—Fe1—C10—C1146.44 (18)
C19—C14—C13—C12174.41 (19)C2—Fe1—C10—C1172.9 (3)
O2—C17—C16—C15179.85 (19)C5—Fe1—C10—C113.99 (17)
C18—C17—C16—C150.2 (3)C6—Fe1—C10—C11119.1 (2)
C14—C15—C16—C170.7 (3)C1—Fe1—C10—C1137.90 (18)
C15—C14—C19—C180.1 (3)C7—Fe1—C10—C11156.61 (17)
C13—C14—C19—C18178.24 (19)C8—Fe1—C10—C11160.03 (17)
C13—C12—C11—O10.9 (3)C2—C1—C5—C40.0 (2)
C13—C12—C11—C10178.68 (17)Fe1—C1—C5—C459.23 (15)
C14—C19—C18—C171.0 (3)C2—C1—C5—Fe159.23 (14)
O2—C17—C18—C19179.00 (19)C9—Fe1—C5—C1164.59 (12)
C16—C17—C18—C191.1 (3)C3—Fe1—C5—C181.40 (14)
C9—Fe1—C7—C837.40 (12)C10—Fe1—C5—C1120.76 (13)
C3—Fe1—C7—C877.12 (15)C4—Fe1—C5—C1119.4 (2)
C10—Fe1—C7—C882.06 (13)C2—Fe1—C5—C137.73 (13)
C4—Fe1—C7—C843.6 (3)C6—Fe1—C5—C178.05 (15)
C2—Fe1—C7—C8119.28 (13)C7—Fe1—C5—C141.9 (3)
C5—Fe1—C7—C8167.7 (2)C8—Fe1—C5—C1159.1 (2)
C6—Fe1—C7—C8120.12 (17)C9—Fe1—C5—C476.03 (15)
C1—Fe1—C7—C8160.61 (13)C3—Fe1—C5—C437.98 (14)
C9—Fe1—C7—C682.72 (13)C10—Fe1—C5—C4119.86 (13)
C3—Fe1—C7—C6162.76 (12)C2—Fe1—C5—C481.64 (15)
C10—Fe1—C7—C638.06 (11)C6—Fe1—C5—C4162.57 (12)
C4—Fe1—C7—C6163.7 (2)C1—Fe1—C5—C4119.4 (2)
C2—Fe1—C7—C6120.60 (13)C7—Fe1—C5—C4161.3 (2)
C5—Fe1—C7—C647.6 (3)C8—Fe1—C5—C439.8 (3)
C1—Fe1—C7—C679.27 (15)C5—C1—C2—C30.1 (2)
C8—Fe1—C7—C6120.12 (17)Fe1—C1—C2—C359.36 (14)
C3—Fe1—C9—C877.33 (14)C5—C1—C2—Fe159.41 (15)
C10—Fe1—C9—C8118.37 (16)C9—Fe1—C2—C340.4 (3)
C4—Fe1—C9—C8118.72 (13)C10—Fe1—C2—C3166.3 (2)
C2—Fe1—C9—C848.0 (3)C4—Fe1—C2—C337.87 (12)
C5—Fe1—C9—C8159.64 (13)C5—Fe1—C2—C381.70 (13)
C6—Fe1—C9—C880.43 (13)C6—Fe1—C2—C3159.21 (12)
C1—Fe1—C9—C8171.7 (2)C1—Fe1—C2—C3119.11 (18)
C7—Fe1—C9—C836.90 (13)C7—Fe1—C2—C3117.30 (13)
C3—Fe1—C9—C10164.30 (11)C8—Fe1—C2—C375.45 (15)
C4—Fe1—C9—C10122.91 (12)C9—Fe1—C2—C1159.5 (2)
C2—Fe1—C9—C10166.3 (2)C3—Fe1—C2—C1119.11 (18)
C5—Fe1—C9—C1081.99 (13)C10—Fe1—C2—C147.2 (3)
C6—Fe1—C9—C1037.94 (11)C4—Fe1—C2—C181.24 (15)
C1—Fe1—C9—C1053.3 (3)C5—Fe1—C2—C137.41 (13)
C7—Fe1—C9—C1081.47 (12)C6—Fe1—C2—C181.68 (15)
C8—Fe1—C9—C10118.37 (16)C7—Fe1—C2—C1123.59 (14)
C9—Fe1—C1—C539.0 (3)C8—Fe1—C2—C1165.44 (13)
C3—Fe1—C1—C581.58 (14)C1—C2—C3—C40.1 (2)
C10—Fe1—C1—C578.79 (15)Fe1—C2—C3—C459.83 (14)
C4—Fe1—C1—C537.62 (13)C1—C2—C3—Fe159.74 (14)
C2—Fe1—C1—C5119.17 (19)C9—Fe1—C3—C2163.33 (12)
C6—Fe1—C1—C5122.43 (13)C10—Fe1—C3—C2166.6 (2)
C7—Fe1—C1—C5165.10 (13)C4—Fe1—C3—C2118.99 (18)
C8—Fe1—C1—C5156.8 (2)C5—Fe1—C3—C281.13 (13)
C9—Fe1—C1—C2158.2 (2)C6—Fe1—C3—C250.8 (3)
C3—Fe1—C1—C237.58 (14)C1—Fe1—C3—C237.71 (12)
C10—Fe1—C1—C2162.04 (13)C7—Fe1—C3—C280.97 (14)
C4—Fe1—C1—C281.55 (15)C8—Fe1—C3—C2121.84 (13)
C5—Fe1—C1—C2119.17 (19)C9—Fe1—C3—C477.69 (15)
C6—Fe1—C1—C2118.41 (14)C10—Fe1—C3—C447.7 (3)
C7—Fe1—C1—C275.73 (16)C2—Fe1—C3—C4118.99 (18)
C8—Fe1—C1—C237.7 (3)C5—Fe1—C3—C437.86 (13)
C8—C7—C6—C100.2 (2)C6—Fe1—C3—C4169.8 (2)
Fe1—C7—C6—C1058.86 (13)C1—Fe1—C3—C481.27 (15)
C8—C7—C6—Fe159.10 (14)C7—Fe1—C3—C4160.05 (13)
C9—Fe1—C6—C780.92 (13)C8—Fe1—C3—C4119.17 (13)
C3—Fe1—C6—C741.5 (3)C6—C7—C8—C91.0 (2)
C10—Fe1—C6—C7119.15 (17)Fe1—C7—C8—C957.86 (13)
C4—Fe1—C6—C7159.5 (2)C6—C7—C8—Fe158.90 (14)
C2—Fe1—C6—C778.32 (15)C10—C9—C8—C71.4 (2)
C5—Fe1—C6—C7163.36 (13)Fe1—C9—C8—C758.70 (14)
C1—Fe1—C6—C7121.33 (13)C10—C9—C8—Fe160.13 (13)
C8—Fe1—C6—C736.99 (12)C9—Fe1—C8—C7120.13 (18)
C9—Fe1—C6—C1038.24 (11)C3—Fe1—C8—C7119.86 (13)
C3—Fe1—C6—C10160.7 (2)C10—Fe1—C8—C781.49 (13)
C4—Fe1—C6—C1040.3 (3)C4—Fe1—C8—C7161.21 (13)
C2—Fe1—C6—C10162.52 (12)C2—Fe1—C8—C779.30 (15)
C5—Fe1—C6—C1077.48 (14)C5—Fe1—C8—C7169.9 (2)
C1—Fe1—C6—C10119.52 (12)C6—Fe1—C8—C737.19 (12)
C7—Fe1—C6—C10119.15 (17)C1—Fe1—C8—C751.3 (3)
C8—Fe1—C6—C1082.17 (12)C3—Fe1—C8—C9120.01 (13)
C7—C6—C10—C90.6 (2)C10—Fe1—C8—C938.64 (11)
Fe1—C6—C10—C958.79 (13)C4—Fe1—C8—C978.66 (14)
C7—C6—C10—C11176.81 (17)C2—Fe1—C8—C9160.57 (13)
Fe1—C6—C10—C11117.38 (18)C5—Fe1—C8—C949.8 (3)
C7—C6—C10—Fe159.44 (13)C6—Fe1—C8—C982.94 (13)
C8—C9—C10—C61.3 (2)C1—Fe1—C8—C9171.5 (2)
Fe1—C9—C10—C659.47 (13)C7—Fe1—C8—C9120.13 (18)
C8—C9—C10—C11177.31 (17)C2—C3—C4—C50.1 (2)
Fe1—C9—C10—C11116.56 (19)Fe1—C3—C4—C559.95 (14)
C8—C9—C10—Fe160.75 (13)C2—C3—C4—Fe160.04 (14)
O1—C11—C10—C624.6 (3)C1—C5—C4—C30.1 (2)
C12—C11—C10—C6153.18 (17)Fe1—C5—C4—C359.60 (14)
O1—C11—C10—C9159.99 (18)C1—C5—C4—Fe159.65 (15)
C12—C11—C10—C922.2 (3)C9—Fe1—C4—C3119.71 (14)
O1—C11—C10—Fe1112.17 (18)C10—Fe1—C4—C3161.50 (13)
C12—C11—C10—Fe165.6 (2)C2—Fe1—C4—C337.62 (14)
C9—Fe1—C10—C6118.98 (16)C5—Fe1—C4—C3118.72 (19)
C3—Fe1—C10—C6159.2 (2)C6—Fe1—C4—C3167.8 (2)
C4—Fe1—C10—C6165.53 (12)C1—Fe1—C4—C381.43 (14)
C2—Fe1—C10—C646.2 (3)C7—Fe1—C4—C346.7 (3)
C5—Fe1—C10—C6123.08 (13)C8—Fe1—C4—C377.89 (15)
C1—Fe1—C10—C681.19 (14)C9—Fe1—C4—C5121.56 (13)
C7—Fe1—C10—C637.52 (12)C3—Fe1—C4—C5118.72 (19)
C8—Fe1—C10—C680.88 (13)C10—Fe1—C4—C579.78 (15)
C3—Fe1—C10—C940.3 (3)C2—Fe1—C4—C581.10 (14)
C4—Fe1—C10—C975.49 (13)C6—Fe1—C4—C549.1 (3)
C2—Fe1—C10—C9165.1 (2)C1—Fe1—C4—C537.30 (13)
C5—Fe1—C10—C9117.94 (12)C7—Fe1—C4—C5165.4 (2)
C6—Fe1—C10—C9118.98 (16)C8—Fe1—C4—C5163.38 (13)
C1—Fe1—C10—C9159.83 (12)C18—C17—O2—C20177.2 (2)
C7—Fe1—C10—C981.46 (12)C16—C17—O2—C202.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O10.932.502.830 (2)101
C8—H8···O1i0.932.603.345 (2)137
C9—H9···O1ii0.932.543.414 (2)156
C12—H12···O1ii0.932.463.346 (2)160
C15—H15···O1ii0.932.653.441 (2)143
C19—H19···O2iii0.932.593.472 (3)157
C3—H3···Cg1i0.933.243.808 (2)121
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C15H13O2)]
Mr346.19
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.3124 (14), 10.2316 (11), 25.914 (3)
V3)3264.5 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.768, 0.836
No. of measured, independent and
observed [I > 2σ(I)] reflections
26999, 3787, 2662
Rint0.037
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.02
No. of reflections3787
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.28

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O10.932.502.830 (2)101
C8—H8···O1i0.932.603.345 (2)137
C9—H9···O1ii0.932.543.414 (2)156
C12—H12···O1ii0.932.463.346 (2)160
C15—H15···O1ii0.932.653.441 (2)143
C19—H19···O2iii0.932.593.472 (3)157
C3—H3···Cg1i0.933.2413.808 (2)121
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Tianshui Normal College (grant No. TSB0715) and Yangzhou University (grant No. 2006XJJ03) for financial support of this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEdwards, E. I., Epton, R. & Marr, G. (1975). J. Organomet. Chem. 85, C23.  CrossRef Web of Science Google Scholar
First citationHuang, G.-S., Chen, B.-H., Liu, C.-M., Ma, Y.-X. & Liu, Y.-H. (1998). Transition Met. Chem. 23, 589–592.  Web of Science CrossRef CAS Google Scholar
First citationLiang, Y.-M., Chen, B.-H., Jin, H.-W., Ma, Y.-X. & Liu, Y.-H. (1998). Synth. React. Inorg. Met. Org. Chem. 28, 803–810.  CrossRef CAS Google Scholar
First citationLiu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M.-L. (2003). Bioorg. Med. Chem. 11, 2729–2738.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, M., Wilairat, P. & Go, M. L. (2001). J. Med. Chem. 44, 4443–4452.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Y.-H., Liu, J.-F., Jian, P.-M. & Liu, X.-L. (2008). Acta Cryst. E64, m1001–m1002.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y. C., Yang, H.-M., Song, H.-B. & Liu, Y.-H. (2004). Polyhedron, 23, 1541–1546.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYarishkin, O. V., Ryu, H. W., Park, J. Y., Yang, M. S., Hong, S. G. & Park, K. H. (2008). Bioorg. Med. Chem. Lett. 18, 137–140.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhai, L., Chen, M., Blom, J., Theander, T. G., Christensen, S. B. & Kharazmi, A. (1999). Antimicrob. Agents Chemother. 43, 793–803.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds