organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6′-Dihydr­­oxy-2,2′-[(propane-1,3-diyl­di­oxy)bis­­(nitrilo­methyl­­idyne)]diphenol

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 12 August 2008; accepted 19 August 2008; online 23 August 2008)

The mol­ecule of the title compound, C17H18N2O6, adopts a V-shaped conformation, the dihedral angle between the two halves of the mol­ecule being 81.31 (4) °. There is one half-mol­ecule in the asymmetric unit, with a crystallographic twofold rotation axis passing through the central C atom. There are strong intra­molecular O—H⋯N and O—H⋯O hydrogen bonds involving the hydr­oxy group and adjacent O and N atoms. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules, forming an infinite three-dimensional supra­molecular structure.

Related literature

For related literature, see: Akine et al. (2006[Akine, S., Dong, W. K. & Nabeshima, T. (2006). Inorg. Chem. 45, 4677-4684.]); Dong & Feng (2006[Dong, W.-K. & Feng, J.-H. (2006). Acta Cryst. E62, o3577-o3578.]); Dong et al. (2008a[Dong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008a). Acta Cryst. E64, o1600-o1601.],b[Dong, W.-K., Zhao, C.-Y., Zhong, J.-K., Tang, X.-L. & Yu, T.-Z. (2008b). Acta Cryst. E64, o1323.],c[Dong, W.-K., He, X.-N., Li, L., Lv, Z.-W. & Tong, J.-F. (2008c). Acta Cryst. E64, o1405.]); Duan et al. (2007[Duan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o2704-o2705.]); Sharma (2002[Sharma, C. V. K. (2002). Cryst. Growth Des. 2, 465-474.]); Sun et al. (2004[Sun, S. S., Stern, C. L., Nguyen, S. T. & Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 6314-6326.]); Venkataramanan et al. (2005[Venkataramanan, N. S., Kuppuraj, G. & Rajagopal, S. (2005). Coord. Chem. Rev. 249, 1249-1268.]); Wang et al. (2007[Wang, L., He, X., Sun, Y. & Xu, L. (2007). Acta Cryst. E63, o4517.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O6

  • Mr = 346.33

  • Monoclinic, C 2/c

  • a = 27.836 (3) Å

  • b = 4.5949 (5) Å

  • c = 13.8081 (10) Å

  • β = 109.363 (2)°

  • V = 1666.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 (2) K

  • 0.43 × 0.40 × 0.31 mm

Data collection
  • Brucker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.956, Tmax = 0.968

  • 4032 measured reflections

  • 1476 independent reflections

  • 1025 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.186

  • S = 1.05

  • 1476 reflections

  • 114 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.94 2.650 (3) 144
O3—H3⋯O2 0.82 2.25 2.694 (4) 115
O3—H3⋯O1i 0.82 2.24 2.914 (4) 140
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Salen-type compounds are chelate ligands, which have received great attention during the last decades (Sharma 2002; Akine et al., 2006; Dong et al., 2008a) due to their excellent complexing abilities towards various metal ions, especially in view of their potential use as ligands for preparation of functional complex materials (Venkataramanan et al., 2005). They are widely used in supramolecular chemistry for the construction of some one-dimensional chains, two-dimensional planar or three-dimensional network structural supramolecular complexes. To our interest, some salen-type compounds can be used as elemental building blocks for construction of supramolecular structures via intermolecular hydrogen bonding or short contact interaction (Sun et al., 2004; Akine et al., 2006; Wang et al., 2007). As an extension of our work (Dong & Feng 2006; Dong et al., 2008b; Dong et al., 2008c) on the structural characterization of salen-type bisoxime compounds, we report the structure of the title compound in this paper here.

The molecule of title compound adopts a V-shaped conformation with the dihedral angle between the two halves of the molecule is 81.31 (4) ° (Fig. 1). There is a half molecule in an asymmetric unit with a crystallographic twofold rotation axis passing through the central carbon of the three carbon atoms in the (—CH=N—O—(CH2)3—O—N=CH—) bridge. This structure is similar to what was observed in our previously reported salen-type bisoxime compound (Duan et al., 2007). The dihedral angle formed by the two benzene rings in the molecule of the title compound is 82.22 (5) °. There are strong intramolecular O—H···N and O—H···O hydrogen bonds involving the hydroxy group and an adjacent O (or N) atoms (Table 1). In the crystal structure, intermolecular O—H···O hydrogen bonds link each molecule to 2 others into infinite three-dimensional supramolecular structure (Fig. 2), which is not similar to what was observed in our previously reported series salen-type compounds containing two- (Akine et al., 2006) and five-methene (Dong et al., 2008a) bridge.

Related literature top

For related literature, see: Akine et al. (2006); Dong & Feng (2006); Dong et al. (2008a,b,c); Duan et al. (2007); Sharma (2002); Sun et al. (2004); Venkataramanan et al. (2005); Wang et al. (2007).

Experimental top

6,6'-Dihydroxy-2,2'-[(pentane-1,5-diyldioxy)bis(nitrilomethylidyne)]diphenol was synthesized according to an analogous method reported earlier (Dong et al., 2006; Dong et al., 2008a). To an ethanol solution (5 ml) of 2,3-dihydroxybenzaldehyde (276.6 mg, 2.0 mmol) was added an ethanol solution (5 ml) of 1, 3-bis(aminooxy)propane (106.8 mg, 1.0 mmol). After the solution had been stirred at 328 K for 3 h, the mixture was filtered, washed successively with ethanol and ethanol/hexane (1:4), respectively. The product was dried under reduced pressure and purified by recrystallization from ethanol to yield 204.8 mg of pale-brown crystalline solid.

Pale-brown prismatical crystals of the title compound suitable for X-ray crystal analysis were grown up from a tetrahydrofuran-ethanol (3:4) mixed solution by slow evaporation of the solvent at room temperature.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), or 0.93 Å (CH), O—H = 0.82 Å, and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level. [Symmetry code: -x + 1,y,-z + 5/2]
[Figure 2] Fig. 2. The packing diagram of the title compound showing intermolecular hydrogen bonds. H atoms are omitted for clarity.
6,6'-Dihydroxy-2,2'-[(propane-1,3-diyldioxy)bis(nitrilomethylidyne)]diphenol top
Crystal data top
C17H18N2O6F(000) = 728
Mr = 346.33Dx = 1.381 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1493 reflections
a = 27.836 (3) Åθ = 2.8–27.7°
b = 4.5949 (5) ŵ = 0.11 mm1
c = 13.8081 (10) ÅT = 298 K
β = 109.363 (2)°Prismatic, pale-brown
V = 1666.2 (3) Å30.43 × 0.40 × 0.31 mm
Z = 4
Data collection top
Brucker SMART 1000 CCD area-detector
diffractometer
1476 independent reflections
Radiation source: fine-focus sealed tube1025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3227
Tmin = 0.956, Tmax = 0.968k = 55
4032 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0856P)2 + 2.8739P]
where P = (Fo2 + 2Fc2)/3
1476 reflections(Δ/σ)max < 0.001
114 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H18N2O6V = 1666.2 (3) Å3
Mr = 346.33Z = 4
Monoclinic, C2/cMo Kα radiation
a = 27.836 (3) ŵ = 0.11 mm1
b = 4.5949 (5) ÅT = 298 K
c = 13.8081 (10) Å0.43 × 0.40 × 0.31 mm
β = 109.363 (2)°
Data collection top
Brucker SMART 1000 CCD area-detector
diffractometer
1476 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1025 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.968Rint = 0.030
4032 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
1476 reflectionsΔρmin = 0.25 e Å3
114 parameters
Special details top

Experimental. Yield, 59.1%, mp. 425–427 K. Anal. Calc. for C17H18N2O6: C, 59.96; H, 5.24; N, 8.09. Found: C, 60.17; H, 5.31; N, 7.92.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.43592 (8)0.2306 (5)1.15521 (16)0.0466 (6)
O20.41085 (8)0.6412 (6)0.88832 (17)0.0539 (7)
H20.42360.53670.93850.081*
O30.36020 (10)1.0086 (6)0.73677 (18)0.0671 (9)
H30.38550.90800.74390.101*
N10.41732 (9)0.4035 (6)1.06706 (18)0.0413 (7)
C10.48064 (12)0.0823 (7)1.1531 (2)0.0456 (8)
H1A0.50630.22141.15000.055*
H1B0.47270.04311.09330.055*
C20.50000.0961 (11)1.25000.0529 (13)
H2A0.47270.22071.25450.063*0.50
H2B0.52730.22071.24550.063*0.50
C40.37794 (11)0.5439 (7)1.0649 (2)0.0409 (8)
H40.36500.52101.11850.049*
C50.35228 (11)0.7400 (7)0.9813 (2)0.0372 (7)
C60.36954 (11)0.7802 (7)0.8979 (2)0.0387 (8)
C70.34391 (12)0.9687 (7)0.8197 (2)0.0446 (8)
C80.30183 (13)1.1161 (8)0.8225 (3)0.0499 (9)
H80.28501.24230.76950.060*
C90.28425 (12)1.0774 (8)0.9046 (3)0.0490 (9)
H90.25551.17720.90660.059*
C100.30912 (12)0.8929 (8)0.9822 (2)0.0443 (8)
H100.29710.86821.03690.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0425 (12)0.0521 (15)0.0435 (13)0.0042 (11)0.0119 (10)0.0151 (11)
O20.0523 (14)0.0655 (16)0.0510 (14)0.0138 (12)0.0267 (11)0.0107 (12)
O30.0821 (19)0.0788 (19)0.0470 (15)0.0177 (15)0.0303 (13)0.0176 (13)
N10.0411 (15)0.0424 (16)0.0377 (14)0.0041 (13)0.0096 (11)0.0029 (12)
C10.0406 (18)0.044 (2)0.0480 (19)0.0026 (15)0.0094 (15)0.0031 (16)
C20.049 (3)0.044 (3)0.056 (3)0.0000.005 (2)0.000
C40.0387 (17)0.047 (2)0.0377 (17)0.0033 (15)0.0133 (14)0.0002 (15)
C50.0364 (16)0.0367 (18)0.0360 (16)0.0084 (14)0.0088 (13)0.0060 (14)
C60.0352 (16)0.0391 (18)0.0407 (17)0.0009 (14)0.0110 (13)0.0033 (15)
C70.051 (2)0.047 (2)0.0352 (17)0.0083 (16)0.0123 (15)0.0008 (15)
C80.0468 (19)0.048 (2)0.0446 (19)0.0064 (17)0.0017 (15)0.0040 (16)
C90.0396 (18)0.054 (2)0.050 (2)0.0042 (17)0.0106 (15)0.0062 (18)
C100.0418 (18)0.050 (2)0.0429 (18)0.0044 (16)0.0165 (14)0.0055 (16)
Geometric parameters (Å, º) top
O1—N11.401 (3)C2—H2B0.9700
O1—C11.428 (4)C4—C51.452 (4)
O2—C61.359 (4)C4—H40.9300
O2—H20.8207C5—C101.395 (4)
O3—C71.377 (4)C5—C61.400 (4)
O3—H30.8195C6—C71.383 (4)
N1—C41.264 (4)C7—C81.365 (5)
C1—C21.508 (4)C8—C91.387 (5)
C1—H1A0.9700C8—H80.9300
C1—H1B0.9700C9—C101.362 (5)
C2—C1i1.508 (4)C9—H90.9300
C2—H2A0.9700C10—H100.9300
N1—O1—C1109.0 (2)C10—C5—C6118.2 (3)
C6—O2—H2109.7C10—C5—C4120.2 (3)
C7—O3—H3109.3C6—C5—C4121.6 (3)
C4—N1—O1112.2 (2)O2—C6—C7116.9 (3)
O1—C1—C2107.4 (2)O2—C6—C5123.4 (3)
O1—C1—H1A110.2C7—C6—C5119.7 (3)
C2—C1—H1A110.2C8—C7—O3118.7 (3)
O1—C1—H1B110.2C8—C7—C6121.0 (3)
C2—C1—H1B110.2O3—C7—C6120.3 (3)
H1A—C1—H1B108.5C7—C8—C9119.9 (3)
C1i—C2—C1114.2 (4)C7—C8—H8120.1
C1i—C2—H2A108.7C9—C8—H8120.1
C1—C2—H2A108.7C10—C9—C8119.9 (3)
C1i—C2—H2B108.7C10—C9—H9120.1
C1—C2—H2B108.7C8—C9—H9120.1
H2A—C2—H2B107.6C9—C10—C5121.4 (3)
N1—C4—C5122.0 (3)C9—C10—H10119.3
N1—C4—H4119.0C5—C10—H10119.3
C5—C4—H4119.0
C1—O1—N1—C4179.2 (3)O2—C6—C7—C8179.6 (3)
N1—O1—C1—C2178.9 (3)C5—C6—C7—C80.2 (5)
O1—C1—C2—C1i66.8 (2)O2—C6—C7—O30.3 (5)
O1—N1—C4—C5179.3 (3)C5—C6—C7—O3179.5 (3)
N1—C4—C5—C10179.5 (3)O3—C7—C8—C9179.3 (3)
N1—C4—C5—C60.9 (5)C6—C7—C8—C90.0 (5)
C10—C5—C6—O2179.4 (3)C7—C8—C9—C100.1 (5)
C4—C5—C6—O20.2 (5)C8—C9—C10—C50.0 (5)
C10—C5—C6—C70.3 (4)C6—C5—C10—C90.2 (5)
C4—C5—C6—C7179.9 (3)C4—C5—C10—C9179.8 (3)
Symmetry code: (i) x+1, y, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.942.650 (3)144
O3—H3···O20.822.252.694 (4)115
O3—H3···O1ii0.822.242.914 (4)140
Symmetry code: (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC17H18N2O6
Mr346.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)27.836 (3), 4.5949 (5), 13.8081 (10)
β (°) 109.363 (2)
V3)1666.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.43 × 0.40 × 0.31
Data collection
DiffractometerBrucker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.956, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
4032, 1476, 1025
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.186, 1.05
No. of reflections1476
No. of parameters114
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.8211.9402.650 (3)144.27
O3—H3···O20.8192.2462.694 (4)114.80
O3—H3···O1i0.8192.2402.914 (4)139.73
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0604–01) and the `Qing Lan' Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03–01 A), which are gratefully acknowledged.

References

First citationAkine, S., Dong, W. K. & Nabeshima, T. (2006). Inorg. Chem. 45, 4677–4684.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDong, W.-K. & Feng, J.-H. (2006). Acta Cryst. E62, o3577–o3578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008a). Acta Cryst. E64, o1600–o1601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., He, X.-N., Li, L., Lv, Z.-W. & Tong, J.-F. (2008c). Acta Cryst. E64, o1405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Zhao, C.-Y., Zhong, J.-K., Tang, X.-L. & Yu, T.-Z. (2008b). Acta Cryst. E64, o1323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o2704–o2705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharma, C. V. K. (2002). Cryst. Growth Des. 2, 465–474.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSun, S. S., Stern, C. L., Nguyen, S. T. & Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 6314–6326.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVenkataramanan, N. S., Kuppuraj, G. & Rajagopal, S. (2005). Coord. Chem. Rev. 249, 1249–1268.  Web of Science CrossRef CAS Google Scholar
First citationWang, L., He, X., Sun, Y. & Xu, L. (2007). Acta Cryst. E63, o4517.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds