organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-allylsulfanyl-4-(4-methoxyphenyl)-6-methyl-1,4-di­hydro­pyrimidine-5-carboxylate

aDepartment of Physics, The New College (Autonomous), Chennai 600 014, India, and bDepartment of Chemistry, The New College (Autonomous), Chennai 600 014, India
*Correspondence e-mail: mnizam_new@yahoo.in

(Received 13 August 2008; accepted 18 August 2008; online 23 August 2008)

In the title compound, C18H22N2O3S, the pyrimidine ring is not planar. It adopts a half-chair conformation The crystal structure is characterized by classical N—H⋯O and C—H⋯O inter- and intra­molecular hydrogen bonds, respectively. The title compound exhibits a wide spectrum of biological activities.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Biginelli (1893[Biginelli, P. (1893). Gazz. Chim. Ital. 23, 360-413.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Gurskaya et al. (2003a[Gurskaya, G. V., Zavodnik, V. E. & Shutalev, A. D. (2003a). Crystallogr. Rep. 48, 92-97.],b[Gurskaya, G. V., Zavodnik, V. E. & Shutalev, A. D. (2003b). Crystallogr. Rep. 48, 416-421.]); Kappe (1993[Kappe, C. O. (1993). Tetrahedron, 49, 6937-6963.]); Kappe et al. (1997[Kappe, C. O., Fabian, W. M. F. & Semones, M. A. (1997). Tetrahedron, 53, 2803-2816.]); Li (2006[Li, R. (2006). Acta Cryst. E62, o5480-o5481.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]); Nizam Mohideen et al. (2008[Nizam Mohideen, M., Rasheeth, A., Huq, C. A. M. A. & Nizar, S. S. (2008). Acta Cryst. E64, o1752.]); Overman et al. (1995[Overman, L. E., Michael, H., Rabinowitz, M. H. & Renhowe, P. A. (1995). J. Am. Chem. Soc. 117, 2657-2658.]); Snider et al. (1996[Snider, B. B., Chen, J., Patil, A. D. & Freyer, A. J. (1996). Tetrahedron Lett. 37, 6977-6980.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22N2O3S

  • Mr = 346.44

  • Monoclinic, C 2/c

  • a = 28.325 (5) Å

  • b = 7.410 (2) Å

  • c = 20.202 (4) Å

  • β = 121.61 (3)°

  • V = 3610.9 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 (2) K

  • 0.4 × 0.2 × 0.1 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.983

  • 16675 measured reflections

  • 3183 independent reflections

  • 2722 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.140

  • S = 1.04

  • 3183 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 2.16 2.990 (2) 161
C7—H7⋯O2 0.98 2.46 2.831 (3) 102
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound, (I), belongs to the class of 5-substituted 1,2,3,4-tetrahydropyrimidin-2-ones, which are known as `Biginelli compounds' (Kappe, 1993). The Biginelli reaction is a classic multicomponent reaction (Biginelli, 1893). The biological activity of some isolated alkaloids has been attributed to the presence of the dihydropyrimidinone moiety in the molecules (Overman et al., 1995) and the conformation of the pyrimidine ring (Kappe et al., 1997; Gurskaya et al., 2003a,b). Most important among them are batzelladine alkaloids, which have been found to be potent HIVgp-120-CD4 inhibitors (Snider et al., 1996). The aim of the present work was to study classical and extended Biginelli reactions. As part of our ongoing investigation of pyrimidine derivatives, the title compound, (I), has been prepared and its crystal structure is presented here.

The bond lengths and angles in the title compound (Fig. 1) are comparable with ethyl 1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenylpyrimidine-5-carboxylate, a structure closely related to (I) (Nizam Mohideen et al., 2008). The torsion angles [C1—C6—C7—C10 = 153.1 (2), C5—C6—C7—C10 = -31.5 (2), C9—C10—C12—O2 = 171.3 (2), C7—C10—C12—O2 = -11.6 (3), C9—C10—C12—O3 = -10.1 (1) and C7—C10—C12—O3 = 167.1 (2) °] differs from the torsion angles [47.6 (2), -137.1 (2), 10.1 (2), -167.8 (2) -171.5 (2) and 10.5 (2) °] in the reported structure mentioned above.

In (I), the heterocyclic ring (atoms N1, N2, C7, C8, C9, C10) of the dihydropyrimidine group is not planar, as indicated by the displacement of atom C7 from the least-squares plane [0.212 (1) Å] and by the C8—N1—C7—C10 torsion angle [31.1 (1) °]. Atom C11 deviating by -0.204 (1) Å from the least squares plane of the pyrimidine ring. The pyrimidine ring adopts half chair conformation; the puckering parameters are q2 = 0.312 (1) Å, ϕ = 236.3 (2)°, and θ = 104.2 (1)° (Cremer & Pople, 1975), and the lowest displacement asymmetry parameters ΔS(C7) is 2.3 (1)°, Δ2(C10) is 22.4 (1)° (Nardelli, 1983).

The benzene ring is planar, the larget displacement observed being -0.008 (1) Å for atom C6. The dihedral angle between the pyrimidine and benzene rings is 89.5 (1)°, close to the value of 86.5 (1)° found in ethyl 1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenylpyrimidine-5-carboxylate.

The crystal packing is characterized by classical N—H···O and C—H···O inter and intramolecular hydrogen bonds (Table 1).

Related literature top

For related literature, see: Allen et al. (1987); Biginelli (1893); Cremer & Pople (1975); Gurskaya et al. (2003a,b); Kappe (1993); Kappe et al. (1997); Li (2006); Nardelli (1983); Nizam Mohideen et al. (2008); Overman et al. (1995); Snider et al. (1996).

Experimental top

To a suspension of NaH (0.100 g, 2 mmol, 50% dispersion in mineral oil washed with hexane) in dry THF (25 ml) was added a solution of dihydropyrimidone, (0.594 g, 2 mmol) in dry THF (10 ml) and stirred in an atmosphere of N2 for one hour. Then a solution of allyl bromide (0.2 ml, 2.5 mmol) in dry THF (5 ml) was added drop wise and stirred for futher four hours. (TLC control, silica, ethyl acetate: hexane 1:9 as eluent). Evaporation of solvent under reduced pressure, followed by purification of the residue by column chromatography gave a yellow solid. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution in ethanol (mp 368–369 K).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.98 Å and N—H distance of 0.86 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C, N) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: 'SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003)'.

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level.
Ethyl 2-allylsulfanyl-4-(4-methoxyphenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate top
Crystal data top
C18H22N2O3SF(000) = 1472
Mr = 346.44Dx = 1.275 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7889 reflections
a = 28.325 (5) Åθ = 2.6–25°
b = 7.410 (2) ŵ = 0.20 mm1
c = 20.202 (4) ÅT = 293 K
β = 121.61 (3)°Needle, yellow
V = 3610.9 (18) Å30.4 × 0.2 × 0.1 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer'
3183 independent reflections
Radiation source: fine-focus sealed tube2722 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scanθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 3333
Tmin = 0.954, Tmax = 0.983k = 88
16675 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0785P)2 + 3.5811P]
where P = (Fo2 + 2Fc2)/3
3183 reflections(Δ/σ)max = 0.002
220 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C18H22N2O3SV = 3610.9 (18) Å3
Mr = 346.44Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.325 (5) ŵ = 0.20 mm1
b = 7.410 (2) ÅT = 293 K
c = 20.202 (4) Å0.4 × 0.2 × 0.1 mm
β = 121.61 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer'
3183 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2722 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.983Rint = 0.026
16675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.05Δρmax = 0.48 e Å3
3183 reflectionsΔρmin = 0.33 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15041 (3)0.63300 (8)0.44134 (3)0.0551 (2)
O10.33272 (7)1.1779 (2)0.34204 (10)0.0580 (4)
O20.06407 (7)1.4020 (2)0.24877 (9)0.0522 (4)
O30.01426 (7)1.2100 (2)0.15153 (9)0.0617 (5)
N10.14728 (7)0.9848 (2)0.40787 (9)0.0385 (4)
N20.09759 (7)0.7816 (2)0.30377 (10)0.0387 (4)
H20.09540.67150.28890.046*
C10.23063 (8)1.2512 (3)0.39532 (11)0.0399 (5)
H10.22801.31710.43250.048*
C20.27875 (9)1.2591 (3)0.39437 (13)0.0456 (5)
H2A0.30821.32920.43080.055*
C30.28341 (8)1.1622 (3)0.33898 (12)0.0406 (5)
C40.23922 (9)1.0596 (3)0.28488 (12)0.0424 (5)
H40.24180.99510.24740.051*
C50.19079 (8)1.0533 (3)0.28672 (11)0.0387 (5)
H50.16110.98440.24990.046*
C60.18558 (8)1.1467 (2)0.34195 (11)0.0331 (4)
C70.13489 (8)1.1274 (2)0.34918 (11)0.0334 (4)
H70.12981.24150.36920.040*
C80.13171 (8)0.8265 (3)0.38169 (11)0.0359 (4)
C90.06696 (8)0.9154 (3)0.25004 (11)0.0355 (4)
C100.08227 (8)1.0897 (3)0.27177 (11)0.0341 (4)
C110.02055 (9)0.8432 (3)0.17415 (13)0.0484 (5)
H11A0.01170.91730.15620.073*
H11B0.01230.72170.18130.073*
H11C0.03150.84440.13650.073*
C120.05336 (8)1.2485 (3)0.22475 (12)0.0382 (5)
C130.01773 (13)1.3590 (4)0.10104 (16)0.0718 (8)
H13A0.00671.44730.09890.086*
H13B0.03871.41780.12040.086*
C140.05525 (19)1.2832 (6)0.0238 (2)0.1255 (18)
H14A0.03411.21910.00660.188*
H14B0.07551.37890.01200.188*
H14C0.08071.20170.02610.188*
C150.33997 (12)1.0703 (4)0.28976 (19)0.0700 (8)
H15A0.33270.94620.29490.105*
H15B0.37741.08230.30160.105*
H15C0.31471.10980.23740.105*
C160.19334 (12)0.7289 (4)0.53535 (15)0.0662 (7)
H16A0.22150.64100.56760.079*
H16B0.21220.83240.53040.079*
C170.16579 (19)0.7873 (5)0.57661 (19)0.0867 (10)
H170.18910.81740.62870.104*
C180.1139 (2)0.8017 (6)0.5498 (3)0.1070 (13)
H18A0.08840.77360.49810.128*
H18B0.10150.84040.58200.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0785 (5)0.0335 (3)0.0492 (4)0.0010 (3)0.0305 (3)0.0058 (2)
O10.0468 (9)0.0614 (11)0.0707 (11)0.0059 (8)0.0342 (8)0.0012 (9)
O20.0615 (10)0.0249 (8)0.0522 (9)0.0007 (7)0.0174 (8)0.0004 (7)
O30.0692 (11)0.0348 (9)0.0446 (9)0.0068 (8)0.0045 (8)0.0012 (7)
N10.0498 (10)0.0318 (9)0.0347 (9)0.0012 (7)0.0226 (8)0.0015 (7)
N20.0510 (10)0.0219 (8)0.0409 (9)0.0009 (7)0.0224 (8)0.0030 (7)
C10.0456 (11)0.0325 (11)0.0356 (10)0.0020 (8)0.0171 (9)0.0050 (8)
C20.0414 (11)0.0391 (12)0.0444 (11)0.0100 (9)0.0142 (9)0.0054 (9)
C30.0393 (11)0.0361 (11)0.0454 (11)0.0010 (8)0.0215 (9)0.0083 (9)
C40.0521 (12)0.0385 (11)0.0400 (11)0.0019 (9)0.0264 (10)0.0029 (9)
C50.0419 (11)0.0337 (11)0.0358 (10)0.0082 (8)0.0171 (9)0.0065 (8)
C60.0395 (10)0.0237 (9)0.0313 (9)0.0004 (7)0.0151 (8)0.0028 (7)
C70.0415 (10)0.0240 (9)0.0331 (9)0.0002 (8)0.0184 (8)0.0013 (7)
C80.0436 (11)0.0294 (10)0.0383 (10)0.0022 (8)0.0239 (9)0.0033 (8)
C90.0372 (10)0.0307 (10)0.0387 (10)0.0005 (8)0.0200 (9)0.0024 (8)
C100.0376 (10)0.0270 (10)0.0359 (10)0.0006 (8)0.0180 (8)0.0002 (8)
C110.0488 (13)0.0345 (12)0.0484 (12)0.0045 (9)0.0161 (10)0.0061 (9)
C120.0380 (10)0.0333 (11)0.0405 (11)0.0007 (8)0.0187 (9)0.0004 (8)
C130.0752 (18)0.0447 (15)0.0550 (15)0.0156 (13)0.0063 (13)0.0100 (12)
C140.133 (3)0.085 (3)0.065 (2)0.022 (2)0.013 (2)0.0010 (19)
C150.0728 (17)0.0696 (18)0.094 (2)0.0004 (14)0.0614 (17)0.0047 (16)
C160.0784 (18)0.0486 (15)0.0485 (14)0.0047 (13)0.0173 (13)0.0134 (11)
C170.129 (3)0.067 (2)0.0587 (17)0.014 (2)0.045 (2)0.0015 (15)
C180.141 (4)0.098 (3)0.103 (3)0.017 (3)0.078 (3)0.004 (2)
Geometric parameters (Å, º) top
S1—C81.766 (2)C7—H70.9800
S1—C161.780 (3)C9—C101.359 (3)
O1—C31.370 (3)C9—C111.501 (3)
O1—C151.421 (3)C10—C121.464 (3)
O2—C121.211 (2)C11—H11A0.9600
O3—C121.334 (3)C11—H11B0.9600
O3—C131.453 (3)C11—H11C0.9600
N1—C81.267 (3)C12—O21.211 (2)
N1—C71.486 (2)C13—C141.464 (4)
N2—C81.388 (3)C13—H13A0.9700
N2—C91.389 (3)C13—H13B0.9700
N2—H20.8600C14—H14A0.9600
C1—C21.374 (3)C14—H14B0.9600
C1—C61.395 (3)C14—H14C0.9600
C1—H10.9300C15—H15A0.9600
C2—C31.393 (3)C15—H15B0.9600
C2—H2A0.9300C15—H15C0.9600
C3—C41.380 (3)C16—C171.474 (5)
C4—C51.392 (3)C16—H16A0.9700
C4—H40.9300C16—H16B0.9700
C5—C61.385 (3)C17—C181.277 (5)
C5—H50.9300C17—H170.9300
C6—C71.524 (3)C18—H18A0.9300
C7—C101.517 (3)C18—H18B0.9300
C8—S1—C16101.35 (11)C9—C11—H11B109.5
C3—O1—C15117.37 (19)H11A—C11—H11B109.5
C12—O3—C13117.77 (18)C9—C11—H11C109.5
C8—N1—C7116.11 (16)H11A—C11—H11C109.5
C8—N2—C9119.55 (16)H11B—C11—H11C109.5
C8—N2—H2120.2O2—C12—O3122.22 (18)
C9—N2—H2120.2O2—C12—O3122.22 (18)
C2—C1—C6121.64 (19)O2—C12—C10123.91 (19)
C2—C1—H1119.2O2—C12—C10123.91 (19)
C6—C1—H1119.2O3—C12—C10113.86 (17)
C1—C2—C3120.11 (19)O3—C13—C14107.1 (2)
C1—C2—H2A119.9O3—C13—H13A110.3
C3—C2—H2A119.9C14—C13—H13A110.3
O1—C3—C4124.2 (2)O3—C13—H13B110.3
O1—C3—C2116.34 (19)C14—C13—H13B110.3
C4—C3—C2119.44 (19)H13A—C13—H13B108.5
C3—C4—C5119.65 (19)C13—C14—H14A109.5
C3—C4—H4120.2C13—C14—H14B109.5
C5—C4—H4120.2H14A—C14—H14B109.5
C6—C5—C4121.81 (18)C13—C14—H14C109.5
C6—C5—H5119.1H14A—C14—H14C109.5
C4—C5—H5119.1H14B—C14—H14C109.5
C5—C6—C1117.34 (18)O1—C15—H15A109.5
C5—C6—C7122.25 (17)O1—C15—H15B109.5
C1—C6—C7120.26 (17)H15A—C15—H15B109.5
N1—C7—C10112.63 (15)O1—C15—H15C109.5
N1—C7—C6107.63 (15)H15A—C15—H15C109.5
C10—C7—C6112.61 (15)H15B—C15—H15C109.5
N1—C7—H7107.9C17—C16—S1116.9 (2)
C10—C7—H7107.9C17—C16—H16A108.1
C6—C7—H7107.9S1—C16—H16A108.1
N1—C8—N2125.34 (17)C17—C16—H16B108.1
N1—C8—S1123.53 (15)S1—C16—H16B108.1
N2—C8—S1111.13 (14)H16A—C16—H16B107.3
C10—C9—N2117.60 (18)C18—C17—C16128.1 (3)
C10—C9—C11128.98 (19)C18—C17—H17115.9
N2—C9—C11113.43 (17)C16—C17—H17115.9
C9—C10—C12125.37 (18)C17—C18—H18A120.0
C9—C10—C7118.86 (17)C17—C18—H18B120.0
C12—C10—C7115.70 (16)H18A—C18—H18B120.0
C9—C11—H11A109.5
C6—C1—C2—C30.3 (3)C16—S1—C8—N2179.62 (16)
C15—O1—C3—C45.1 (3)C8—N2—C9—C1017.0 (3)
C15—O1—C3—C2175.6 (2)C8—N2—C9—C11163.18 (18)
C1—C2—C3—O1179.86 (19)N2—C9—C10—C12176.65 (17)
C1—C2—C3—C40.5 (3)C11—C9—C10—C123.6 (3)
O1—C3—C4—C5179.79 (19)N2—C9—C10—C76.3 (3)
C2—C3—C4—C50.5 (3)C11—C9—C10—C7173.39 (19)
C3—C4—C5—C60.4 (3)N1—C7—C10—C929.8 (2)
C4—C5—C6—C11.2 (3)C6—C7—C10—C992.1 (2)
C4—C5—C6—C7174.30 (18)N1—C7—C10—C12152.88 (16)
C2—C1—C6—C51.2 (3)C6—C7—C10—C1285.2 (2)
C2—C1—C6—C7174.42 (18)C13—O3—C12—O22.9 (3)
C8—N1—C7—C1031.2 (2)C13—O3—C12—O22.9 (3)
C8—N1—C7—C693.6 (2)C13—O3—C12—C10178.3 (2)
C5—C6—C7—N193.2 (2)C9—C10—C12—O2171.3 (2)
C1—C6—C7—N182.1 (2)C7—C10—C12—O211.6 (3)
C5—C6—C7—C1031.5 (2)C9—C10—C12—O2171.3 (2)
C1—C6—C7—C10153.14 (17)C7—C10—C12—O211.6 (3)
C7—N1—C8—N210.0 (3)C9—C10—C12—O310.0 (3)
C7—N1—C8—S1170.98 (14)C7—C10—C12—O3167.10 (17)
C9—N2—C8—N116.0 (3)C12—O3—C13—C14177.0 (3)
C9—N2—C8—S1163.17 (14)C8—S1—C16—C1790.0 (2)
C16—S1—C8—N11.2 (2)S1—C16—C17—C1810.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.162.990 (2)161
C7—H7···O20.982.462.831 (3)102
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H22N2O3S
Mr346.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)28.325 (5), 7.410 (2), 20.202 (4)
β (°) 121.61 (3)
V3)3610.9 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.4 × 0.2 × 0.1
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer'
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.954, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
16675, 3183, 2722
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.140, 1.05
No. of reflections3183
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.33

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), 'SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003)'.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.162.990 (2)161.1
C7—H7···O20.982.462.831 (3)101.9
Symmetry code: (i) x, y1, z.
 

Acknowledgements

MNM, AR, and CAMAH thank the Management of The New College, Chennai, India, for providing the necessary facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBiginelli, P. (1893). Gazz. Chim. Ital. 23, 360–413.  Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGurskaya, G. V., Zavodnik, V. E. & Shutalev, A. D. (2003a). Crystallogr. Rep. 48, 92–97.  Web of Science CrossRef CAS Google Scholar
First citationGurskaya, G. V., Zavodnik, V. E. & Shutalev, A. D. (2003b). Crystallogr. Rep. 48, 416–421.  Web of Science CrossRef CAS Google Scholar
First citationKappe, C. O. (1993). Tetrahedron, 49, 6937–6963.  CrossRef CAS Google Scholar
First citationKappe, C. O., Fabian, W. M. F. & Semones, M. A. (1997). Tetrahedron, 53, 2803–2816.  CSD CrossRef CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNizam Mohideen, M., Rasheeth, A., Huq, C. A. M. A. & Nizar, S. S. (2008). Acta Cryst. E64, o1752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOverman, L. E., Michael, H., Rabinowitz, M. H. & Renhowe, P. A. (1995). J. Am. Chem. Soc. 117, 2657–2658.  CrossRef CAS Web of Science Google Scholar
First citationLi, R. (2006). Acta Cryst. E62, o5480–o5481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSnider, B. B., Chen, J., Patil, A. D. & Freyer, A. J. (1996). Tetrahedron Lett. 37, 6977–6980.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds