organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1683-o1684

Bis(di­phenyl­phospho­ro­thio­yl) tris­­ulfide

aFaculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos Street 11, RO-400028 Cluj-Napoca, Romania
*Correspondence e-mail: ancas@chem.ubbcluj.ro

(Received 14 July 2008; accepted 29 July 2008; online 6 August 2008)

In the title compound, C24H20P2S5, the P atoms are arranged trans with respect to the S3 group and the S=P—S—S systems have cisoid geometry, with an average S—P—S—S torsion angle of −56.7°. The dihedral angles between the two phenyl rings attached to the P atoms are 87.33 (12) and 75.67 (10)°. In the crystal structure, the mol­ecules are linked into chains running parallel to the a axis by weak inter­molecular C—H⋯S hydrogen bonds. Centrosymmetrically related chains are further connected by ππ stacking inter­actions, with a centroid-to-centroid distance of 3.795 (5) Å.

Related literature

For related literature. see: Deleanu et al. (2002[Deleanu, C., Drake, J. E., Hursthouse, M. B., Kulcsar, M., Leight, M. E. & Silvestru, A. (2002). Appl. Organomet. Chem. 16, 727-731.]); Drake et al. (2001a[Drake, J. E., Hursthouse, M. B., Kulcsar, M., Light, M. E. & Silvestru, A. (2001a). Phosphorus Sulfur Silicon Relat. Elem. 169, 293-296.],b[Drake, J. E., Hursthouse, M. B., Kulcsar, M., Light, M. E. & Silvestru, A. (2001b). J. Organomet. Chem. 623, 153-160.]); Gallacher & Pinkerton (1992a[Gallacher, A. C. & Pinkerton, A. A. (1992a). Acta Cryst. C48, 701-703.],b[Gallacher, A. C. & Pinkerton, A. A. (1992b). Acta Cryst. C48, 2085-2088.], 1993[Gallacher, A. C. & Pinkerton, A. A. (1993). Acta Cryst. C49, 1793-1796.]); Kulcsar et al. (2005[Kulcsar, M., Silvestru, A., Silvestru, C., Drake, J. E., Macdonald, C. L. B., Hursthouse, M. B. & Light, M. E. (2005). J. Organomet. Chem. 690, 3217-3228.]); Newton et al. (1993[Newton, M. G., King, R. B., Haiduc, I. & Silvestru, A. (1993). Inorg. Chem. 32, 3795-3796.]); Silvestru et al. (1994a[Silvestru, A., Haiduc, I., Ebert, K. H. & Breunig, H. J. (1994a). Inorg. Chem. 33, 1253-1254.],b[Silvestru, A., Haiduc, I., Ebert, K. H. & Breunig, H. J. (1994b). J. Organomet. Chem. 482, 253-259.]); Buranda et al. (1991[Buranda, T., Gallacher, A. C. & Pinkerton, A. A. (1991). Acta Cryst. C47, 1414-1418.]); Fest & Schmidt (1982[Fest, C. & Schmidt, K. J. (1982). The Chemistry of Organophosphorus Pesticides, 2nd ed. New York: Springer.]); Knopik et al. (1993[Knopik, P., Luczak, L., Potrzebowski, M. J., Michalski, J., Blaszczyk, J. & Wieczorek, M. W. (1993). J. Chem. Soc. Dalton Trans. pp. 2749-2757.]); Lawton (1970[Lawton, S. L. (1970). Inorg. Chem. 9, 2269-2274.]); McCleverty et al. (1983[McCleverty, J. A., Kowalski, R. S. Z., Bailey, N. A., Mulvaney, R. & O'Cleirigh, D. A. (1983). J. Chem. Soc. Dalton Trans. pp. 627-634.]); Molyneux (1967[Molyneux, P. H. (1967). Lubrication and Lubricants, ch. 3, edited by E. R. Braithwaite. Amsterdam: Elsevier.]); Perlikowska et al. (2004[Perlikowska, W., Gouygou, M., Mikolajczyk, M. & Daran, J.-C. (2004). Tetrahedron Asymmetry, 15, 3519-3529.]); Potrzebowski et al. (1991[Potrzebowski, M. J., Reinbenspies, J. H. & Zhong, Z. (1991). Heteroat. Chem. 2, 455-460.], 1994[Potrzebowski, M. J., Grossmann, G., Blaszczyk, J., Wieczorek, M. W., Sieler, J., Knopik, P. & Komber, H. (1994). Inorg. Chem. 33, 4688-4695.]); Tiekink (2001[Tiekink, E. R. T. (2001). Z. Kristallogr. New Cryst. Struct. 216, 247-248.]); Tkachev et al. (1976[Tkachev, V. V., Atovmyan, L. O. & Shchepinov, S. A. (1976). Zh. Strukt. Khim. 17, 945-947.]); Zhang et al. (2004[Zhang, S.-S., Li, X.-M., Wang, J.-L., Wan, J. & Jiao, K. (2004). Chem. Res. Chin. Univ. 20, 146-148.]); Emsley (1994[Emsley, J. (1994). Die Elemente. Berlin: Walter de Gruyter.]); Yadav et al. (1989[Yadav, J. S., Bohra, R., Mehrotra, R. K., Rai, A. K. & Srivastava, G. (1989). Acta Cryst. C45, 308-311. ]).

[Scheme 1]

Experimental

Crystal data
  • C24H20P2S5

  • Mr = 530.64

  • Triclinic, [P \overline 1]

  • a = 9.2287 (8) Å

  • b = 11.5476 (10) Å

  • c = 12.9728 (12) Å

  • α = 92.690 (2)°

  • β = 105.287 (2)°

  • γ = 106.124 (2)°

  • V = 1270.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 297 (2) K

  • 0.35 × 0.27 × 0.21 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.819, Tmax = 0.885

  • 13712 measured reflections

  • 5178 independent reflections

  • 4536 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.106

  • S = 1.13

  • 5178 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯S5i 0.93 2.94 3.737 (3) 145
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Our interest was focused for long time on studies concerning reactions between bis(diorganothiophosphoryl)disulfides and diorganodichalcogenides of type R2E2 (E = Se, Te) in order to obtain new organochalcogen compounds with diorganodithiophosphorus ligands (Newton et al., 1993; Silvestru et al., 1994a,b; Drake et al., 2001a,b; Kulcsar et al., 2005; Deleanu et al., 2002). Bis(diorganothiophosphoryl)disulfides attracted much interest also due to their potential applications as pesticides (Fest & Schmidt, 1982), additives in motor oils (Molyneux, 1967) and in the rubber vulcanization (McCleverty et al., 1983). Both alkyl and aryl substituted derivatives of type [R2P(S)S]2 were already structurally characterized, e.g. R = OPr-i (Lawton, 1970; Tkachev et al., 1976; Tiekink, 2001; Zhang et al., 2004), R = OMe, OBu-t (Potrzebowski et al., 1991), cyclohexyl (Buranda et al., 1991), Me, Pr-i (Gallacher & Pinkerton, 1992b), Ph (Gallacher & Pinkerton, 1993), OPh (Gallacher & Pinkerton, 1993; Knopik et al., 1993), menthoxy (Perlikowska et al., 2004), R2 = OCMe2—CMe2O (Yadav et al., 1989), OCMe2—CH2O (Potrzebowski et al., 1994). A search of the Cambridge Structure Database revealed that only for one trisulfide, [Et2P(S)S]2S, the X-ray crystal structure was determined (Gallacher & Pinkerton, 1992a). Here we report about the phenyl substituted analog, [Ph2P(S)S]2S.

The chalcogen atoms S2 and S3 are doubly bonded to phosphorus [S2P1 = 1.9351 (9); S3P2 = 1.9303 (9) Å], while the P1—S1 [2.1171 (9) Å] and P2—S4 [2.1282 (9) Å] distances correspond to single P—S bonds (cf. [Ph2P(S)S]2: PS = 1.930 (1), P—S = 2.139 (1) Å; Gallacher & Pinkerton, 1993). The sulfur–sulfur distances within the S3 group are not significantly different [S5—S4 = 2.0407 (10), S5—S1 = 2.0440 (10) Å], corresponding to a S—S single bond. These values are similar to those found in bis(diorganothiophosphoryl)disulfides or in [Et2P(S)S]2S. The SPS3PS skeleton of the title compound adopts a twisted zigzag chain structure (Fig. 1), with the torsion angles S2—P1—S1—S5 = -56.30 (5)°, P1—S1—S5—S4 = 96.84 (4)°, S1—S5—S4—P2 = 87.42 (5)° and S5—S4—P2—S3 = -57.13 (5)°. Although apparently the conformation of the SPS3PS skeleton is similar to that of the previously reported ethyl derivative, some differences should be noted. In the title compound the phosphorus atoms are trans with respect of the central S3 group [P1—S1···S5—P2 = 171.4°], as are in the related [Et2P(S)S]2S compound (the torsion angle between corresponding atoms is 159.8°). In both cases the central S atom and the terminal S atoms, respectively, are placed on opposite sides of the best plane described by the remaining atoms of the skeleton. However, the SP···PS torsion angle is 138.8°, but only -89.4° in the ethyl derivative. Moreover, the SP—S—S system has a cisoid geometry [S2—P1—S1—S5 = -56.30 (5)°, S5—S4—P2—S3 = -57.13 (5)°], while it has a transoid geometry in [Et2P(S)S]2S (average SP—S—S torsion angle 179.6°; Gallacher & Pinkerton, 1992a). The S—P—S angles [S2—P1—S1 = 113.77 (4)° and S3—P2—S4 = 114.34 (4)°] are consistent with a cisoid geometry, similar with that found for [Ph2P(S)S]2 [114.44 (4)°; Gallacher & Pinkerton, 1993], but much larger than in the transoid derivatives [(PhO)2P(S)S]2 [108.39 (7)°; Gallacher & Pinkerton, 1993] and [Et2P(S)S]2S [av. 103.7°; Gallacher & Pinkerton, 1992a]. The dihedral angles formed by the plane of the phenyl rings attached to the P1 and P2 atoms are 87.33 (12) 75.67 (10)° respectively. The crystal structure is stabilized by weak intermolecular hydrogen bonding interactions (Emsley, 1994) between the central sulfur atom and an aromatic proton of a neighbouring molecule (Table 1) forming chains parellel to the a axis (Fig. 2). Weak intermolecular S···H contacts were observed in [(PhO)2P(S)S]2 [2.954 (1) Å], but they are absent in [Et2P(S)S]2S or [Ph2P(S)S]2. Centrosymmetrically related chains are further connected by ππ stacking interactions involving the C13–C18 phenyl rings, with centroid-to-centroid distance of 3.795 (5) Å.

Related literature top

For related literature. see: Deleanu et al. (2002); Drake et al. (2001a,b); Gallacher & Pinkerton (1992a, 1992b, 1993); Kulcsar et al. (2005); Newton et al. (1993); Silvestru et al. (1994a,b); Buranda et al. (1991); Fest & Schmidt (1982); Knopik et al. (1993); Lawton (1970); McCleverty et al. (1983); Molyneux (1967); Perlikowska et al. (2004); Potrzebowski et al. (1991, 1994); Tiekink (2001); Tkachev et al. (1976); Zhang et al. (2004); Emsley (1994); Yadav et al. (1989).

Experimental top

The title compound was isolated as a by-product during recrystallization of PhSeS2PPh2 obtained in the reaction between [Ph2P(S)S]2 and Ph2Se2.

Refinement top

All C-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and treated using a riding model with Uiso = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, with the atomic numbering scheme, showing displacement ellipsoids at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. View of the S···H intermolecular interactions (dashed lines) in the title compound. Only H involved in hydrogen bonding interactions are shown. Symmetry codes: (i) 1 + x, y, z, (ii) -1 + x, y, z.
Bis(diphenylphosphorothioyl) trisulfide top
Crystal data top
C24H20P2S5Z = 2
Mr = 530.64F(000) = 548
Triclinic, P1Dx = 1.387 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2287 (8) ÅCell parameters from 4229 reflections
b = 11.5476 (10) Åθ = 2.4–25.3°
c = 12.9728 (12) ŵ = 0.59 mm1
α = 92.690 (2)°T = 297 K
β = 105.287 (2)°Block, yellow
γ = 106.124 (2)°0.35 × 0.27 × 0.21 mm
V = 1270.3 (2) Å3
Data collection top
Bruker SMART APEX
diffractometer
5178 independent reflections
Radiation source: fine-focus sealed tube4536 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 26.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.819, Tmax = 0.886k = 1414
13712 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.4205P]
where P = (Fo2 + 2Fc2)/3
5178 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C24H20P2S5γ = 106.124 (2)°
Mr = 530.64V = 1270.3 (2) Å3
Triclinic, P1Z = 2
a = 9.2287 (8) ÅMo Kα radiation
b = 11.5476 (10) ŵ = 0.59 mm1
c = 12.9728 (12) ÅT = 297 K
α = 92.690 (2)°0.35 × 0.27 × 0.21 mm
β = 105.287 (2)°
Data collection top
Bruker SMART APEX
diffractometer
5178 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4536 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.886Rint = 0.029
13712 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.13Δρmax = 0.40 e Å3
5178 reflectionsΔρmin = 0.19 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2158 (3)0.8016 (2)1.01664 (19)0.0410 (6)
C20.3749 (3)0.8562 (3)1.0317 (2)0.0549 (7)
H20.41410.86410.97240.066*
C30.4758 (4)0.8988 (3)1.1337 (3)0.0649 (8)
H30.58280.93481.14360.078*
C40.4171 (4)0.8878 (3)1.2203 (3)0.0689 (9)
H40.48480.91681.28940.083*
C50.2607 (4)0.8349 (3)1.2068 (2)0.0710 (9)
H50.22250.82831.26650.085*
C60.1586 (3)0.7909 (3)1.1050 (2)0.0561 (7)
H60.05200.75431.09600.067*
C70.1095 (3)0.7270 (2)0.8809 (2)0.0432 (6)
C80.2183 (3)0.6199 (3)0.8876 (2)0.0541 (7)
H80.18770.55000.89800.065*
C90.3720 (4)0.6158 (4)0.8789 (3)0.0721 (10)
H90.44490.54350.88320.087*
C100.4163 (4)0.7184 (5)0.8640 (3)0.0890 (12)
H100.52030.71560.85680.107*
C110.3101 (5)0.8242 (4)0.8595 (4)0.0986 (13)
H110.34120.89410.85130.118*
C120.1564 (4)0.8300 (3)0.8671 (3)0.0735 (9)
H120.08480.90300.86290.088*
C130.3127 (3)0.3345 (2)0.5892 (2)0.0398 (5)
C140.2557 (3)0.3370 (2)0.4795 (2)0.0479 (6)
H140.15190.33590.44990.057*
C150.3525 (4)0.3410 (3)0.4141 (2)0.0556 (7)
H150.31430.34360.34060.067*
C160.5055 (4)0.3413 (3)0.4577 (3)0.0609 (8)
H160.57050.34300.41350.073*
C170.5620 (3)0.3390 (3)0.5657 (3)0.0619 (8)
H170.66570.33950.59460.074*
C180.4675 (3)0.3360 (2)0.6329 (2)0.0514 (7)
H180.50720.33490.70650.062*
C190.0085 (3)0.2000 (2)0.61159 (19)0.0391 (5)
C200.0029 (3)0.0881 (2)0.6477 (2)0.0553 (7)
H200.08630.08050.70280.066*
C210.1260 (4)0.0116 (3)0.6021 (3)0.0679 (9)
H210.12910.08660.62610.082*
C220.2495 (4)0.0006 (3)0.5214 (3)0.0663 (9)
H220.33700.06790.49140.080*
C230.2445 (3)0.1094 (3)0.4849 (2)0.0590 (8)
H230.32840.11630.42970.071*
C240.1155 (3)0.2102 (2)0.5295 (2)0.0468 (6)
H240.11230.28460.50420.056*
P10.09047 (8)0.73820 (6)0.88233 (5)0.03962 (16)
P20.18502 (8)0.32528 (6)0.67495 (5)0.03861 (16)
S10.11328 (9)0.56101 (6)0.88821 (5)0.04965 (18)
S20.15246 (9)0.81659 (7)0.76545 (6)0.0581 (2)
S30.27532 (9)0.31611 (7)0.82540 (5)0.0562 (2)
S40.12601 (8)0.48837 (6)0.64407 (5)0.04720 (18)
S50.02304 (8)0.48041 (6)0.73690 (6)0.04856 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0431 (14)0.0406 (13)0.0377 (13)0.0128 (11)0.0096 (11)0.0023 (10)
C20.0462 (15)0.0608 (18)0.0556 (17)0.0146 (13)0.0134 (13)0.0027 (14)
C30.0443 (16)0.064 (2)0.072 (2)0.0126 (14)0.0026 (15)0.0023 (16)
C40.076 (2)0.0575 (19)0.0514 (18)0.0143 (17)0.0112 (16)0.0003 (14)
C50.089 (3)0.074 (2)0.0389 (16)0.0113 (19)0.0159 (16)0.0006 (15)
C60.0559 (17)0.0611 (18)0.0435 (15)0.0060 (14)0.0147 (13)0.0017 (13)
C70.0407 (13)0.0489 (15)0.0380 (13)0.0129 (11)0.0096 (11)0.0008 (11)
C80.0533 (16)0.0624 (18)0.0486 (16)0.0170 (14)0.0183 (13)0.0084 (13)
C90.0529 (18)0.094 (3)0.061 (2)0.0040 (18)0.0249 (16)0.0066 (18)
C100.055 (2)0.131 (4)0.088 (3)0.040 (2)0.0229 (19)0.009 (3)
C110.085 (3)0.093 (3)0.137 (4)0.056 (3)0.034 (3)0.007 (3)
C120.067 (2)0.0587 (19)0.103 (3)0.0281 (17)0.0295 (19)0.0056 (18)
C130.0425 (13)0.0311 (12)0.0428 (14)0.0077 (10)0.0113 (11)0.0010 (10)
C140.0475 (15)0.0504 (15)0.0453 (15)0.0136 (12)0.0138 (12)0.0076 (12)
C150.0659 (19)0.0535 (17)0.0465 (16)0.0101 (14)0.0232 (14)0.0062 (13)
C160.0594 (19)0.0526 (17)0.072 (2)0.0048 (14)0.0353 (17)0.0010 (15)
C170.0399 (15)0.0612 (19)0.078 (2)0.0090 (13)0.0144 (15)0.0046 (16)
C180.0474 (15)0.0493 (16)0.0510 (16)0.0111 (13)0.0081 (13)0.0013 (12)
C190.0442 (13)0.0345 (12)0.0406 (13)0.0104 (10)0.0173 (11)0.0027 (10)
C200.0587 (17)0.0399 (15)0.0614 (18)0.0117 (13)0.0107 (14)0.0075 (13)
C210.083 (2)0.0376 (16)0.072 (2)0.0061 (15)0.0157 (18)0.0063 (14)
C220.068 (2)0.0485 (17)0.064 (2)0.0070 (15)0.0186 (17)0.0096 (15)
C230.0486 (16)0.0630 (19)0.0515 (17)0.0052 (14)0.0052 (13)0.0032 (14)
C240.0480 (15)0.0451 (15)0.0454 (15)0.0117 (12)0.0129 (12)0.0061 (12)
P10.0411 (4)0.0412 (4)0.0361 (3)0.0117 (3)0.0113 (3)0.0044 (3)
P20.0440 (4)0.0349 (3)0.0359 (3)0.0113 (3)0.0105 (3)0.0039 (3)
S10.0608 (4)0.0496 (4)0.0432 (4)0.0259 (3)0.0128 (3)0.0062 (3)
S20.0642 (5)0.0640 (5)0.0451 (4)0.0116 (4)0.0206 (3)0.0161 (3)
S30.0658 (5)0.0598 (4)0.0378 (4)0.0173 (4)0.0073 (3)0.0082 (3)
S40.0632 (4)0.0346 (3)0.0467 (4)0.0161 (3)0.0191 (3)0.0064 (3)
S50.0403 (3)0.0436 (4)0.0562 (4)0.0096 (3)0.0097 (3)0.0040 (3)
Geometric parameters (Å, º) top
C1—C61.380 (4)C14—C151.378 (4)
C1—C21.384 (4)C14—H140.9300
C1—P11.805 (2)C15—C161.375 (4)
C2—C31.377 (4)C15—H150.9300
C2—H20.9300C16—C171.365 (4)
C3—C41.367 (5)C16—H160.9300
C3—H30.9300C17—C181.382 (4)
C4—C51.361 (5)C17—H170.9300
C4—H40.9300C18—H180.9300
C5—C61.380 (4)C19—C241.379 (3)
C5—H50.9300C19—C201.387 (3)
C6—H60.9300C19—P21.816 (2)
C7—C121.379 (4)C20—C211.376 (4)
C7—C81.383 (4)C20—H200.9300
C7—P11.809 (3)C21—C221.369 (4)
C8—C91.381 (4)C21—H210.9300
C8—H80.9300C22—C231.369 (4)
C9—C101.362 (5)C22—H220.9300
C9—H90.9300C23—C241.383 (4)
C10—C111.353 (6)C23—H230.9300
C10—H100.9300C24—H240.9300
C11—C121.378 (5)P1—S21.9351 (9)
C11—H110.9300P1—S12.1171 (9)
C12—H120.9300P2—S31.9303 (9)
C13—C141.385 (3)P2—S42.1282 (9)
C13—C181.386 (4)S1—S52.0440 (10)
C13—P21.808 (2)S4—S52.0407 (10)
C6—C1—C2119.4 (2)C14—C15—H15120.1
C6—C1—P1121.7 (2)C17—C16—C15120.0 (3)
C2—C1—P1118.9 (2)C17—C16—H16120.0
C3—C2—C1120.5 (3)C15—C16—H16120.0
C3—C2—H2119.8C16—C17—C18121.0 (3)
C1—C2—H2119.8C16—C17—H17119.5
C4—C3—C2119.4 (3)C18—C17—H17119.5
C4—C3—H3120.3C17—C18—C13119.1 (3)
C2—C3—H3120.3C17—C18—H18120.4
C5—C4—C3120.8 (3)C13—C18—H18120.4
C5—C4—H4119.6C24—C19—C20119.5 (2)
C3—C4—H4119.6C24—C19—P2123.69 (19)
C4—C5—C6120.4 (3)C20—C19—P2116.8 (2)
C4—C5—H5119.8C21—C20—C19120.1 (3)
C6—C5—H5119.8C21—C20—H20120.0
C1—C6—C5119.6 (3)C19—C20—H20120.0
C1—C6—H6120.2C22—C21—C20120.2 (3)
C5—C6—H6120.2C22—C21—H21119.9
C12—C7—C8118.9 (3)C20—C21—H21119.9
C12—C7—P1117.5 (2)C23—C22—C21120.1 (3)
C8—C7—P1123.5 (2)C23—C22—H22119.9
C9—C8—C7120.5 (3)C21—C22—H22119.9
C9—C8—H8119.8C22—C23—C24120.4 (3)
C7—C8—H8119.8C22—C23—H23119.8
C10—C9—C8119.6 (3)C24—C23—H23119.8
C10—C9—H9120.2C19—C24—C23119.8 (3)
C8—C9—H9120.2C19—C24—H24120.1
C11—C10—C9120.4 (3)C23—C24—H24120.1
C11—C10—H10119.8C1—P1—C7107.49 (11)
C9—C10—H10119.8C1—P1—S2116.30 (9)
C10—C11—C12120.9 (4)C7—P1—S2113.64 (9)
C10—C11—H11119.5C1—P1—S196.94 (8)
C12—C11—H11119.5C7—P1—S1107.14 (9)
C11—C12—C7119.6 (3)S2—P1—S1113.77 (4)
C11—C12—H12120.2C13—P2—C19106.48 (11)
C7—C12—H12120.2C13—P2—S3116.70 (9)
C14—C13—C18119.7 (2)C19—P2—S3113.09 (8)
C14—C13—P2120.46 (19)C13—P2—S497.91 (8)
C18—C13—P2119.8 (2)C19—P2—S4106.85 (8)
C15—C14—C13120.2 (3)S3—P2—S4114.34 (4)
C15—C14—H14119.9S5—S1—P1100.37 (4)
C13—C14—H14119.9S5—S4—P299.52 (4)
C16—C15—C14119.9 (3)S4—S5—S1106.77 (4)
C16—C15—H15120.1
C6—C1—C2—C30.4 (4)C6—C1—P1—C724.6 (3)
P1—C1—C2—C3176.0 (2)C2—C1—P1—C7159.0 (2)
C1—C2—C3—C40.6 (5)C6—C1—P1—S2153.3 (2)
C2—C3—C4—C50.3 (5)C2—C1—P1—S230.4 (2)
C3—C4—C5—C60.3 (5)C6—C1—P1—S185.9 (2)
C2—C1—C6—C50.1 (4)C2—C1—P1—S190.5 (2)
P1—C1—C6—C5176.4 (2)C12—C7—P1—C182.6 (2)
C4—C5—C6—C10.4 (5)C8—C7—P1—C1100.7 (2)
C12—C7—C8—C91.0 (4)C12—C7—P1—S247.6 (3)
P1—C7—C8—C9175.7 (2)C8—C7—P1—S2129.2 (2)
C7—C8—C9—C100.2 (5)C12—C7—P1—S1174.1 (2)
C8—C9—C10—C111.2 (6)C8—C7—P1—S12.6 (2)
C9—C10—C11—C121.7 (7)C14—C13—P2—C1950.3 (2)
C10—C11—C12—C70.9 (6)C18—C13—P2—C19128.0 (2)
C8—C7—C12—C110.4 (5)C14—C13—P2—S3177.66 (17)
P1—C7—C12—C11176.5 (3)C18—C13—P2—S30.6 (2)
C18—C13—C14—C150.1 (4)C14—C13—P2—S459.9 (2)
P2—C13—C14—C15178.4 (2)C18—C13—P2—S4121.75 (19)
C13—C14—C15—C160.7 (4)C24—C19—P2—C1382.9 (2)
C14—C15—C16—C170.8 (4)C20—C19—P2—C1395.5 (2)
C15—C16—C17—C180.2 (5)C24—C19—P2—S3147.60 (19)
C16—C17—C18—C130.4 (4)C20—C19—P2—S334.0 (2)
C14—C13—C18—C170.4 (4)C24—C19—P2—S420.9 (2)
P2—C13—C18—C17177.9 (2)C20—C19—P2—S4160.63 (19)
C24—C19—C20—C210.3 (4)C1—P1—S1—S5179.08 (9)
P2—C19—C20—C21178.8 (2)C7—P1—S1—S570.17 (9)
C19—C20—C21—C220.4 (5)S2—P1—S1—S556.30 (5)
C20—C21—C22—C230.8 (5)C13—P2—S4—S5178.76 (8)
C21—C22—C23—C240.5 (5)C19—P2—S4—S568.80 (9)
C20—C19—C24—C230.7 (4)S3—P2—S4—S557.13 (5)
P2—C19—C24—C23179.1 (2)P2—S4—S5—S187.43 (4)
C22—C23—C24—C190.3 (4)P1—S1—S5—S496.84 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···S5i0.932.943.737 (3)145
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H20P2S5
Mr530.64
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)9.2287 (8), 11.5476 (10), 12.9728 (12)
α, β, γ (°)92.690 (2), 105.287 (2), 106.124 (2)
V3)1270.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.35 × 0.27 × 0.21
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.819, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
13712, 5178, 4536
Rint0.029
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.106, 1.13
No. of reflections5178
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.19

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···S5i0.932.943.737 (3)145
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by the Romanian Ministry of Education and Research (CNCSIS grant No. 12/1456/2007). We thank the National Center for X-ray Diffraction (Babes-Bolyai University, Cluj-Napoca) for support in the solid-state structure determination.

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuranda, T., Gallacher, A. C. & Pinkerton, A. A. (1991). Acta Cryst. C47, 1414–1418.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDeleanu, C., Drake, J. E., Hursthouse, M. B., Kulcsar, M., Leight, M. E. & Silvestru, A. (2002). Appl. Organomet. Chem. 16, 727–731.  Web of Science CSD CrossRef CAS Google Scholar
First citationDrake, J. E., Hursthouse, M. B., Kulcsar, M., Light, M. E. & Silvestru, A. (2001a). Phosphorus Sulfur Silicon Relat. Elem. 169, 293–296.  Web of Science CrossRef Google Scholar
First citationDrake, J. E., Hursthouse, M. B., Kulcsar, M., Light, M. E. & Silvestru, A. (2001b). J. Organomet. Chem. 623, 153–160.  CAS Google Scholar
First citationEmsley, J. (1994). Die Elemente. Berlin: Walter de Gruyter.  Google Scholar
First citationFest, C. & Schmidt, K. J. (1982). The Chemistry of Organophosphorus Pesticides, 2nd ed. New York: Springer.  Google Scholar
First citationGallacher, A. C. & Pinkerton, A. A. (1992a). Acta Cryst. C48, 701–703.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGallacher, A. C. & Pinkerton, A. A. (1992b). Acta Cryst. C48, 2085–2088.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGallacher, A. C. & Pinkerton, A. A. (1993). Acta Cryst. C49, 1793–1796.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKnopik, P., Luczak, L., Potrzebowski, M. J., Michalski, J., Blaszczyk, J. & Wieczorek, M. W. (1993). J. Chem. Soc. Dalton Trans. pp. 2749–2757.  CSD CrossRef Web of Science Google Scholar
First citationKulcsar, M., Silvestru, A., Silvestru, C., Drake, J. E., Macdonald, C. L. B., Hursthouse, M. B. & Light, M. E. (2005). J. Organomet. Chem. 690, 3217–3228.  Web of Science CSD CrossRef CAS Google Scholar
First citationLawton, S. L. (1970). Inorg. Chem. 9, 2269–2274.  CSD CrossRef CAS Web of Science Google Scholar
First citationMcCleverty, J. A., Kowalski, R. S. Z., Bailey, N. A., Mulvaney, R. & O'Cleirigh, D. A. (1983). J. Chem. Soc. Dalton Trans. pp. 627–634.  CSD CrossRef Web of Science Google Scholar
First citationMolyneux, P. H. (1967). Lubrication and Lubricants, ch. 3, edited by E. R. Braithwaite. Amsterdam: Elsevier.  Google Scholar
First citationNewton, M. G., King, R. B., Haiduc, I. & Silvestru, A. (1993). Inorg. Chem. 32, 3795–3796.  CSD CrossRef CAS Web of Science Google Scholar
First citationPerlikowska, W., Gouygou, M., Mikolajczyk, M. & Daran, J.-C. (2004). Tetrahedron Asymmetry, 15, 3519–3529.  Web of Science CSD CrossRef CAS Google Scholar
First citationPotrzebowski, M. J., Grossmann, G., Blaszczyk, J., Wieczorek, M. W., Sieler, J., Knopik, P. & Komber, H. (1994). Inorg. Chem. 33, 4688–4695.  CSD CrossRef CAS Web of Science Google Scholar
First citationPotrzebowski, M. J., Reinbenspies, J. H. & Zhong, Z. (1991). Heteroat. Chem. 2, 455–460.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilvestru, A., Haiduc, I., Ebert, K. H. & Breunig, H. J. (1994a). Inorg. Chem. 33, 1253–1254.  CSD CrossRef CAS Web of Science Google Scholar
First citationSilvestru, A., Haiduc, I., Ebert, K. H. & Breunig, H. J. (1994b). J. Organomet. Chem. 482, 253–259.  CSD CrossRef CAS Web of Science Google Scholar
First citationTiekink, E. R. T. (2001). Z. Kristallogr. New Cryst. Struct. 216, 247–248.  CAS Google Scholar
First citationTkachev, V. V., Atovmyan, L. O. & Shchepinov, S. A. (1976). Zh. Strukt. Khim. 17, 945–947.  CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationYadav, J. S., Bohra, R., Mehrotra, R. K., Rai, A. K. & Srivastava, G. (1989). Acta Cryst. C45, 308–311.   CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhang, S.-S., Li, X.-M., Wang, J.-L., Wan, J. & Jiao, K. (2004). Chem. Res. Chin. Univ. 20, 146–148.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1683-o1684
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds