metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(3,7-di­chloro­quinoline-8-carboxyl­ato)zinc(II) monohydrate

aJiangsu Key Laboratory for Chemistry of Low-dimensional Materials, Department of Chemistry, Huaiyin Teachers College, Huaian 223300, Jiangsu Province, People's Republic of China, and bDepartment of Chemistry and Biology, Yulin Normal University, Yulin 537000, People's Republic of China
*Correspondence e-mail: annleet@126.com

(Received 7 August 2008; accepted 8 August 2008; online 16 August 2008)

In the title compound, [Zn(C10H4Cl2NO2)2(H2O)2]·H2O, the Zn atom has a distorted square-pyramidal geometry comprising two O atoms and one N atom from two distinct 3,7-dichloro­quinoline-8-carboxyl­ate ligands, and two water mol­ecules. The free water mol­ecules are involved in inter­molecular O—H⋯O hydrogen bonding with the coordinated water mol­ecules and carboxyl­ate O atoms, to give a one-dimensional helical chain along the [100] direction.

Related literature

For related literature, see: Adnan et al. (2003[Adnan, B., Hesham, F., Sherif, R. & Azza, B. (2003). Eur. J. Med. Chem. 38, 27-36.]); Che et al. (2005[Che, G.-B., Liu, C.-B., Cui, Y.-C. & Li, C.-B. (2005). Acta Cryst. E61, m2207-m2208.]); Chen et al. (2001[Chen, Z. F., Zhang, P., Xiong, R. G., Liu, D. J. & You, X. Z. (2001). Inorg. Chem. Commun. 5, 35-37.]); Li et al. (2008[Li, Z., Wu, F., Gong, Y., Zhang, Y. & Bai, C. (2008). Acta Cryst. E64, m227.]); Lumme et al. (1984[Lumme, P., Elo, H. & Janne, J. (1984). Inorg. Chim. Acta, 92, 241-251.]); Yang et al. (2005[Yang, G. W., Yuan, R. X. & Xie, Y. R. (2005). Chin. J. Inorg. Chem. 21, 120-121.]); Zhang et al. (2007[Zhang, Y.-H., Wu, F.-J., Li, X.-M., Zhu, M.-C. & Gong, Y. (2007). Acta Cryst. E63, m1557.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H4Cl2NO2)2(H2O)2]·H2O

  • Mr = 601.50

  • Triclinic, [P \overline 1]

  • a = 6.8678 (3) Å

  • b = 12.6996 (5) Å

  • c = 12.9317 (5) Å

  • α = 87.572 (1)°

  • β = 82.893 (1)°

  • γ = 82.255 (1)°

  • V = 1108.63 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 296 (2) K

  • 0.21 × 0.17 × 0.15 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Version 1.30. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.725, Tmax = 0.791

  • 14022 measured reflections

  • 4308 independent reflections

  • 3099 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.094

  • S = 0.97

  • 4308 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 1.20 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1i 0.85 2.05 2.889 (4) 166
O5—H5B⋯N2 0.86 2.16 3.002 (4) 169
O6—H6A⋯O4ii 0.85 1.78 2.628 (4) 174
O6—H6B⋯O7iii 0.85 1.87 2.677 (4) 156
O7—H7B⋯O2iv 0.85 2.04 2.827 (4) 153
O7—H7C⋯O1v 0.85 2.25 3.029 (4) 153
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x+1, y, z; (iii) x, y+1, z; (iv) -x+1, -y+1, -z+1; (v) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Version 1.30. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Quinolinecarboxylate derivatives and their complexes have attracted considerable interest, because of their interesting high germicidal, antitumoral and pharmacological properties (Adnan et al., 2003; Lumme et al., 1984). Although some transition metal complexes of quinolinecarboxylate ligands have been reported (Che et al., 2005; Chen et al., 2001; Yang et al., 2005), the crystal structures of the 3,7-Dichloro-8-quinolinecarboxylate and its complexes are limited in number, the only two examples are [M(C10H4Cl2NO2)2]n(M = Ni, Co) (Li et al., 2008; Zhang et al., 2007). we report herein on the structure of [Zn(C10H4Cl2NO2)2(H2O)2].H2O, (I).

The title complex, (I) crystallizes in the triclinic space group P1, with free water molecules in the crystal structure.The Zn(II) center exhibits a distorted square-pyramidal geometry defined by two O atoms and one N atom from two distinct 3,7-Dichloro-8-quinolinecarboxylate ligands, and two water molecules (Fig.1). The N1, O1, O3 and O5 atoms form the base plane, while the O6 atom occupies the axial position.The carboxylate group is bound in a monodentate fashion, with a weak intramolecular O—H···O H-bond between the carboxylate O atom and water molecules. The [Zn(C10H4Cl2NO2)2(H2O)2] molecules are linked via these H-bond interactions into a 1-D helical chain along the [100] direction (Fig. 2).

Related literature top

For related literature, see: Adnan et al. (2003); Che et al. (2005); Chen et al. (2001); Li et al. (2008); Lumme et al. (1984); Yang et al. (2005); Zhang et al. (2007).

Experimental top

The source materials of Zinc hydroxide (0.005 g) and Quinclorac (3,7-Dichloro-8-quinolinecarboxylic acid) (0.024 g) dissolved in 10 ml distilled water and were carefully mixed, and then loaded into a Teflon-lined stainless steel autoclave. The sealed autoclave was heated to 433 K and maintained at this temperature for 48 h. After cooling to room temperature, then some colorless column crystal was obtained.

Refinement top

All H atoms were positioned geometrically and were allowed to ride on their parent atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), with the atomic numbering scheme and displacement ellipsoids at the 50% probability level. All H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the 1-D helical chain.H atoms bonded to C atoms have been omitted for clarity.
Diaquabis(3,7-dichloroquinoline-8-carboxylato)zinc(II) monohydrate top
Crystal data top
[Zn(C10H4Cl2NO2)2(H2O)2]·H2OZ = 2
Mr = 601.50F(000) = 604
Triclinic, P1Dx = 1.802 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8678 (3) ÅCell parameters from 1973 reflections
b = 12.6996 (5) Åθ = 1.6–26.0°
c = 12.9317 (5) ŵ = 1.64 mm1
α = 87.572 (1)°T = 296 K
β = 82.893 (1)°Column, colourless
γ = 82.255 (1)°0.21 × 0.17 × 0.15 mm
V = 1108.63 (8) Å3
Data collection top
Rigaku Mercury
diffractometer
4308 independent reflections
Radiation source: fine-focus sealed tube3099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 7.31 pixels mm-1θmax = 26.0°, θmin = 1.6°
ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2001)
k = 1515
Tmin = 0.725, Tmax = 0.791l = 1514
14022 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0408P)2]
where P = (Fo2 + 2Fc2)/3
4308 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Zn(C10H4Cl2NO2)2(H2O)2]·H2Oγ = 82.255 (1)°
Mr = 601.50V = 1108.63 (8) Å3
Triclinic, P1Z = 2
a = 6.8678 (3) ÅMo Kα radiation
b = 12.6996 (5) ŵ = 1.64 mm1
c = 12.9317 (5) ÅT = 296 K
α = 87.572 (1)°0.21 × 0.17 × 0.15 mm
β = 82.893 (1)°
Data collection top
Rigaku Mercury
diffractometer
4308 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2001)
3099 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.791Rint = 0.080
14022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 0.97Δρmax = 1.20 e Å3
4308 reflectionsΔρmin = 0.80 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2965 (5)0.6256 (3)0.2794 (3)0.0197 (8)
H10.30700.67130.22150.024*
C20.3295 (5)0.5161 (3)0.2636 (3)0.0194 (8)
C30.3176 (5)0.4475 (3)0.3464 (3)0.0209 (8)
H30.33800.37460.33660.025*
C40.2565 (5)0.4215 (3)0.5377 (3)0.0210 (8)
H40.27780.34800.53150.025*
C50.2088 (5)0.4641 (3)0.6336 (3)0.0241 (9)
H50.19210.42010.69250.029*
C60.1848 (5)0.5751 (3)0.6434 (3)0.0186 (8)
C70.2042 (5)0.6439 (3)0.5590 (3)0.0176 (8)
C80.2434 (5)0.5998 (3)0.4583 (3)0.0173 (8)
C90.2741 (5)0.4879 (3)0.4474 (3)0.0188 (8)
C100.2017 (6)0.7613 (3)0.5715 (3)0.0220 (8)
C110.2472 (5)1.1168 (3)0.1346 (3)0.0194 (8)
H110.24861.16750.18460.023*
C120.2620 (5)1.1520 (3)0.0307 (3)0.0182 (8)
C130.2648 (5)1.0809 (3)0.0443 (3)0.0179 (8)
H130.27561.10340.11290.022*
C140.2534 (5)0.8915 (3)0.0880 (3)0.0221 (8)
H140.26430.90980.15770.027*
C150.2399 (5)0.7872 (3)0.0559 (3)0.0213 (8)
H150.24270.73460.10340.026*
C160.2218 (5)0.7597 (3)0.0488 (3)0.0196 (8)
C170.2162 (5)0.8341 (3)0.1213 (3)0.0167 (8)
C180.2329 (5)0.9426 (3)0.0898 (3)0.0170 (8)
C190.2509 (5)0.9721 (3)0.0157 (3)0.0172 (8)
C200.1707 (5)0.8066 (3)0.2315 (3)0.0179 (8)
Cl10.37704 (15)0.47230 (7)0.13739 (7)0.0300 (2)
Cl20.12831 (15)0.62268 (8)0.76860 (7)0.0300 (2)
Cl30.28261 (14)1.28675 (7)0.00156 (7)0.0247 (2)
Cl40.19519 (15)0.62565 (7)0.08517 (8)0.0295 (2)
N10.2514 (4)0.6674 (2)0.3722 (2)0.0185 (7)
N20.2316 (4)1.0165 (2)0.1644 (2)0.0190 (7)
O10.0705 (4)0.82485 (19)0.52664 (19)0.0294 (7)
O20.3222 (4)0.7909 (2)0.6231 (2)0.0325 (7)
O30.0098 (3)0.80624 (19)0.24133 (19)0.0222 (6)
O40.3021 (4)0.78885 (19)0.3020 (2)0.0289 (6)
O50.0852 (4)0.9774 (2)0.3738 (2)0.0336 (7)
H5A0.08001.02950.41260.040*
H5B0.13980.98420.31750.040*
O60.3458 (4)0.9015 (2)0.3214 (2)0.0350 (7)
H6A0.45890.86470.31950.042*
H6B0.30900.96570.33910.042*
O70.3413 (5)0.1059 (3)0.3655 (3)0.0858 (14)
H7B0.45190.11890.38150.103*
H7C0.24910.12730.41290.103*
Zn10.10699 (6)0.83389 (3)0.37255 (3)0.01835 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.020 (2)0.0198 (19)0.019 (2)0.0004 (15)0.0046 (16)0.0023 (16)
C20.0166 (19)0.022 (2)0.020 (2)0.0014 (15)0.0030 (15)0.0076 (15)
C30.020 (2)0.0158 (19)0.027 (2)0.0019 (15)0.0032 (16)0.0063 (16)
C40.019 (2)0.0162 (18)0.029 (2)0.0035 (15)0.0068 (17)0.0012 (16)
C50.024 (2)0.023 (2)0.026 (2)0.0050 (16)0.0072 (17)0.0055 (17)
C60.0165 (19)0.026 (2)0.0133 (19)0.0017 (15)0.0024 (15)0.0039 (15)
C70.0130 (18)0.0215 (19)0.019 (2)0.0014 (15)0.0071 (15)0.0027 (15)
C80.0145 (18)0.0200 (19)0.017 (2)0.0006 (15)0.0037 (15)0.0004 (15)
C90.0177 (19)0.0184 (19)0.019 (2)0.0008 (15)0.0025 (15)0.0004 (15)
C100.032 (2)0.0191 (19)0.0123 (19)0.0004 (17)0.0038 (17)0.0019 (15)
C110.020 (2)0.0167 (19)0.021 (2)0.0004 (15)0.0006 (16)0.0068 (15)
C120.0152 (18)0.0160 (18)0.022 (2)0.0006 (15)0.0008 (15)0.0017 (15)
C130.0128 (18)0.0232 (19)0.018 (2)0.0009 (15)0.0041 (15)0.0017 (16)
C140.023 (2)0.029 (2)0.014 (2)0.0046 (17)0.0010 (16)0.0006 (16)
C150.0192 (19)0.022 (2)0.023 (2)0.0018 (16)0.0013 (16)0.0082 (16)
C160.0161 (19)0.0153 (18)0.028 (2)0.0011 (15)0.0049 (16)0.0000 (16)
C170.0068 (17)0.0229 (19)0.021 (2)0.0022 (14)0.0032 (14)0.0007 (15)
C180.0106 (17)0.0219 (19)0.0188 (19)0.0006 (14)0.0037 (15)0.0023 (15)
C190.0087 (17)0.0237 (19)0.019 (2)0.0008 (15)0.0023 (14)0.0016 (15)
C200.022 (2)0.0102 (17)0.021 (2)0.0001 (15)0.0038 (16)0.0012 (15)
Cl10.0431 (6)0.0251 (5)0.0207 (5)0.0030 (4)0.0021 (4)0.0090 (4)
Cl20.0445 (6)0.0278 (5)0.0170 (5)0.0053 (4)0.0006 (4)0.0009 (4)
Cl30.0300 (5)0.0170 (5)0.0251 (5)0.0009 (4)0.0006 (4)0.0019 (4)
Cl40.0426 (6)0.0176 (5)0.0297 (6)0.0056 (4)0.0077 (5)0.0008 (4)
N10.0214 (16)0.0166 (15)0.0173 (17)0.0003 (13)0.0044 (13)0.0005 (13)
N20.0186 (16)0.0175 (16)0.0202 (17)0.0007 (13)0.0011 (13)0.0023 (13)
O10.0448 (18)0.0228 (14)0.0167 (14)0.0110 (13)0.0039 (13)0.0015 (11)
O20.0441 (18)0.0280 (15)0.0284 (16)0.0120 (13)0.0078 (14)0.0041 (12)
O30.0171 (14)0.0299 (14)0.0196 (14)0.0019 (11)0.0063 (11)0.0047 (11)
O40.0284 (15)0.0272 (15)0.0289 (16)0.0032 (12)0.0019 (13)0.0085 (12)
O50.0471 (18)0.0223 (14)0.0319 (17)0.0073 (13)0.0161 (14)0.0108 (12)
O60.0202 (15)0.0234 (15)0.060 (2)0.0003 (12)0.0006 (14)0.0041 (13)
O70.050 (2)0.075 (3)0.132 (4)0.030 (2)0.031 (2)0.055 (3)
Zn10.0206 (2)0.0172 (2)0.0168 (2)0.00023 (17)0.00297 (17)0.00061 (17)
Geometric parameters (Å, º) top
C1—N11.316 (4)C13—H130.9300
C1—C21.399 (5)C14—C151.365 (5)
C1—H10.9300C14—C191.419 (5)
C2—C31.352 (5)C14—H140.9300
C2—Cl11.725 (4)C15—C161.400 (5)
C3—C91.407 (5)C15—H150.9300
C3—H30.9300C16—C171.366 (5)
C4—C51.359 (5)C16—Cl41.739 (3)
C4—C91.414 (5)C17—C181.414 (5)
C4—H40.9300C17—C201.514 (5)
C5—C61.406 (5)C18—N21.376 (4)
C5—H50.9300C18—C191.415 (5)
C6—C71.374 (5)C20—O41.237 (4)
C6—Cl21.732 (4)C20—O31.261 (4)
C7—C81.421 (5)N1—Zn12.211 (3)
C7—C101.504 (5)O1—Zn11.978 (2)
C8—N11.377 (4)O3—Zn11.960 (2)
C8—C91.419 (5)O5—Zn12.101 (2)
C10—O21.231 (4)O5—H5A0.85
C10—O11.301 (4)O5—H5B0.86
C11—N21.310 (4)O6—Zn11.982 (2)
C11—C121.410 (5)O6—H6A0.85
C11—H110.9300O6—H6B0.85
C12—C131.356 (5)O7—H7B0.85
C12—Cl31.727 (3)O7—H7C0.85
C13—C191.409 (5)
N1—C1—C2123.4 (3)C14—C15—C16119.8 (3)
N1—C1—H1118.3C14—C15—H15120.1
C2—C1—H1118.3C16—C15—H15120.1
C3—C2—C1119.8 (3)C17—C16—C15122.2 (3)
C3—C2—Cl1121.7 (3)C17—C16—Cl4119.5 (3)
C1—C2—Cl1118.5 (3)C15—C16—Cl4118.2 (3)
C2—C3—C9119.2 (3)C16—C17—C18118.8 (3)
C2—C3—H3120.4C16—C17—C20123.6 (3)
C9—C3—H3120.4C18—C17—C20117.3 (3)
C5—C4—C9120.5 (3)N2—C18—C17118.0 (3)
C5—C4—H4119.7N2—C18—C19122.2 (3)
C9—C4—H4119.7C17—C18—C19119.9 (3)
C4—C5—C6119.7 (3)C13—C19—C18118.2 (3)
C4—C5—H5120.1C13—C19—C14122.8 (3)
C6—C5—H5120.1C18—C19—C14119.0 (3)
C7—C6—C5122.6 (3)O4—C20—O3125.9 (3)
C7—C6—Cl2120.7 (3)O4—C20—C17121.5 (3)
C5—C6—Cl2116.7 (3)O3—C20—C17112.6 (3)
C6—C7—C8117.8 (3)C1—N1—C8118.3 (3)
C6—C7—C10121.9 (3)C1—N1—Zn1115.1 (2)
C8—C7—C10120.1 (3)C8—N1—Zn1123.8 (2)
N1—C8—C9121.0 (3)C11—N2—C18117.6 (3)
N1—C8—C7118.9 (3)C10—O1—Zn1117.0 (2)
C9—C8—C7120.1 (3)C20—O3—Zn1123.7 (2)
C3—C9—C4122.6 (3)Zn1—O5—H5A124.5
C3—C9—C8118.3 (3)Zn1—O5—H5B109.3
C4—C9—C8119.1 (3)H5A—O5—H5B123.2
O2—C10—O1124.4 (3)Zn1—O6—H6A119.1
O2—C10—C7118.4 (3)Zn1—O6—H6B101.5
O1—C10—C7117.2 (3)H6A—O6—H6B129.9
N2—C11—C12123.4 (3)H7B—O7—H7C110.1
N2—C11—H11118.3O3—Zn1—O1147.92 (11)
C12—C11—H11118.3O3—Zn1—O6101.43 (11)
C13—C12—C11120.2 (3)O1—Zn1—O6110.65 (12)
C13—C12—Cl3120.9 (3)O3—Zn1—O586.43 (10)
C11—C12—Cl3118.9 (3)O1—Zn1—O590.82 (10)
C12—C13—C19118.4 (3)O6—Zn1—O594.10 (11)
C12—C13—H13120.8O3—Zn1—N187.67 (10)
C19—C13—H13120.8O1—Zn1—N188.61 (10)
C15—C14—C19120.3 (3)O6—Zn1—N197.37 (11)
C15—C14—H14119.8O5—Zn1—N1167.94 (11)
C19—C14—H14119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1i0.852.052.889 (4)166
O5—H5B···N20.862.163.002 (4)169
O6—H6A···O4ii0.851.782.628 (4)174
O6—H6B···O7iii0.851.872.677 (4)156
O7—H7B···O2iv0.852.042.827 (4)153
O7—H7C···O1v0.852.253.029 (4)153
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C10H4Cl2NO2)2(H2O)2]·H2O
Mr601.50
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.8678 (3), 12.6996 (5), 12.9317 (5)
α, β, γ (°)87.572 (1), 82.893 (1), 82.255 (1)
V3)1108.63 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.64
Crystal size (mm)0.21 × 0.17 × 0.15
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2001)
Tmin, Tmax0.725, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
14022, 4308, 3099
Rint0.080
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.094, 0.97
No. of reflections4308
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 0.80

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1i0.852.052.889 (4)166.4
O5—H5B···N20.862.163.002 (4)169.3
O6—H6A···O4ii0.851.782.628 (4)174.4
O6—H6B···O7iii0.851.872.677 (4)156.2
O7—H7B···O2iv0.852.042.827 (4)153.2
O7—H7C···O1v0.852.253.029 (4)152.8
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x, y+1, z+1.
 

Acknowledgements

This work was supported by the Program for Excellent Talents in Huaiyin Teachers College (grant Nos. ETHYTC and 07QNZC010) and by the Natural Science Foundation of the Education Committee of Guangxi Province.

References

First citationAdnan, B., Hesham, F., Sherif, R. & Azza, B. (2003). Eur. J. Med. Chem. 38, 27–36.  Web of Science CrossRef PubMed Google Scholar
First citationChe, G.-B., Liu, C.-B., Cui, Y.-C. & Li, C.-B. (2005). Acta Cryst. E61, m2207–m2208.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, Z. F., Zhang, P., Xiong, R. G., Liu, D. J. & You, X. Z. (2001). Inorg. Chem. Commun. 5, 35–37.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLi, Z., Wu, F., Gong, Y., Zhang, Y. & Bai, C. (2008). Acta Cryst. E64, m227.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLumme, P., Elo, H. & Janne, J. (1984). Inorg. Chim. Acta, 92, 241–251.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Version 1.30. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, G. W., Yuan, R. X. & Xie, Y. R. (2005). Chin. J. Inorg. Chem. 21, 120–121.  Google Scholar
First citationZhang, Y.-H., Wu, F.-J., Li, X.-M., Zhu, M.-C. & Gong, Y. (2007). Acta Cryst. E63, m1557.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds