metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1154-m1155

Tris[tris­­(ethane-1,2-di­amine)cobalt(II)] bis­­[octa­cyanidomolybdate(V)] dihydrate

aSchool of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China, and bInstitute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, People's Republic of China
*Correspondence e-mail: aihuayuan@163.com

(Received 12 June 2008; accepted 3 August 2008; online 13 August 2008)

In the title compound, [CoII(C2H8N2)3]3[MoV(CN)8]2·2H2O, N—H⋯N and N—H⋯O hydrogen-bonding inter­actions give rise to a three-dimensional network. In the crystal structure, each Mo polyhedron has a square-anti­prismatic shape, while the Co complexes show distorted octa­hedral geometry with an occupancy of 50%. One of the Co atoms resides on a crystallographic inversion centre.

Related literature

For information on octa­cyanido­metalate-based compounds, see: Bok et al. (1975[Bok, L. D. C., Leipoldt, J. G. & Basson, S. S. (1975). Z. Anorg. Allg. Chem. 415, 81-83.]); Lim et al. (2006[Lim, J. H., Kang, J. S., Kim, H. Ch., Koh, E. K. & Hong, Ch. S. (2006). Inorg. Chem. 45, 7821-7827.]) and literature cited therein; Przychodzeń et al. (2006[Przychodzeń, P., Korzeniak, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev. 250, 2234-2260.]) and literature cited therein; Sieklucka et al. (2002[Sieklucka, B., Podgajny, R., Korzeniak, T., Przychodzeń, P. & Kania, R. (2002). C. R. Chim. 5, 639-649.]); Willemin et al. (2003[Willemin, St., Larionova, J., Clérac, R., Donnadieu, B., Henner, B., Le Goff, X. F. & Guérin, Ch. (2003). Eur. J. Inorg. Chem. pp. 1866-1872.]); Withers et al. (2006[Withers, J. R., Li, D.-F., Triplet, J., Ruschman, C., Parkin, S., Wang, G.-B., Yee, G. T. & Holmes, S. M. (2006). Inorg. Chem. 45, 4307-4309.]). For related literature, see: Aschwanden et al. (1993[Aschwanden, S., Schmalle, H. W., Reller, A. & Oswald, H. R. (1993). Mat. Res. Bull. 28, 575-590.]); Müller et al. (2006[Müller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). Crystal Structure Refinement: a Crystallographer's Guide to SHELXL, pp. 73-80. IUCr/Oxford University Press. ]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C2H8N2)3]3[Mo(CN)8]2·2H2O

  • Mr = 1361.96

  • Monoclinic, P 21 /n

  • a = 9.2113 (3) Å

  • b = 30.5439 (8) Å

  • c = 11.4022 (3) Å

  • β = 94.138 (1)°

  • V = 3199.63 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 153 (2) K

  • 0.25 × 0.23 × 0.18 mm

Data collection
  • Rigaku R-AXIS Spider diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.753, Tmax = 0.813

  • 27139 measured reflections

  • 6276 independent reflections

  • 4952 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.101

  • S = 1.06

  • 6276 reflections

  • 415 parameters

  • 56 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9C⋯N7i 0.92 2.24 3.064 (4) 148
N11—H11C⋯N7i 0.92 2.09 2.985 (4) 165
N12—H12C⋯N6ii 0.92 2.10 2.955 (4) 154
N13—H13C⋯N8ii 0.92 2.55 3.138 (4) 122
N9—H9D⋯N2 0.92 2.32 3.117 (4) 145
N14—H14D⋯N1 0.92 2.28 3.130 (5) 154
N10—H10C⋯O3iii 0.92 1.96 2.856 (10) 164
N10—H10D⋯N5iii 0.92 2.49 3.125 (5) 126
N11—H11D⋯N6iii 0.92 2.58 3.163 (4) 122
N13—H13D⋯N5iii 0.92 2.11 3.012 (4) 167
N16—H16C⋯N4iv 0.92 2.52 3.19 (2) 130
N17—H17A⋯N2v 0.97 2.49 3.29 (2) 140
N20—H20C⋯N2iv 0.85 2.44 3.02 (2) 127
O2—H2A⋯N8vi 0.85 (14) 2.41 (14) 3.207 (9) 156 (12)
O2—H2B⋯N2vi 0.85 (15) 2.50 (15) 3.245 (9) 147 (12)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x, y, z-1; (iv) -x+1, -y+1, -z+1; (v) x+1, y, z; (vi) -x, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Recently, octacyanometallates [M(CN)8]3-/4- (M = Mo and W) appear as new versatile building blocks and have been investigated extensively (Przychodzeń et al., 2006; Sieklucka et al., 2002). These species might show various geometrical structures (e.g., square antiprism, dodecahedron, bicapped trigonal prism) depending on the external environments. However, only a few examples of cobalt-octacyanometalate coordination networks have been reported until now (Willemin et al., 2003; Przychodzeń et al., 2006 and literature cited therein). In the title bimetallic compound, [CoII(en)3]3[MoV(CN)8]2.2H2O, (Fig. 1), the MoV atom is coordinated by eight CN groups with Mo—C distances ranging from 2.128 (4) to 2.179 (4) Å in a distorted square antiprism. The MoV—C bond distances are comparable to previously reported values (Withers et al., 2006; Lim et al., 2006 and literature cited therein). The geometry around atom Co1 is a distorted octahedron with (D3 symmetry) with an average Co1—N bond distance 1.972 Å and the N—Co1—N bond angles ranging from 84.34 (12)° to 176.73 (12)°. Among the two independent Co(en)3 complexes the cobalt atom Co2 resides on a crystallographic inversion centre, resulting in inversion related 50:50 disorder of the chiral Λ and Δ forms. Disorder refinement (Müller et al. 2006) was necessary to present a suitable chiral model of the complex. (Fig. 1).

Several classic intermolecular N—H···N hydrogen bonds (Fig. 2) between the non-disordered Co(en)3 and the Mo(CN)8 complexes form a complicated three-dimensional network in the structure. The disordered Co2 unit and the disordered water molecules are not considered for further (possible) hydrogen bonding contacts. An interesting example structure with two crystallographically independent Co(en)3 complexes, different vanadates and six water molecules shows an impressive number of 23 N—H···O and 13 O—H···O hydrogen bonds in the chiral space group P1 (Aschwanden et al. 1993). It may be thinkable that the title structure belongs also to a non-centrosymmetric space group (P 21), but in that case with a dominating part of centrosymmetry in data.

Related literature top

For information on octacyanometalate-based compounds, see: Bok et al. (1975); Lim et al. (2006) and literature cited therein; Przychodzeń et al. (2006) and literature cited therein; Sieklucka et al. (2002); Willemin et al. (2003); Withers et al. (2006). For related literature, see: Aschwanden et al. (1993); Müller et al. (2006).

Experimental top

For the preparation of the title compound, all of the following procedures were carried out in the dark to avoid decomposition of (Bu3NH)3[Mo(CN)8].4H2O (Bok et al., 1975). Yellow block crystals suitable for X-ray single-crystal structure determination were grown at room temperature by slow diffusion of an aqueous solution of CoCl2.6H2O (0.3 mmol) and ethane-1,2-amine (en, 0.9 mmol) and an aqueous solution of (Bu3NH)3[Mo(CN)8].4H2O (0.2 mmol) for four weeks. The resulting crystals were collected, washed with H2O and dried in air.

Refinement top

All non-H atoms were refined anisotropically. The H atoms on nitrogen atoms were located from the difference Fourier maps, and the H atoms of water molecules were placed in calculated positions. The H atoms of the Co complexes were placed in calculated positions with C—H and N—H distances 0.99 Å and 0.92 Å, respectively, with Uiso(H) = 1.2Ueq(C,N). The calculation of the H atoms for the disordered Co2 complex was possible with many FREE instructions using SHELXL97 (Sheldrick, 2008). For atoms N17 and N20 the four H-atom coordinates from the difference map were fixed with AFIX 3 instructions. These N—H distances range between 0.767 and 0.968 Å. The model refinement of the Co2(en)3 complex was controlled with the programme PLATON (Spek, 2003), (LATT -1 used for model building at the start), symmetry transformation (2 - x, 1 - y, 1 - z) for some atom coordinates applied, introducing a split position for Co2 to get the complete Λ and Δ forms of the inversion related chiral complexes separated, using the information of disorder refinement from the SHELXL guide book (Müller et al., 2006).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound showing 30% probability probability displacement ellipsoids and atom labelling scheme. Hydrogen atoms have been omitted for clarity. The occupancies of the water oxygen atoms are 0.4 (O1), 0.3 (O2), 0.3 (O3).
[Figure 2] Fig. 2. Packing diagram of the title compound presenting a three-dimensional hydrogen bonding network.
Tris[tris(ethane-1,2-diamine)cobalt(II)] bis[octacyanidomolybdate(V)] dihydrate top
Crystal data top
[Co(C2H8N2)3]3[Mo(CN)8]2·2H2OF(000) = 1398
Mr = 1361.96Dx = 1.414 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7571 reflections
a = 9.2113 (3) Åθ = 2.1–26.4°
b = 30.5439 (8) ŵ = 1.20 mm1
c = 11.4022 (3) ÅT = 153 K
β = 94.138 (1)°Block, yellow
V = 3199.63 (16) Å30.25 × 0.23 × 0.18 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
6276 independent reflections
Radiation source: sealed tube4952 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.754, Tmax = 0.813k = 3737
27139 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0504P)2]
where P = (Fo2 + 2Fc2)/3
6276 reflections(Δ/σ)max < 0.001
415 parametersΔρmax = 0.42 e Å3
56 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Co(C2H8N2)3]3[Mo(CN)8]2·2H2OV = 3199.63 (16) Å3
Mr = 1361.96Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.2113 (3) ŵ = 1.20 mm1
b = 30.5439 (8) ÅT = 153 K
c = 11.4022 (3) Å0.25 × 0.23 × 0.18 mm
β = 94.138 (1)°
Data collection top
Bruker SMART CCD
diffractometer
6276 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4952 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.813Rint = 0.054
27139 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04756 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
6276 reflectionsΔρmin = 0.55 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.40449 (4)0.336480 (9)0.62354 (3)0.03307 (10)
C10.5956 (4)0.34579 (12)0.5242 (3)0.0339 (7)
N10.6910 (3)0.34961 (9)0.4732 (3)0.0329 (6)
C20.3472 (4)0.37899 (11)0.4797 (3)0.0354 (8)
N20.3071 (4)0.40123 (10)0.3965 (3)0.0374 (7)
C30.4699 (4)0.40112 (12)0.6844 (3)0.0380 (8)
N30.5017 (4)0.43479 (9)0.7151 (3)0.0406 (8)
C40.2090 (4)0.36648 (11)0.6775 (3)0.0313 (7)
N40.1008 (4)0.38188 (9)0.7010 (3)0.0385 (7)
C50.5642 (4)0.33094 (11)0.7700 (3)0.0335 (8)
N50.6477 (4)0.32846 (11)0.8481 (3)0.0399 (7)
C60.3104 (4)0.29450 (11)0.7497 (3)0.0328 (7)
N60.2601 (3)0.26949 (10)0.8135 (3)0.0341 (6)
C70.4994 (4)0.27234 (11)0.5986 (3)0.0327 (7)
N70.5468 (3)0.23832 (10)0.5864 (3)0.0357 (7)
N80.1493 (3)0.28720 (9)0.4532 (2)0.0307 (6)
C80.2437 (4)0.30333 (11)0.5112 (3)0.0327 (7)
Co10.44625 (5)0.313270 (15)0.15051 (4)0.03194 (13)
N90.2527 (3)0.33083 (9)0.2003 (3)0.0327 (6)
H9C0.19110.30710.19690.039*
H9D0.26160.34080.27660.039*
C90.1923 (4)0.36582 (11)0.1216 (3)0.0349 (8)
H9A0.23590.39430.14640.042*
H9B0.08540.36780.12500.042*
C100.2286 (4)0.35532 (12)0.0022 (3)0.0323 (7)
H10A0.20330.38020.05100.039*
H10B0.17310.32930.02710.039*
N100.3897 (3)0.34622 (9)0.0052 (3)0.0350 (7)
H10C0.44060.37210.00440.042*
H10D0.41050.33010.05960.042*
N110.3701 (3)0.25818 (9)0.0810 (3)0.0345 (7)
H11C0.27060.26010.06780.041*
H11D0.40870.25370.00970.041*
C110.4077 (4)0.21994 (11)0.1607 (3)0.0327 (7)
H11A0.50700.20910.14970.039*
H11B0.33750.19570.14570.039*
C120.3977 (4)0.23912 (11)0.2871 (3)0.0324 (7)
H12A0.29480.24530.30110.039*
H12B0.43610.21770.34660.039*
N120.4821 (3)0.27916 (9)0.2972 (2)0.0304 (6)
H12C0.57960.27260.30910.036*
H12D0.45540.29530.36030.036*
N130.6390 (3)0.29952 (9)0.1000 (2)0.0300 (6)
H13C0.65990.27060.11560.036*
H13D0.63950.30370.02010.036*
C130.7505 (4)0.32704 (10)0.1603 (3)0.0333 (8)
H13A0.83760.32860.11450.040*
H13B0.77970.31500.23910.040*
C140.6848 (4)0.37129 (11)0.1710 (3)0.0351 (8)
H14A0.74920.39000.22300.042*
H14B0.67160.38540.09280.042*
N140.5431 (3)0.36574 (9)0.2211 (3)0.0345 (7)
H14C0.48610.39010.20530.041*
H14D0.55630.36250.30140.041*
Co20.9953 (18)0.5039 (4)0.4938 (14)0.0293 (10)0.50
N150.8779 (19)0.4547 (8)0.5513 (12)0.029 (3)0.50
H15A0.92600.42860.54420.035*0.50
H15B0.86070.45880.62900.035*0.50
C150.7350 (7)0.4548 (2)0.4745 (6)0.0330 (15)0.50
H15C0.74870.43960.39940.040*0.50
H15D0.65950.43890.51510.040*0.50
C160.6874 (8)0.5000 (2)0.4509 (7)0.0376 (16)0.50
H16A0.65840.51390.52410.045*0.50
H16B0.60270.50030.39240.045*0.50
N160.8157 (18)0.5252 (7)0.4031 (15)0.037 (3)0.50
H16C0.80450.55480.41360.044*0.50
H16D0.82080.51970.32420.044*0.50
N171.0281 (19)0.4680 (8)0.3505 (16)0.031 (3)0.50
H17A1.06980.44070.38020.037*0.50
H17B0.95720.46520.31170.037*0.50
C171.1534 (9)0.4942 (2)0.3021 (6)0.0366 (16)0.50
H17C1.24630.48720.34710.044*0.50
H17D1.16280.48660.21860.044*0.50
C181.1218 (8)0.5402 (2)0.3126 (6)0.0364 (16)0.50
H18A1.02620.54690.27110.044*0.50
H18B1.19690.55770.27590.044*0.50
N181.119 (2)0.5524 (8)0.4429 (15)0.046 (6)0.50
H18C1.07730.57930.45310.055*0.50
H18D1.21080.55180.48100.055*0.50
N191.1687 (17)0.4768 (7)0.5739 (13)0.033 (4)0.50
H19A1.17110.44700.56280.040*0.50
H19B1.25380.48920.55230.040*0.50
C191.1358 (9)0.4890 (2)0.6990 (8)0.045 (2)0.50
H19C1.06500.46760.72620.054*0.50
H19D1.22670.48580.75020.054*0.50
C201.0790 (9)0.5325 (2)0.7165 (8)0.047 (2)0.50
H20A1.14960.55510.69560.057*0.50
H20B1.05640.53680.79930.057*0.50
N200.9413 (19)0.5345 (9)0.6346 (16)0.032 (4)0.50
H20C0.92710.56150.62290.038*0.50
H20D0.87960.52150.67810.038*0.50
O10.9811 (9)0.5154 (2)0.0352 (6)0.055 (2)0.40
H1A1.06290.50550.01730.066*0.40
H1B0.92460.51790.02680.066*0.40
O20.0345 (9)0.6253 (3)0.6065 (6)0.0315 (17)0.30
H2A0.01240.65180.59170.038*0.30
H2B0.03930.60920.58960.038*0.30
O30.4984 (11)0.4328 (3)0.9766 (8)0.048 (2)0.30
H3D0.45040.45250.93840.058*0.30
H3C0.58590.44120.99080.058*0.30
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.03407 (18)0.02993 (16)0.03468 (17)0.00118 (12)0.00121 (12)0.00009 (12)
C10.0324 (19)0.0422 (19)0.0274 (17)0.0018 (15)0.0042 (14)0.0041 (15)
N10.0323 (16)0.0348 (15)0.0314 (15)0.0073 (12)0.0012 (13)0.0006 (12)
C20.042 (2)0.0281 (16)0.0366 (19)0.0046 (14)0.0066 (16)0.0034 (15)
N20.0466 (19)0.0355 (15)0.0317 (16)0.0061 (13)0.0142 (14)0.0055 (13)
C30.043 (2)0.0377 (19)0.0322 (19)0.0108 (16)0.0009 (16)0.0008 (15)
N30.0393 (18)0.0302 (16)0.0505 (19)0.0123 (13)0.0100 (14)0.0040 (14)
C40.037 (2)0.0283 (16)0.0288 (17)0.0002 (14)0.0031 (14)0.0001 (14)
N40.0437 (19)0.0296 (14)0.0425 (18)0.0004 (13)0.0057 (14)0.0006 (13)
C50.0323 (19)0.0338 (17)0.0343 (19)0.0010 (14)0.0029 (15)0.0022 (15)
N50.0345 (17)0.0517 (18)0.0333 (16)0.0051 (14)0.0015 (14)0.0048 (14)
C60.0351 (19)0.0343 (17)0.0282 (17)0.0028 (15)0.0027 (14)0.0049 (15)
N60.0363 (17)0.0363 (15)0.0290 (15)0.0033 (13)0.0023 (12)0.0003 (13)
C70.0355 (19)0.0335 (18)0.0284 (17)0.0013 (14)0.0022 (14)0.0047 (14)
N70.0304 (16)0.0426 (17)0.0325 (16)0.0137 (13)0.0092 (12)0.0091 (13)
N80.0246 (14)0.0328 (14)0.0336 (15)0.0002 (11)0.0044 (12)0.0045 (12)
C80.0338 (19)0.0347 (17)0.0297 (17)0.0036 (14)0.0041 (14)0.0001 (14)
Co10.0350 (3)0.0350 (2)0.0252 (2)0.00011 (19)0.00237 (18)0.00180 (19)
N90.0306 (16)0.0331 (14)0.0340 (15)0.0076 (12)0.0004 (12)0.0029 (12)
C90.0355 (19)0.0327 (17)0.0363 (19)0.0052 (15)0.0015 (15)0.0089 (15)
C100.0300 (18)0.0378 (18)0.0282 (18)0.0065 (14)0.0040 (13)0.0036 (14)
N100.0396 (17)0.0286 (14)0.0366 (16)0.0045 (12)0.0016 (13)0.0021 (12)
N110.0402 (18)0.0293 (14)0.0327 (15)0.0047 (12)0.0059 (12)0.0090 (12)
C110.0361 (19)0.0322 (16)0.0288 (17)0.0001 (14)0.0046 (14)0.0002 (14)
C120.0277 (18)0.0329 (17)0.0354 (18)0.0018 (13)0.0069 (14)0.0068 (14)
N120.0320 (15)0.0283 (13)0.0295 (14)0.0054 (11)0.0066 (11)0.0006 (12)
N130.0299 (15)0.0325 (14)0.0272 (14)0.0038 (11)0.0016 (11)0.0003 (12)
C130.0350 (19)0.0296 (16)0.0343 (18)0.0158 (14)0.0041 (14)0.0134 (14)
C140.037 (2)0.0371 (18)0.0306 (18)0.0040 (15)0.0026 (15)0.0032 (15)
N140.0287 (16)0.0349 (15)0.0392 (17)0.0006 (12)0.0018 (13)0.0020 (13)
Co20.0417 (17)0.014 (3)0.033 (3)0.001 (2)0.0104 (15)0.007 (2)
N150.033 (7)0.021 (7)0.034 (6)0.008 (4)0.013 (5)0.007 (4)
C150.033 (4)0.027 (3)0.041 (4)0.007 (3)0.019 (3)0.008 (3)
C160.033 (4)0.036 (4)0.043 (4)0.001 (3)0.005 (3)0.003 (3)
N160.051 (7)0.032 (5)0.025 (6)0.000 (4)0.004 (5)0.004 (5)
N170.015 (7)0.033 (6)0.042 (6)0.002 (5)0.011 (5)0.014 (5)
C170.047 (4)0.033 (4)0.031 (4)0.001 (3)0.012 (3)0.002 (3)
C180.027 (4)0.039 (4)0.042 (4)0.010 (3)0.002 (3)0.011 (3)
N180.039 (8)0.025 (7)0.078 (11)0.012 (4)0.029 (7)0.019 (6)
N190.037 (6)0.035 (6)0.028 (7)0.008 (4)0.003 (4)0.010 (4)
C190.040 (4)0.025 (3)0.067 (6)0.002 (3)0.014 (4)0.006 (4)
C200.039 (5)0.042 (4)0.063 (5)0.015 (3)0.014 (4)0.014 (4)
N200.018 (7)0.033 (4)0.042 (6)0.010 (5)0.010 (5)0.004 (4)
O10.058 (5)0.056 (4)0.048 (4)0.020 (4)0.016 (4)0.013 (3)
O20.033 (4)0.037 (4)0.024 (4)0.004 (3)0.003 (3)0.013 (3)
O30.055 (6)0.041 (5)0.049 (5)0.010 (4)0.011 (4)0.009 (4)
Geometric parameters (Å, º) top
Mo1—C22.128 (4)C14—H14A0.9900
Mo1—C82.142 (4)C14—H14B0.9900
Mo1—C42.150 (4)N14—H14C0.9200
Mo1—C52.151 (4)N14—H14D0.9200
Mo1—C62.155 (4)Co2—Co2i0.290 (16)
Mo1—C32.164 (4)Co2—N201.95 (2)
Mo1—C72.172 (3)Co2—N191.966 (12)
Mo1—C12.179 (4)Co2—N181.98 (2)
C1—N11.095 (5)Co2—N151.990 (18)
C2—N21.204 (5)Co2—N161.994 (15)
C3—N31.119 (4)Co2—N172.010 (19)
C4—N41.151 (5)N15—C151.528 (17)
C5—N51.137 (5)N15—H15A0.9200
C6—N61.173 (5)N15—H15B0.9200
C7—N71.140 (4)C15—C161.468 (8)
N8—C81.163 (4)C15—H15C0.9900
Co1—N131.952 (3)C15—H15D0.9900
Co1—N111.968 (3)C16—N161.542 (17)
Co1—N101.976 (3)C16—H16A0.9900
Co1—N141.977 (3)C16—H16B0.9900
Co1—N121.978 (3)N16—H16C0.9200
Co1—N91.983 (3)N16—H16D0.9200
N9—C91.478 (4)N17—C171.540 (18)
N9—H9C0.9200N17—H17A0.968
N9—H9D0.9200N17—H17B0.767
C9—C101.460 (5)C17—C181.441 (9)
C9—H9A0.9900C17—H17C0.9900
C9—H9B0.9900C17—H17D0.9900
C10—N101.507 (4)C18—N181.534 (16)
C10—H10A0.9900C18—H18A0.9900
C10—H10B0.9900C18—H18B0.9900
N10—H10C0.9200N18—H18C0.9200
N10—H10D0.9200N18—H18D0.9200
N11—C111.505 (4)N19—C191.526 (12)
N11—H11C0.9200N19—H19A0.9200
N11—H11D0.9200N19—H19B0.9200
C11—C121.565 (5)C19—C201.445 (8)
C11—H11A0.9900C19—H19C0.9900
C11—H11B0.9900C19—H19D0.9900
C12—N121.450 (4)C20—N201.522 (11)
C12—H12A0.9900C20—H20A0.9900
C12—H12B0.9900C20—H20B0.9900
N12—H12C0.9200N20—H20C0.845
N12—H12D0.9200N20—H20D0.876
N13—C131.460 (4)O1—O1ii1.299 (16)
N13—H13C0.9200O1—H1A0.85
N13—H13D0.9200O1—H1B0.85
C13—C141.489 (5)O2—H2A0.85
C13—H13A0.9900O2—H2B0.85
C13—H13B0.9900O3—H3D0.85
C14—N141.472 (5)O3—H3C0.85
C2—Mo1—C872.86 (13)C14—C13—H13A110.4
C2—Mo1—C478.12 (14)N13—C13—H13B110.4
C8—Mo1—C479.35 (13)C14—C13—H13B110.4
C2—Mo1—C5139.82 (14)H13A—C13—H13B108.6
C8—Mo1—C5146.29 (13)N14—C14—C13107.7 (3)
C4—Mo1—C5110.56 (13)N14—C14—H14A110.2
C2—Mo1—C6141.99 (14)C13—C14—H14A110.2
C8—Mo1—C679.84 (13)N14—C14—H14B110.2
C4—Mo1—C671.15 (13)C13—C14—H14B110.2
C5—Mo1—C673.77 (13)H14A—C14—H14B108.5
C2—Mo1—C374.81 (13)C14—N14—Co1108.8 (2)
C8—Mo1—C3141.97 (14)C14—N14—H14C109.9
C4—Mo1—C374.87 (14)Co1—N14—H14C109.9
C5—Mo1—C370.36 (14)C14—N14—H14D109.9
C6—Mo1—C3116.44 (13)Co1—N14—H14D109.9
C2—Mo1—C7121.95 (13)H14C—N14—H14D108.3
C8—Mo1—C776.28 (13)N20—Co2—N1993.8 (10)
C4—Mo1—C7140.82 (13)N20—Co2—N1894.0 (9)
C5—Mo1—C776.81 (13)N19—Co2—N1889.1 (13)
C6—Mo1—C774.67 (13)N20—Co2—N1585.0 (12)
C3—Mo1—C7139.42 (14)N19—Co2—N1588.3 (8)
C2—Mo1—C171.62 (14)N18—Co2—N15177.2 (13)
C8—Mo1—C1107.49 (13)N20—Co2—N1691.1 (8)
C4—Mo1—C1144.87 (13)N19—Co2—N16173.6 (15)
C5—Mo1—C183.18 (13)N18—Co2—N1694.5 (8)
C6—Mo1—C1143.45 (14)N15—Co2—N1688.1 (12)
C3—Mo1—C180.26 (14)N20—Co2—N17172.8 (15)
C7—Mo1—C172.66 (13)N19—Co2—N1789.0 (8)
N1—C1—Mo1178.5 (3)N18—Co2—N1792.6 (11)
N2—C2—Mo1175.7 (3)N15—Co2—N1788.4 (8)
N3—C3—Mo1178.9 (4)N16—Co2—N1785.6 (11)
N4—C4—Mo1176.5 (3)C15—N15—Co2106.0 (12)
N5—C5—Mo1179.1 (3)C15—N15—H15A110.5
N6—C6—Mo1175.8 (3)Co2—N15—H15A110.5
N7—C7—Mo1178.7 (3)C15—N15—H15B110.5
N8—C8—Mo1175.3 (3)Co2—N15—H15B110.5
N13—Co1—N1190.15 (13)H15A—N15—H15B108.7
N13—Co1—N1093.03 (12)C16—C15—N15109.8 (10)
N11—Co1—N1091.88 (12)C16—C15—H15C109.7
N13—Co1—N1484.34 (12)N15—C15—H15C109.7
N11—Co1—N14174.03 (13)C16—C15—H15D109.7
N10—Co1—N1490.71 (13)N15—C15—H15D109.7
N13—Co1—N1292.07 (12)H15C—C15—H15D108.2
N11—Co1—N1285.60 (12)C15—C16—N16108.0 (9)
N10—Co1—N12174.32 (13)C15—C16—H16A110.1
N14—Co1—N1292.28 (12)N16—C16—H16A110.1
N13—Co1—N9176.73 (12)C15—C16—H16B110.1
N11—Co1—N992.57 (13)N16—C16—H16B110.1
N10—Co1—N985.07 (12)H16A—C16—H16B108.4
N14—Co1—N993.01 (12)C16—N16—Co2106.4 (12)
N12—Co1—N989.96 (12)C16—N16—H16C110.4
C9—N9—Co1109.2 (2)Co2—N16—H16C110.4
C9—N9—H9C109.8C16—N16—H16D110.4
Co1—N9—H9C109.8Co2—N16—H16D110.4
C9—N9—H9D109.8H16C—N16—H16D108.6
Co1—N9—H9D109.8C17—N17—Co299.6 (12)
H9C—N9—H9D108.3C17—N17—H17A106.5
C10—C9—N9107.8 (3)Co2—N17—H17A105.3
C10—C9—H9A110.1C17—N17—H17B118.8
N9—C9—H9A109.5Co2—N17—H17B111.0
C10—C9—H9B110.2H17A—N17—H17B113.9
N9—C9—H9B110.7C18—C17—N17108.5 (10)
H9A—C9—H9B108.6C18—C17—H17C110.0
C9—C10—N10108.1 (3)N17—C17—H17C110.0
C9—C10—H10A110.1C18—C17—H17D110.0
N10—C10—H10A110.1N17—C17—H17D110.0
C9—C10—H10B110.1H17C—C17—H17D108.4
N10—C10—H10B110.1C17—C18—N18109.5 (11)
H10A—C10—H10B108.4C17—C18—H18A109.8
C10—N10—Co1108.2 (2)N18—C18—H18A109.8
C10—N10—H10C110.1C17—C18—H18B109.8
Co1—N10—H10C110.1N18—C18—H18B109.8
C10—N10—H10D110.1H18A—C18—H18B108.2
Co1—N10—H10D110.1C18—N18—Co298.7 (12)
H10C—N10—H10D108.4C18—N18—H18C112.0
C11—N11—Co1111.1 (2)Co2—N18—H18C112.0
C11—N11—H11C109.4C18—N18—H18D112.0
Co1—N11—H11C109.4Co2—N18—H18D112.0
C11—N11—H11D109.4H18C—N18—H18D109.7
Co1—N11—H11D109.4C19—N19—Co297.0 (10)
H11C—N11—H11D108.0C19—N19—H19A112.4
N11—C11—C12103.9 (3)Co2—N19—H19A112.4
N11—C11—H11A111.0C19—N19—H19B112.4
C12—C11—H11A111.0Co2—N19—H19B112.4
N11—C11—H11B111.0H19A—N19—H19B109.9
C12—C11—H11B111.0C20—C19—N19116.9 (10)
H11A—C11—H11B109.0C20—C19—H19C108.1
N12—C12—C11108.8 (3)N19—C19—H19C108.1
N12—C12—H12A109.9C20—C19—H19D108.1
C11—C12—H12A109.9N19—C19—H19D108.1
N12—C12—H12B109.9H19C—C19—H19D107.3
C11—C12—H12B109.9C19—C20—N20104.3 (12)
H12A—C12—H12B108.3C19—C20—H20A110.9
C12—N12—Co1108.7 (2)N20—C20—H20A110.9
C12—N12—H12C109.9C19—C20—H20B110.9
Co1—N12—H12C109.9N20—C20—H20B110.9
C12—N12—H12D109.9H20A—C20—H20B108.9
Co1—N12—H12D109.9C20—N20—Co2103.6 (13)
H12C—N12—H12D108.3C20—N20—H20C104.4
C13—N13—Co1111.2 (2)Co2—N20—H20C112.5
C13—N13—H13C109.4C20—N20—H20D100.3
Co1—N13—H13C109.4Co2—N20—H20D117.6
C13—N13—H13D109.4H20C—N20—H20D115.6
Co1—N13—H13D109.4H1A—O1—H1B109.5
H13C—N13—H13D108.0H2A—O2—H2B109.5
N13—C13—C14106.6 (3)H3D—O3—H3C109.5
N13—C13—H13A110.4
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9C···N7iii0.922.243.064 (4)148
N11—H11C···N7iii0.922.092.985 (4)165
N12—H12C···N6iv0.922.102.955 (4)154
N13—H13C···N8iv0.922.553.138 (4)122
N9—H9D···N20.922.323.117 (4)145
N14—H14D···N10.922.283.130 (5)154
N10—H10C···O3v0.921.962.856 (10)164
N10—H10D···N5v0.922.493.125 (5)126
N11—H11D···N6v0.922.583.163 (4)122
N13—H13D···N5v0.922.113.012 (4)167
N16—H16C···N4vi0.922.523.19 (2)130
N17—H17A···N2vii0.972.493.29 (2)140
N20—H20C···N2vi0.852.443.02 (2)127
O2—H2A···N8viii0.85 (14)2.41 (14)3.207 (9)156 (12)
O2—H2B···N2viii0.85 (15)2.50 (15)3.245 (9)147 (12)
Symmetry codes: (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z1/2; (v) x, y, z1; (vi) x+1, y+1, z+1; (vii) x+1, y, z; (viii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(C2H8N2)3]3[Mo(CN)8]2·2H2O
Mr1361.96
Crystal system, space groupMonoclinic, P21/n
Temperature (K)153
a, b, c (Å)9.2113 (3), 30.5439 (8), 11.4022 (3)
β (°) 94.138 (1)
V3)3199.63 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.25 × 0.23 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.754, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
27139, 6276, 4952
Rint0.054
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.101, 1.06
No. of reflections6276
No. of parameters415
No. of restraints56
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.55

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9C···N7i0.922.243.064 (4)148
N11—H11C···N7i0.922.092.985 (4)165
N12—H12C···N6ii0.922.102.955 (4)154
N13—H13C···N8ii0.922.553.138 (4)122
N9—H9D···N20.922.323.117 (4)145
N14—H14D···N10.922.283.130 (5)154
N10—H10C···O3iii0.921.962.856 (10)164
N10—H10D···N5iii0.922.493.125 (5)126
N11—H11D···N6iii0.922.583.163 (4)122
N13—H13D···N5iii0.922.113.012 (4)167
N16—H16C···N4iv0.922.523.19 (2)130
N17—H17A···N2v0.972.493.29 (2)140
N20—H20C···N2iv0.852.443.02 (2)127
O2—H2A···N8vi0.85 (14)2.41 (14)3.207 (9)156 (12)
O2—H2B···N2vi0.85 (15)2.50 (15)3.245 (9)147 (12)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x, y, z1; (iv) x+1, y+1, z+1; (v) x+1, y, z; (vi) x, y+1, z+1.
 

Acknowledgements

The work is supported by the University Natural Science Foundation of Jiangsu Province (No. 07KJB150030).

References

First citationAschwanden, S., Schmalle, H. W., Reller, A. & Oswald, H. R. (1993). Mat. Res. Bull. 28, 575–590.  CSD CrossRef CAS Web of Science Google Scholar
First citationBok, L. D. C., Leipoldt, J. G. & Basson, S. S. (1975). Z. Anorg. Allg. Chem. 415, 81–83.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLim, J. H., Kang, J. S., Kim, H. Ch., Koh, E. K. & Hong, Ch. S. (2006). Inorg. Chem. 45, 7821–7827.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMüller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). Crystal Structure Refinement: a Crystallographer's Guide to SHELXL, pp. 73–80. IUCr/Oxford University Press.  Google Scholar
First citationPrzychodzeń, P., Korzeniak, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev. 250, 2234–2260.  Google Scholar
First citationRigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieklucka, B., Podgajny, R., Korzeniak, T., Przychodzeń, P. & Kania, R. (2002). C. R. Chim. 5, 639–649.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWillemin, St., Larionova, J., Clérac, R., Donnadieu, B., Henner, B., Le Goff, X. F. & Guérin, Ch. (2003). Eur. J. Inorg. Chem. pp. 1866–1872.  Web of Science CSD CrossRef Google Scholar
First citationWithers, J. R., Li, D.-F., Triplet, J., Ruschman, C., Parkin, S., Wang, G.-B., Yee, G. T. & Holmes, S. M. (2006). Inorg. Chem. 45, 4307–4309.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1154-m1155
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds