metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1148-m1149

catena-Poly[[[μ-cyanido-1:2κ2C:N-tricyanido-1κ3C-bis­(ethylenedi­amine)-2κ4N,N′-copper(II)iron(II)]-μ-cyanido-κ2C:N-[bis­(ethylenedi­amine-κ2N,N′)copper(II)]-μ-cyanido-κ2N:C] 4.5-hy­drate]

aGraduate School of New Pattern Materials Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China., and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: honglingliu866@yahoo.com.cn

(Received 3 June 2008; accepted 28 July 2008; online 9 August 2008)

The asymmetric unit of the title compound, {[Cu2Fe(CN)6(C2H8N2)4]·4.5H2O}n, consists of two [Cu(C2H8N2)2]2+ cations, one [Fe(CN)6]4− anion, four water mol­ecules and a half water mol­ecule that lies on a twofold rotation axis. The FeII atom is coordinated by six C atoms from three terminal and three doubly bridging CN ligands. The bridging CN ligands connect the anion to a five-coordinate [Cu(C2H8N2)2]2+ cation and to two symmetry-related six-coordinate [Cu(C2H8N2)2]2+ cations, forming a one-dimensional polymer in the ab plane. Inter­molecular hydrogen bonds connect the polymer units into a three-dimensional network.

Related literature

For the corresponding complex catena-poly[bis­(cyanido-C)iron(II)]tetra(μ2-cyanido-C:N)bis­[bis­(ethyl­enediamine-N,N′)cadmium(II)], see: Fu & Wang (2005[Fu, A.-Y. & Wang, D.-Q. (2005). Z. Kristallogr. New Cryst. Struct. Volume? 220.]). For related literature, see: Fu et al. (2004[Fu, A.-Y., Wang, D.-Q. & Sun, D.-Z. (2004). Acta Cryst. E60, m1869-m1871.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Fe(CN)6(C2H8N2)4]·4.5H2O

  • Mr = 660.56

  • Monoclinic, C 2/c

  • a = 13.481 (7) Å

  • b = 13.497 (7) Å

  • c = 31.069 (15) Å

  • β = 93.547 (8)°

  • V = 5642 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.05 mm−1

  • T = 298 (2) K

  • 0.25 × 0.15 × 0.09 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.628, Tmax = 0.837

  • 14631 measured reflections

  • 4993 independent reflections

  • 2395 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.070

  • S = 1.00

  • 4993 reflections

  • 348 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N4 1.996 (4)
Cu1—N1 2.011 (5)
Cu1—N3 2.011 (4)
Cu1—N2 2.019 (4)
Cu1—N9 2.472 (5)
Cu2—N6 1.993 (4)
Cu2—N7 1.996 (4)
Cu2—N8 2.026 (4)
Cu2—N5 2.030 (4)
Cu2—N13 2.686 (5)
Fe1—C12 1.891 (6)
Fe1—C9 1.895 (6)
Fe1—C10 1.917 (5)
Fe1—C11 1.933 (6)
Fe1—C13 1.935 (6)
Fe1—C14 1.940 (6)
N4—Cu1—N1 172.59 (19)
N4—Cu1—N3 84.34 (19)
N1—Cu1—N3 96.0 (2)
N4—Cu1—N2 95.6 (2)
N1—Cu1—N2 83.9 (2)
N3—Cu1—N2 178.96 (18)
N4—Cu1—N9 89.74 (17)
N1—Cu1—N9 97.67 (17)
N3—Cu1—N9 87.37 (17)
N2—Cu1—N9 93.67 (17)
N6—Cu2—N7 171.0 (2)
N6—Cu2—N8 96.40 (19)
N7—Cu2—N8 83.32 (18)
N6—Cu2—N5 83.39 (19)
N7—Cu2—N5 97.89 (18)
N8—Cu2—N5 173.55 (19)
N6—Cu2—N13 94.80 (17)
N7—Cu2—N13 94.15 (17)
N8—Cu2—N13 87.01 (16)
N5—Cu2—N13 86.58 (16)
C12—Fe1—C9 177.1 (2)
C12—Fe1—C10 92.9 (2)
C9—Fe1—C10 86.6 (2)
C12—Fe1—C11 89.5 (2)
C9—Fe1—C11 93.3 (2)
C10—Fe1—C11 88.2 (2)
C12—Fe1—C13 90.8 (2)
C9—Fe1—C13 89.8 (2)
C10—Fe1—C13 176.2 (2)
C11—Fe1—C13 90.6 (2)
C12—Fe1—C14 88.3 (2)
C9—Fe1—C14 88.9 (2)
C10—Fe1—C14 92.0 (2)
C11—Fe1—C14 177.8 (2)
C13—Fe1—C14 89.3 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O4i 0.90 2.59 3.316 (5) 139
N2—H2A⋯O2ii 0.90 2.14 2.999 (6) 159
N2—H2B⋯N14 0.90 2.57 3.335 (6) 144
N3—H3B⋯O5 0.90 2.18 3.074 (7) 172
N4—H4A⋯N10 0.90 2.63 3.308 (7) 133
N5—H5A⋯O3iii 0.90 2.33 3.214 (7) 167
N6—H6B⋯N9 0.90 2.17 3.044 (6) 163
N7—H7C⋯N12iv 0.90 2.55 3.293 (6) 140
N7—H7D⋯O5v 0.90 2.29 3.153 (8) 160
N8—H8B⋯N11vi 0.90 2.34 3.104 (6) 143
O1—H1⋯N11vii 0.81 (4) 2.01 (5) 2.807 (6) 167 (6)
O1—H2⋯N10 0.842 (14) 2.04 (3) 2.806 (6) 150 (6)
O2—H3⋯O3viii 0.888 (19) 1.84 (3) 2.697 (6) 161 (4)
O2—H4⋯N12ix 0.899 (18) 1.96 (2) 2.799 (7) 155 (2)
O3—H5⋯N14 0.873 (19) 1.88 (2) 2.741 (6) 170 (6)
O3—H6⋯N13iii 0.847 (19) 1.99 (2) 2.787 (6) 156 (5)
O4—H7⋯N14iii 0.879 (19) 2.33 (3) 3.118 (6) 149 (5)
O5—H8⋯O1iv 0.878 (19) 1.92 (3) 2.734 (7) 153 (5)
O5—H9⋯O2 0.839 (19) 2.09 (4) 2.844 (7) 150 (6)
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+1, y, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (vi) -x+1, -y+1, -z+1; (vii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (viii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ix) x, y-1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hexacyanoferrate anions [Fe(CN)6]n- act as good building blocks to provide bimetallic assemblies exhibiting planar structures (Fu et al. 2005). In this paper we report the structure of the title compouund, (I), which forms linear polymer chains.

The asymmetric unit of the title compound, [Cu2(C2H8N2)4Fe(CN)64.5H2O]n, consists of two [Cu(C2H8N2]2+ cations, one [Fe(CN)6]4- anion, four water molecules and a half water molecule that lies on a two-fold rotation axis (Fig. 1). The Fe1 atom is coordinated by six nitrile C atoms from three terminal CN- ligands and three doubly bridging CN- ligands. Cu1 is coordinated by five N atoms from two chelating ethylenediamine (en) ligands and a doubly bridging CN1- ligand while Cu2 binds to six N atoms from two chelated en ligands and two doubly bridging CN- ligands (Fig. 2). The average Fe—C distance of the bridging CN1- ligands of 1.909 (6) Å (Table 1) is slightly shorter than that of the terminal CN- ligands, 1.937 Å. The average Cu—N bond distance involving the en ligands is 2.009 Å considerably shorter than the average Cu—N(nitrile) distance of 2.472 Å. These are similar to the corresponding N—Cu bonds in the compound [Cu2(C4N2S2)2(C2H8N2)2]n (Fu, et al., 2004). The coordination geometries about the Fe1 and Cu2 centers are distorted octahedral with Cu1 dispaying a distorted square-pyramidal geometry. The bridging CN- ligands connect the anion to the five coordinate Cu1 cation and to the Cu2 and Cu2i (I = x+1/2, y-1/2, z) cations to form a one dimensional polymer. In the crystal structure, the water O atoms and N atoms from the en and CN- ligands participate in intermolecular hydrogen bonds (Table 2), which further connect the polymer chains into a three-dimensional network (Fig. 3).

Related literature top

For the corresponding complex catena-poly-[bis(cyanido-C)iron(II)]-tetra (µ2cyanido-C: N)-bis[bis(ethylenediamine-N,N) cadmium(II)], see: Fu & Wang (2005). For related literature, see: Fu et al. (2004).

Experimental top

A solution (10 ml) of distilled water containing CuSO46H2O (1.0 mmol) was added slowly to aqueous mixture (20 ml)of K4[Fe(CN)6] (0.5 mmol) and NH3 (2 mmol). The mixture was stirred for 4 h and then filtered. crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol/dichloromethane (1:2 v/v) solution over a period of three weeks. Elemental analysis found: C, 25.37%; H, 6.22%; N, 29.58%; calc. for C28 H82 Cu4 Fe2 N28O9: C, 25.45%; H, 6.26%; N, 29.69%.

Refinement top

Water H atoms were found in difference maps and were refined freely with isotropic displacement parameters. All other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C), N—H = 0.90 Å, and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I), with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The one-dimensional polymer chains of (I) with H bonds drawn as dashed lines.
[Figure 3] Fig. 3. Crystal packing of (I), showing the hydrogen-bonded interactions as dashed lines.
catena-Poly[[[µ-cyanido-1:2κ2C:N-tricyanido-1κ3C- bis(ethylenediamine)-2κ4N,N'-copper(II)iron(II)]-µ-cyanido-κ2C:N- [bis(ethylenediamine-κ2N,N')copper(II)]-µ-cyanido-κ2N:C] 4.5-hydrate] top
Crystal data top
[Cu2Fe(CN)6(C2H8N2)4]·4.5H2OF(000) = 2744
Mr = 660.56Dx = 1.555 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1697 reflections
a = 13.481 (7) Åθ = 2.3–20.2°
b = 13.497 (7) ŵ = 2.05 mm1
c = 31.069 (15) ÅT = 298 K
β = 93.547 (8)°Block, blue
V = 5642 (5) Å30.25 × 0.15 × 0.09 mm
Z = 8
Data collection top
Bruker SMART CCD area detector
diffractometer
4993 independent reflections
Radiation source: fine-focus sealed tube2395 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ϕ and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1616
Tmin = 0.628, Tmax = 0.837k = 1116
14631 measured reflectionsl = 3236
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
4993 reflections(Δ/σ)max = 0.001
348 parametersΔρmax = 0.67 e Å3
15 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu2Fe(CN)6(C2H8N2)4]·4.5H2OV = 5642 (5) Å3
Mr = 660.56Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.481 (7) ŵ = 2.05 mm1
b = 13.497 (7) ÅT = 298 K
c = 31.069 (15) Å0.25 × 0.15 × 0.09 mm
β = 93.547 (8)°
Data collection top
Bruker SMART CCD area detector
diffractometer
4993 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2395 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 0.837Rint = 0.074
14631 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04715 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.67 e Å3
4993 reflectionsΔρmin = 0.47 e Å3
348 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.14883 (5)0.38885 (6)0.37321 (2)0.0446 (2)
Cu20.63210 (5)0.39053 (6)0.38794 (2)0.0494 (2)
Fe10.38981 (6)0.64597 (6)0.37999 (3)0.0328 (2)
N10.1742 (3)0.2994 (4)0.32332 (16)0.0728 (17)
H1A0.22530.25840.33050.087*
H1B0.12000.26240.31640.087*
N20.1342 (3)0.4945 (3)0.32725 (16)0.0562 (15)
H2A0.07910.53060.33070.067*
H2B0.18700.53540.32920.067*
N30.1608 (3)0.2829 (3)0.41874 (14)0.0465 (13)
H3A0.10940.24050.41530.056*
H3B0.21750.24860.41650.056*
N40.1050 (3)0.4741 (3)0.42098 (14)0.0552 (15)
H4A0.15310.51780.42890.066*
H4B0.05020.50820.41200.066*
N50.6854 (3)0.3574 (4)0.32995 (13)0.0538 (14)
H5A0.70420.41350.31700.065*
H5B0.73900.31800.33390.065*
N60.5073 (3)0.3308 (3)0.36175 (16)0.0625 (16)
H6A0.49700.27150.37390.075*
H6B0.45540.37020.36680.075*
N70.7606 (3)0.4297 (3)0.41861 (15)0.0624 (16)
H7C0.80850.38610.41280.075*
H7D0.77910.49010.40980.075*
N80.5739 (3)0.4383 (3)0.44283 (13)0.0483 (14)
H8A0.52450.48160.43640.058*
H8B0.54880.38670.45690.058*
N90.3237 (3)0.4320 (4)0.39355 (15)0.0531 (15)
N100.1843 (3)0.7038 (4)0.40890 (15)0.0539 (15)
N110.4716 (4)0.6769 (4)0.47419 (15)0.0568 (16)
N120.4435 (3)0.8605 (4)0.35978 (14)0.0488 (14)
N130.5947 (3)0.5724 (4)0.35587 (15)0.0535 (16)
N140.3119 (4)0.6286 (4)0.28505 (15)0.0665 (18)
O10.0188 (3)0.6836 (4)0.45869 (14)0.0775 (16)
O20.4258 (3)0.0620 (3)0.33942 (16)0.0716 (14)
O30.2555 (3)0.5748 (4)0.20204 (13)0.0963 (19)
O40.50000.7270 (5)0.25000.099 (2)
O50.3429 (3)0.1477 (5)0.41272 (18)0.1026 (18)
C10.1983 (5)0.3623 (6)0.2858 (2)0.091 (3)
H1C0.26610.38640.28930.109*
H1D0.19060.32480.25910.109*
C20.1274 (5)0.4455 (6)0.2852 (2)0.086 (3)
H2C0.14270.49230.26290.104*
H2D0.06040.42110.27890.104*
C30.1609 (4)0.3306 (5)0.46117 (18)0.064 (2)
H3C0.22570.35890.46890.076*
H3D0.14560.28240.48300.076*
C40.0834 (4)0.4102 (5)0.45824 (17)0.061 (2)
H4C0.01770.38130.45390.074*
H4D0.08600.44890.48460.074*
C50.6095 (5)0.3076 (6)0.3027 (2)0.106 (3)
H5C0.61120.33330.27360.127*
H5D0.62500.23750.30180.127*
C60.5141 (5)0.3190 (6)0.3164 (2)0.110 (3)
H6C0.47520.26150.30710.132*
H6D0.48400.37630.30200.132*
C70.7463 (5)0.4309 (5)0.46471 (19)0.072 (2)
H7A0.80210.46300.48020.087*
H7B0.74070.36390.47550.087*
C80.6534 (4)0.4868 (5)0.47051 (19)0.0606 (19)
H8C0.66100.55540.46200.073*
H8D0.63710.48510.50050.073*
C90.3514 (4)0.5131 (4)0.38950 (17)0.0385 (16)
C100.2612 (4)0.6829 (4)0.39777 (16)0.0361 (15)
C110.4408 (4)0.6643 (4)0.43898 (18)0.0357 (16)
C120.4243 (4)0.7784 (4)0.36780 (17)0.0343 (15)
C130.5186 (4)0.6004 (4)0.36404 (15)0.0350 (14)
C140.3402 (4)0.6327 (4)0.32031 (19)0.0421 (16)
H10.016 (4)0.718 (5)0.4802 (17)0.080*
H20.0778 (17)0.678 (4)0.4516 (17)0.080*
H30.372 (3)0.078 (3)0.3229 (15)0.080*
H40.4113 (17)0.0018 (17)0.3443 (17)0.080*
H50.269 (4)0.598 (4)0.2280 (9)0.080*
H60.312 (2)0.575 (4)0.1913 (14)0.080*
H70.5503 (9)0.686 (2)0.249 (2)0.080*
H80.387 (3)0.173 (5)0.4315 (12)0.080*
H90.369 (4)0.145 (5)0.3890 (9)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0491 (5)0.0375 (5)0.0478 (5)0.0015 (4)0.0080 (4)0.0004 (4)
Cu20.0362 (5)0.0676 (7)0.0450 (5)0.0023 (4)0.0059 (4)0.0024 (4)
Fe10.0277 (4)0.0340 (5)0.0373 (5)0.0017 (4)0.0067 (4)0.0016 (4)
N10.072 (4)0.060 (4)0.089 (5)0.014 (3)0.025 (3)0.027 (3)
N20.042 (3)0.051 (4)0.075 (4)0.011 (3)0.007 (3)0.023 (3)
N30.028 (3)0.044 (4)0.067 (4)0.009 (2)0.005 (3)0.005 (3)
N40.049 (3)0.048 (4)0.070 (4)0.008 (3)0.013 (3)0.014 (3)
N50.051 (3)0.056 (4)0.056 (4)0.013 (3)0.017 (3)0.014 (3)
N60.039 (3)0.059 (4)0.090 (4)0.011 (3)0.006 (3)0.012 (3)
N70.037 (3)0.055 (4)0.097 (5)0.000 (3)0.017 (3)0.020 (3)
N80.043 (3)0.051 (4)0.052 (3)0.003 (3)0.003 (3)0.011 (3)
N90.043 (3)0.039 (4)0.079 (4)0.004 (3)0.012 (3)0.002 (3)
N100.037 (3)0.054 (4)0.073 (4)0.009 (3)0.022 (3)0.001 (3)
N110.062 (4)0.076 (5)0.032 (3)0.014 (3)0.006 (3)0.001 (3)
N120.043 (3)0.046 (4)0.058 (4)0.004 (3)0.008 (2)0.005 (3)
N130.029 (3)0.067 (4)0.066 (4)0.007 (3)0.020 (3)0.005 (3)
N140.063 (4)0.099 (5)0.036 (3)0.018 (3)0.006 (3)0.007 (3)
O10.062 (3)0.103 (5)0.071 (4)0.024 (3)0.033 (3)0.032 (3)
O20.061 (3)0.064 (4)0.089 (4)0.001 (3)0.003 (3)0.015 (3)
O30.064 (3)0.175 (6)0.052 (3)0.048 (4)0.023 (3)0.038 (3)
O40.085 (5)0.102 (7)0.116 (6)0.0000.043 (6)0.000
O50.068 (4)0.124 (5)0.115 (4)0.002 (4)0.001 (3)0.029 (4)
C10.094 (6)0.114 (8)0.068 (6)0.029 (6)0.039 (5)0.012 (5)
C20.087 (6)0.129 (9)0.041 (5)0.038 (6)0.010 (5)0.023 (5)
C30.056 (5)0.095 (7)0.039 (5)0.018 (4)0.002 (4)0.003 (4)
C40.060 (5)0.080 (6)0.046 (4)0.020 (4)0.019 (4)0.010 (4)
C50.058 (5)0.186 (10)0.072 (6)0.008 (6)0.012 (5)0.059 (6)
C60.081 (6)0.181 (10)0.068 (6)0.022 (6)0.007 (5)0.053 (6)
C70.060 (5)0.099 (7)0.057 (5)0.002 (4)0.012 (4)0.022 (4)
C80.072 (5)0.059 (5)0.054 (5)0.008 (4)0.024 (4)0.007 (4)
C90.022 (3)0.044 (5)0.050 (4)0.011 (3)0.004 (3)0.010 (3)
C100.045 (4)0.028 (4)0.035 (4)0.008 (3)0.004 (3)0.002 (3)
C110.024 (3)0.035 (4)0.050 (4)0.003 (3)0.015 (3)0.006 (3)
C120.025 (3)0.038 (4)0.041 (4)0.009 (3)0.005 (3)0.004 (3)
C130.044 (4)0.031 (4)0.031 (3)0.014 (3)0.007 (3)0.007 (3)
C140.027 (4)0.043 (4)0.058 (4)0.007 (3)0.014 (3)0.004 (4)
Geometric parameters (Å, º) top
Cu1—N41.996 (4)N8—C81.483 (6)
Cu1—N12.011 (5)N8—H8A0.9000
Cu1—N32.011 (4)N8—H8B0.9000
Cu1—N22.019 (4)N9—C91.166 (6)
Cu1—N92.472 (5)N10—C101.149 (5)
Cu2—N61.993 (4)N11—C111.158 (6)
Cu2—N71.996 (4)N12—C121.169 (6)
Cu2—N82.026 (4)N13—C131.137 (5)
Cu2—N52.030 (4)N14—C141.139 (6)
Cu2—N10i2.686 (5)O1—H10.81 (4)
Cu2—N132.686 (5)O1—H20.842 (14)
Fe1—C121.891 (6)O2—H30.888 (19)
Fe1—C91.895 (6)O2—H40.899 (18)
Fe1—C101.917 (5)O3—H50.873 (19)
Fe1—C111.933 (6)O3—H60.847 (19)
Fe1—C131.935 (6)O4—H70.879 (19)
Fe1—C141.940 (6)O5—H80.878 (19)
N1—C11.495 (7)O5—H90.839 (19)
N1—H1A0.9000C1—C21.474 (8)
N1—H1B0.9000C1—H1C0.9700
N2—C21.463 (7)C1—H1D0.9700
N2—H2A0.9000C2—H2C0.9700
N2—H2B0.9000C2—H2D0.9700
N3—C31.467 (6)C3—C41.497 (7)
N3—H3A0.9000C3—H3C0.9700
N3—H3B0.9000C3—H3D0.9700
N4—C41.487 (6)C4—H4C0.9700
N4—H4A0.9000C4—H4D0.9700
N4—H4B0.9000C5—C61.388 (7)
N5—C51.452 (7)C5—H5C0.9700
N5—H5A0.9000C5—H5D0.9700
N5—H5B0.9000C6—H6C0.9700
N6—C61.427 (7)C6—H6D0.9700
N6—H6A0.9000C7—C81.483 (7)
N6—H6B0.9000C7—H7A0.9700
N7—C71.457 (6)C7—H7B0.9700
N7—H7C0.9000C8—H8C0.9700
N7—H7D0.9000C8—H8D0.9700
N4—Cu1—N1172.59 (19)Cu2—N6—H6B109.6
N4—Cu1—N384.34 (19)H6A—N6—H6B108.1
N1—Cu1—N396.0 (2)C7—N7—Cu2107.9 (3)
N4—Cu1—N295.6 (2)C7—N7—H7C110.1
N1—Cu1—N283.9 (2)Cu2—N7—H7C110.1
N3—Cu1—N2178.96 (18)C7—N7—H7D110.1
N4—Cu1—N989.74 (17)Cu2—N7—H7D110.1
N1—Cu1—N997.67 (17)H7C—N7—H7D108.4
N3—Cu1—N987.37 (17)C8—N8—Cu2109.0 (3)
N2—Cu1—N993.67 (17)C8—N8—H8A109.9
N6—Cu2—N7171.0 (2)Cu2—N8—H8A109.9
N6—Cu2—N896.40 (19)C8—N8—H8B109.9
N7—Cu2—N883.32 (18)Cu2—N8—H8B109.9
N6—Cu2—N583.39 (19)H8A—N8—H8B108.3
N7—Cu2—N597.89 (18)C9—N9—Cu1120.0 (4)
N8—Cu2—N5173.55 (19)C13—N13—Cu2111.8 (4)
N6—Cu2—N10i85.50 (17)H1—O1—H2110 (4)
N7—Cu2—N10i85.77 (17)H3—O2—H498 (2)
N8—Cu2—N10i101.76 (16)H5—O3—H6103 (3)
N5—Cu2—N10i84.66 (16)H8—O5—H9107 (3)
N6—Cu2—N1394.80 (17)C2—C1—N1105.7 (5)
N7—Cu2—N1394.15 (17)C2—C1—H1C110.6
N8—Cu2—N1387.01 (16)N1—C1—H1C110.6
N5—Cu2—N1386.58 (16)C2—C1—H1D110.6
N10i—Cu2—N13171.15 (13)N1—C1—H1D110.6
C12—Fe1—C9177.1 (2)H1C—C1—H1D108.7
C12—Fe1—C1092.9 (2)N2—C2—C1109.2 (6)
C9—Fe1—C1086.6 (2)N2—C2—H2C109.8
C12—Fe1—C1189.5 (2)C1—C2—H2C109.8
C9—Fe1—C1193.3 (2)N2—C2—H2D109.8
C10—Fe1—C1188.2 (2)C1—C2—H2D109.8
C12—Fe1—C1390.8 (2)H2C—C2—H2D108.3
C9—Fe1—C1389.8 (2)N3—C3—C4107.4 (5)
C10—Fe1—C13176.2 (2)N3—C3—H3C110.2
C11—Fe1—C1390.6 (2)C4—C3—H3C110.2
C12—Fe1—C1488.3 (2)N3—C3—H3D110.2
C9—Fe1—C1488.9 (2)C4—C3—H3D110.2
C10—Fe1—C1492.0 (2)H3C—C3—H3D108.5
C11—Fe1—C14177.8 (2)N4—C4—C3107.1 (5)
C13—Fe1—C1489.3 (2)N4—C4—H4C110.3
C1—N1—Cu1108.4 (4)C3—C4—H4C110.3
C1—N1—H1A110.0N4—C4—H4D110.3
Cu1—N1—H1A110.0C3—C4—H4D110.3
C1—N1—H1B110.0H4C—C4—H4D108.5
Cu1—N1—H1B110.0C6—C5—N5113.8 (6)
H1A—N1—H1B108.4C6—C5—H5C108.8
C2—N2—Cu1108.1 (4)N5—C5—H5C108.8
C2—N2—H2A110.1C6—C5—H5D108.8
Cu1—N2—H2A110.1N5—C5—H5D108.8
C2—N2—H2B110.1H5C—C5—H5D107.7
Cu1—N2—H2B110.1C5—C6—N6115.6 (6)
H2A—N2—H2B108.4C5—C6—H6C108.4
C3—N3—Cu1108.4 (4)N6—C6—H6C108.4
C3—N3—H3A110.0C5—C6—H6D108.4
Cu1—N3—H3A110.0N6—C6—H6D108.4
C3—N3—H3B110.0H6C—C6—H6D107.4
Cu1—N3—H3B110.0N7—C7—C8106.9 (5)
H3A—N3—H3B108.4N7—C7—H7A110.4
C4—N4—Cu1109.0 (4)C8—C7—H7A110.4
C4—N4—H4A109.9N7—C7—H7B110.4
Cu1—N4—H4A109.9C8—C7—H7B110.4
C4—N4—H4B109.9H7A—C7—H7B108.6
Cu1—N4—H4B109.9C7—C8—N8106.9 (5)
H4A—N4—H4B108.3C7—C8—H8C110.4
C5—N5—Cu2110.1 (4)N8—C8—H8C110.4
C5—N5—H5A109.6C7—C8—H8D110.4
Cu2—N5—H5A109.6N8—C8—H8D110.4
C5—N5—H5B109.6H8C—C8—H8D108.6
Cu2—N5—H5B109.6N9—C9—Fe1176.3 (6)
H5A—N5—H5B108.2N10—C10—Fe1178.9 (5)
C6—N6—Cu2110.2 (4)N11—C11—Fe1178.9 (5)
C6—N6—H6A109.6N12—C12—Fe1178.4 (5)
Cu2—N6—H6A109.6N13—C13—Fe1178.0 (5)
C6—N6—H6B109.6N14—C14—Fe1177.4 (6)
N4—Cu1—N1—C1103.2 (16)N1—C1—C2—N254.8 (7)
N3—Cu1—N1—C1164.2 (4)Cu1—N3—C3—C442.0 (5)
N2—Cu1—N1—C116.8 (4)Cu1—N4—C4—C339.0 (5)
N9—Cu1—N1—C176.1 (4)N3—C3—C4—N453.4 (6)
N4—Cu1—N2—C2160.1 (4)Cu2—N5—C5—C617.3 (9)
N1—Cu1—N2—C212.5 (4)N5—C5—C6—N629.8 (11)
N3—Cu1—N2—C272 (11)Cu2—N6—C6—C527.0 (9)
N9—Cu1—N2—C2109.8 (4)Cu2—N7—C7—C847.8 (5)
N4—Cu1—N3—C316.3 (4)N7—C7—C8—N855.1 (6)
N1—Cu1—N3—C3171.1 (3)Cu2—N8—C8—C735.9 (6)
N2—Cu1—N3—C3105 (11)Cu1—N9—C9—Fe127 (8)
N9—Cu1—N3—C373.7 (3)C12—Fe1—C9—N915 (11)
N1—Cu1—N4—C480.4 (17)C10—Fe1—C9—N964 (8)
N3—Cu1—N4—C412.9 (4)C11—Fe1—C9—N9152 (8)
N2—Cu1—N4—C4166.0 (4)C13—Fe1—C9—N9118 (8)
N9—Cu1—N4—C4100.3 (4)C14—Fe1—C9—N928 (8)
N6—Cu2—N5—C52.0 (5)C12—Fe1—C10—N10146 (33)
N7—Cu2—N5—C5169.1 (5)C9—Fe1—C10—N1037 (33)
N8—Cu2—N5—C590.5 (17)C11—Fe1—C10—N1057 (33)
N13—Cu2—N5—C597.2 (5)C13—Fe1—C10—N1016 (36)
N7—Cu2—N6—C6111.6 (13)C14—Fe1—C10—N10126 (33)
N8—Cu2—N6—C6160.7 (5)C12—Fe1—C11—N117 (26)
N5—Cu2—N6—C612.8 (5)C9—Fe1—C11—N11173 (100)
N13—Cu2—N6—C673.2 (5)C10—Fe1—C11—N1186 (26)
N6—Cu2—N7—C766.9 (13)C13—Fe1—C11—N1197 (26)
N8—Cu2—N7—C721.9 (4)C14—Fe1—C11—N119 (30)
N5—Cu2—N7—C7164.5 (4)C9—Fe1—C12—N1234 (23)
N13—Cu2—N7—C7108.4 (4)C10—Fe1—C12—N1245 (20)
N6—Cu2—N8—C8179.1 (4)C11—Fe1—C12—N12133 (20)
N7—Cu2—N8—C88.1 (4)C13—Fe1—C12—N12136 (20)
N5—Cu2—N8—C893.1 (17)C14—Fe1—C12—N1247 (20)
N13—Cu2—N8—C886.4 (4)Cu2—N13—C13—Fe141 (15)
N4—Cu1—N9—C966.4 (5)C12—Fe1—C13—N13122 (15)
N1—Cu1—N9—C9113.6 (5)C9—Fe1—C13—N1361 (15)
N3—Cu1—N9—C9150.7 (5)C10—Fe1—C13—N1340 (17)
N2—Cu1—N9—C929.3 (5)C11—Fe1—C13—N1332 (15)
N6—Cu2—N13—C1353.0 (5)C14—Fe1—C13—N13150 (15)
N7—Cu2—N13—C13126.3 (5)C12—Fe1—C14—N143 (12)
N8—Cu2—N13—C1343.2 (5)C9—Fe1—C14—N14176 (100)
N5—Cu2—N13—C13136.1 (5)C10—Fe1—C14—N1490 (12)
Cu1—N1—C1—C242.4 (6)C11—Fe1—C14—N146 (17)
Cu1—N2—C2—C140.4 (6)C13—Fe1—C14—N1494 (12)
Symmetry code: (i) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O4ii0.902.593.316 (5)139
N2—H2A···O2iii0.902.142.999 (6)159
N2—H2B···N140.902.573.335 (6)144
N3—H3B···O50.902.183.074 (7)172
N4—H4A···N100.902.633.308 (7)133
N5—H5A···O3iv0.902.333.214 (7)167
N6—H6B···N90.902.173.044 (6)163
N7—H7C···N12i0.902.553.293 (6)140
N7—H7D···O5v0.902.293.153 (8)160
N8—H8B···N11vi0.902.343.104 (6)143
O1—H1···N11vii0.81 (4)2.01 (5)2.807 (6)167 (6)
O1—H2···N100.84 (1)2.04 (3)2.806 (6)150 (6)
O2—H3···O3viii0.89 (2)1.84 (3)2.697 (6)161 (4)
O2—H4···N12ix0.90 (2)1.96 (2)2.799 (7)155 (2)
O3—H5···N140.87 (2)1.88 (2)2.741 (6)170 (6)
O3—H6···N13iv0.85 (2)1.99 (2)2.787 (6)156 (5)
O4—H7···N14iv0.88 (2)2.33 (3)3.118 (6)149 (5)
O5—H8···O1i0.88 (2)1.92 (3)2.734 (7)153 (5)
O5—H9···O20.84 (2)2.09 (4)2.844 (7)150 (6)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y1/2, z; (iii) x1/2, y+1/2, z; (iv) x+1, y, z+1/2; (v) x+1/2, y+1/2, z; (vi) x+1, y+1, z+1; (vii) x+1/2, y+3/2, z+1; (viii) x+1/2, y1/2, z+1/2; (ix) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu2Fe(CN)6(C2H8N2)4]·4.5H2O
Mr660.56
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)13.481 (7), 13.497 (7), 31.069 (15)
β (°) 93.547 (8)
V3)5642 (5)
Z8
Radiation typeMo Kα
µ (mm1)2.05
Crystal size (mm)0.25 × 0.15 × 0.09
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.628, 0.837
No. of measured, independent and
observed [I > 2σ(I)] reflections
14631, 4993, 2395
Rint0.074
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.070, 1.00
No. of reflections4993
No. of parameters348
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.47

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N41.996 (4)Cu2—N52.030 (4)
Cu1—N12.011 (5)Cu2—N132.686 (5)
Cu1—N32.011 (4)Fe1—C121.891 (6)
Cu1—N22.019 (4)Fe1—C91.895 (6)
Cu1—N92.472 (5)Fe1—C101.917 (5)
Cu2—N61.993 (4)Fe1—C111.933 (6)
Cu2—N71.996 (4)Fe1—C131.935 (6)
Cu2—N82.026 (4)Fe1—C141.940 (6)
N4—Cu1—N1172.59 (19)N8—Cu2—N1387.01 (16)
N4—Cu1—N384.34 (19)N5—Cu2—N1386.58 (16)
N1—Cu1—N396.0 (2)C12—Fe1—C9177.1 (2)
N4—Cu1—N295.6 (2)C12—Fe1—C1092.9 (2)
N1—Cu1—N283.9 (2)C9—Fe1—C1086.6 (2)
N3—Cu1—N2178.96 (18)C12—Fe1—C1189.5 (2)
N4—Cu1—N989.74 (17)C9—Fe1—C1193.3 (2)
N1—Cu1—N997.67 (17)C10—Fe1—C1188.2 (2)
N3—Cu1—N987.37 (17)C12—Fe1—C1390.8 (2)
N2—Cu1—N993.67 (17)C9—Fe1—C1389.8 (2)
N6—Cu2—N7171.0 (2)C10—Fe1—C13176.2 (2)
N6—Cu2—N896.40 (19)C11—Fe1—C1390.6 (2)
N7—Cu2—N883.32 (18)C12—Fe1—C1488.3 (2)
N6—Cu2—N583.39 (19)C9—Fe1—C1488.9 (2)
N7—Cu2—N597.89 (18)C10—Fe1—C1492.0 (2)
N8—Cu2—N5173.55 (19)C11—Fe1—C14177.8 (2)
N6—Cu2—N1394.80 (17)C13—Fe1—C1489.3 (2)
N7—Cu2—N1394.15 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O4i0.902.593.316 (5)138.6
N2—H2A···O2ii0.902.142.999 (6)158.7
N2—H2B···N140.902.573.335 (6)143.8
N3—H3B···O50.902.183.074 (7)172.2
N4—H4A···N100.902.633.308 (7)133.3
N5—H5A···O3iii0.902.333.214 (7)167.3
N6—H6B···N90.902.173.044 (6)162.8
N7—H7C···N12iv0.902.553.293 (6)140.0
N7—H7D···O5v0.902.293.153 (8)159.8
N8—H8B···N11vi0.902.343.104 (6)143.0
O1—H1···N11vii0.81 (4)2.01 (5)2.807 (6)167 (6)
O1—H2···N100.842 (14)2.04 (3)2.806 (6)150 (6)
O2—H3···O3viii0.888 (19)1.84 (3)2.697 (6)161 (4)
O2—H4···N12ix0.899 (18)1.96 (2)2.799 (7)155 (2)
O3—H5···N140.873 (19)1.88 (2)2.741 (6)170 (6)
O3—H6···N13iii0.847 (19)1.99 (2)2.787 (6)156 (5)
O4—H7···N14iii0.879 (19)2.33 (3)3.118 (6)149 (5)
O5—H8···O1iv0.878 (19)1.92 (3)2.734 (7)153 (5)
O5—H9···O20.839 (19)2.09 (4)2.844 (7)150 (6)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x1/2, y+1/2, z; (iii) x+1, y, z+1/2; (iv) x+1/2, y1/2, z; (v) x+1/2, y+1/2, z; (vi) x+1, y+1, z+1; (vii) x+1/2, y+3/2, z+1; (viii) x+1/2, y1/2, z+1/2; (ix) x, y1, z.
 

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (No. 20771021), and Shangdong Natural Science Foundation (No. Y2005B20).

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFu, A.-Y. & Wang, D.-Q. (2005). Z. Kristallogr. New Cryst. Struct. Volume? 220.  Google Scholar
First citationFu, A.-Y., Wang, D.-Q. & Sun, D.-Z. (2004). Acta Cryst. E60, m1869–m1871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1148-m1149
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds