organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­benzyl­­idene)-4-meth­oxy­aniline

aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China, and bThe 7th Middle School, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 27 July 2008; accepted 13 August 2008; online 20 August 2008)

The title compound, C14H12ClNO, was prepared by the reaction of 4-methoxy­aniline and 4-chloro­benzaldehyde in ethanol at 367 K. The mol­ecule is almost planar, with a dihedral angle between the two benzene rings of 9.1 (2)° and an r.m.s. deviation from the mean plane through all non-H atoms in the mol­ecule of 0.167 Å.

Related literature

For applications of Schiff base compounds, see: Deschamps et al. (2003[Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem., 42, 7366-7368.]); Rozwadowski et al. (1999[Rozwadowski, Z., Majewski, E., Dziembowska, T. & Hansen, P. E. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2809-2817.]); Tarafder et al. (2000[Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456-460.]). For a related structure, see: Jian et al. (2006[Jian, F.-F., Zhuang, R.-R., Wang, K.-F., Zhao, P.-S. & Xiao, H.-L. (2006). Acta Cryst. E62, o3198-o3199.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO

  • Mr = 245.70

  • Orthorhombic, P n a 21

  • a = 6.1055 (9) Å

  • b = 7.3392 (11) Å

  • c = 27.469 (4) Å

  • V = 1230.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 (2) K

  • 0.20 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 7232 measured reflections

  • 2806 independent reflections

  • 2092 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.088

  • S = 1.01

  • 2806 reflections

  • 154 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1450 Friedel pairs

  • Flack parameter: −0.01 (7)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have been used extensively as ligands in the field of coordination chemistry (Jian et al., 2006), and have antimicrobial (Tarafder et al., 2000) and anticancer applications (Deschamps et al., 2003). Additional recent interest in Schiff base compounds comes from their ability to form intramolecular hydrogen bonds by electron coupling between acid-base centers (Rozwadowski et al.,1999). We report here the synthesis and structure of the title Schiff base compound, I, Fig. 1.

The molecule is almost planar with a dihedral angle between the C2···C7 and C9···C13 benzene rings of 9.1 (2)° and an rms deviation from the meanplane through all non-hydrogen atoms in the molecule of 0.167. The CN bond distance (1.255 (2) Å) is in reasonable agreement with that observed in a similar compound (Jian et al., 2006).

Related literature top

For the applications of Schiff base compounds, see: Deschamps et al. (2003); Rozwadowski et al. (1999); Tarafder et al. (2000). For a related structure, see: Jian et al. (2006).

Experimental top

A mixture of 4-methoxyaniline 2.46 g (0.02 mol) and 4-chlorobenzaldehyde 2.8 g (0.02 mol) was stirred in ethanol (50 mL) at 367 K for 2 h, to give the title compound (3.9 g, yield 81%). Single crystals suitable for X-ray measurements were obtained by recrystallization from acetone and ethanol(1:1) at room temperature.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq(C) for aromatic and 0.96Å, Uiso = 1.5Ueq(C) for CH3 atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
N-(4-Chlorobenzylidene)-4-methoxyaniline top
Crystal data top
C14H12ClNOF(000) = 512
Mr = 245.70Dx = 1.326 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2092 reflections
a = 6.1055 (9) Åθ = 2.9–28.3°
b = 7.3392 (11) ŵ = 0.29 mm1
c = 27.469 (4) ÅT = 293 K
V = 1230.9 (3) Å3Block, yellow
Z = 40.20 × 0.15 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2092 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 28.3°, θmin = 2.9°
ϕ and ω scansh = 84
7232 measured reflectionsk = 99
2806 independent reflectionsl = 3633
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.04P)2 + 0.0836P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2806 reflectionsΔρmax = 0.14 e Å3
154 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 1450 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (7)
Crystal data top
C14H12ClNOV = 1230.9 (3) Å3
Mr = 245.70Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 6.1055 (9) ŵ = 0.29 mm1
b = 7.3392 (11) ÅT = 293 K
c = 27.469 (4) Å0.20 × 0.15 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2092 reflections with I > 2σ(I)
7232 measured reflectionsRint = 0.022
2806 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.14 e Å3
S = 1.01Δρmin = 0.16 e Å3
2806 reflectionsAbsolute structure: Flack (1983), 1450 Friedel pairs
154 parametersAbsolute structure parameter: 0.01 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.77772 (12)0.00540 (10)0.23599 (3)0.0862 (2)
O10.0611 (2)0.01368 (19)0.64134 (5)0.0560 (4)
N10.2457 (3)0.0122 (2)0.45058 (6)0.0463 (4)
C10.2589 (4)0.0731 (4)0.65469 (10)0.0750 (7)
H1B0.28590.05390.68870.112*
H1C0.37750.02300.63610.112*
H1D0.24750.20140.64830.112*
C20.0048 (3)0.0027 (2)0.59389 (7)0.0421 (4)
C30.1994 (3)0.0915 (2)0.58341 (7)0.0446 (4)
H3A0.27390.15220.60810.053*
C40.2838 (3)0.0909 (3)0.53699 (7)0.0456 (4)
H4A0.41440.15130.53050.055*
C50.1737 (3)0.0005 (2)0.49944 (7)0.0395 (4)
C60.0225 (3)0.0856 (3)0.51062 (6)0.0436 (4)
H6A0.09960.14420.48600.052*
C70.1074 (3)0.0862 (2)0.55747 (7)0.0451 (4)
H7A0.23840.14580.56420.054*
C80.4424 (3)0.0157 (2)0.43961 (7)0.0475 (5)
H8A0.54070.04390.46440.057*
C90.5235 (3)0.0060 (2)0.38958 (8)0.0456 (4)
C100.3951 (4)0.0631 (3)0.35228 (7)0.0537 (5)
H10A0.25590.10750.35920.064*
C110.4712 (4)0.0666 (3)0.30525 (8)0.0595 (6)
H11A0.38420.11330.28040.071*
C120.6790 (4)0.0000 (3)0.29508 (8)0.0572 (6)
C130.8091 (3)0.0666 (3)0.33165 (8)0.0579 (5)
H13A0.94800.11150.32470.069*
C140.7321 (3)0.0665 (3)0.37880 (7)0.0534 (5)
H14A0.82210.10790.40380.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0943 (5)0.1126 (5)0.0517 (3)0.0069 (4)0.0194 (4)0.0127 (3)
O10.0570 (9)0.0702 (10)0.0409 (7)0.0069 (7)0.0025 (7)0.0003 (6)
N10.0453 (10)0.0487 (10)0.0448 (10)0.0027 (7)0.0005 (7)0.0006 (7)
C10.0614 (15)0.104 (2)0.0598 (14)0.0089 (13)0.0097 (11)0.0055 (13)
C20.0414 (9)0.0408 (9)0.0440 (10)0.0062 (7)0.0034 (9)0.0031 (8)
C30.0429 (9)0.0450 (10)0.0459 (11)0.0016 (8)0.0062 (8)0.0036 (8)
C40.0396 (10)0.0457 (10)0.0516 (11)0.0073 (8)0.0017 (8)0.0024 (8)
C50.0408 (10)0.0361 (9)0.0417 (9)0.0022 (7)0.0009 (7)0.0013 (7)
C60.0409 (10)0.0411 (10)0.0487 (11)0.0043 (8)0.0080 (8)0.0020 (8)
C70.0397 (10)0.0444 (9)0.0511 (11)0.0048 (8)0.0023 (8)0.0014 (8)
C80.0453 (11)0.0527 (11)0.0446 (10)0.0005 (9)0.0036 (9)0.0018 (9)
C90.0435 (10)0.0449 (10)0.0484 (10)0.0041 (8)0.0011 (9)0.0025 (8)
C100.0479 (11)0.0593 (12)0.0540 (12)0.0032 (10)0.0019 (9)0.0013 (9)
C110.0598 (14)0.0688 (14)0.0498 (12)0.0060 (11)0.0051 (10)0.0013 (9)
C120.0660 (14)0.0581 (13)0.0476 (12)0.0085 (11)0.0123 (10)0.0092 (10)
C130.0473 (12)0.0646 (13)0.0617 (14)0.0032 (10)0.0059 (10)0.0055 (11)
C140.0473 (12)0.0620 (13)0.0508 (12)0.0043 (9)0.0002 (9)0.0018 (9)
Geometric parameters (Å, º) top
Cl1—C121.732 (2)C6—C71.387 (2)
O1—C21.366 (2)C6—H6A0.9300
O1—C11.414 (3)C7—H7A0.9300
N1—C81.255 (2)C8—C91.463 (3)
N1—C51.415 (3)C8—H8A0.9300
C1—H1B0.9600C9—C141.381 (3)
C1—H1C0.9600C9—C101.386 (3)
C1—H1D0.9600C10—C111.373 (3)
C2—C71.377 (3)C10—H10A0.9300
C2—C31.386 (2)C11—C121.388 (3)
C3—C41.375 (2)C11—H11A0.9300
C3—H3A0.9300C12—C131.371 (3)
C4—C51.402 (3)C13—C141.378 (3)
C4—H4A0.9300C13—H13A0.9300
C5—C61.386 (3)C14—H14A0.9300
C2—O1—C1118.19 (17)C2—C7—H7A120.4
C8—N1—C5121.00 (17)C6—C7—H7A120.4
O1—C1—H1B109.5N1—C8—C9122.78 (18)
O1—C1—H1C109.5N1—C8—H8A118.6
H1B—C1—H1C109.5C9—C8—H8A118.6
O1—C1—H1D109.5C14—C9—C10118.7 (2)
H1B—C1—H1D109.5C14—C9—C8119.87 (19)
H1C—C1—H1D109.5C10—C9—C8121.40 (17)
O1—C2—C7125.07 (16)C11—C10—C9120.7 (2)
O1—C2—C3115.02 (17)C11—C10—H10A119.6
C7—C2—C3119.91 (18)C9—C10—H10A119.6
C4—C3—C2120.82 (17)C10—C11—C12119.5 (2)
C4—C3—H3A119.6C10—C11—H11A120.3
C2—C3—H3A119.6C12—C11—H11A120.3
C3—C4—C5120.27 (17)C13—C12—C11120.5 (2)
C3—C4—H4A119.9C13—C12—Cl1119.55 (17)
C5—C4—H4A119.9C11—C12—Cl1119.92 (19)
C6—C5—C4117.86 (18)C12—C13—C14119.42 (18)
C6—C5—N1116.83 (16)C12—C13—H13A120.3
C4—C5—N1125.31 (16)C14—C13—H13A120.3
C5—C6—C7122.00 (17)C13—C14—C9121.1 (2)
C5—C6—H6A119.0C13—C14—H14A119.5
C7—C6—H6A119.0C9—C14—H14A119.5
C2—C7—C6119.11 (17)

Experimental details

Crystal data
Chemical formulaC14H12ClNO
Mr245.70
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)6.1055 (9), 7.3392 (11), 27.469 (4)
V3)1230.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.20 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7232, 2806, 2092
Rint0.022
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.01
No. of reflections2806
No. of parameters154
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16
Absolute structureFlack (1983), 1450 Friedel pairs
Absolute structure parameter0.01 (7)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem., 42, 7366–7368.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJian, F.-F., Zhuang, R.-R., Wang, K.-F., Zhao, P.-S. & Xiao, H.-L. (2006). Acta Cryst. E62, o3198–o3199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRozwadowski, Z., Majewski, E., Dziembowska, T. & Hansen, P. E. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2809–2817.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456–460.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds