organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di­cyclo­hexyl­naphthalene-1,8;4:5-dicarboximide

aEastman Kodak Company, Kodak Research Laboratories, Rochester, NY 14650-2106, USA
*Correspondence e-mail: manju.rajeswaran@kodak.com

(Received 31 July 2008; accepted 5 August 2008; online 9 August 2008)

The title compound, C26H26N2O4, synthesized by the reaction of naphthalene-1,4,5,8-tetra­carboxylic acid anhydride and cyclo­hexyl­amine, exhibits good n-type semiconducting properties. Accordingly, thin-film transistor devices comprising this compound show n-type behavior with high field-effect electron moblity ca 6 cm2/Vs [Shukla, Nelson, Freeman, Rajeswaran, Ahearn, Meyer & Carey(2008[Shukla, D., Nelson, S. F., Freeman, D. C., Rajeswaran, M., Ahearn, W. G., Meyer, D. M. & Carey, J. T. (2008). Chem. Mater. Submitted.]). Chem. Mater. Submitted]. The asymmetric unit comprises one-quarter of the centrosymmetric mol­ecule in which all but two methyl­ene C atoms of the cyclo­hexane ring lie on a mirror plane; the point-group symmetry is 2/m. The naphthalene­diimide unit is strictly planar, and the cyclo­hexane rings adopt chair conformations with the diimide unit in an equatorial position on each ring.

Related literature

For general background on the semi-conducting properties and use of this class of material in organic thin-film transistor applications, see: Chesterfield et al. (2004a[Chesterfield, R. J., McKeen, J. C., Newman, C. R., Ewbank, P. C., da SilvaFilho, D. A., Brédas, J. L., Miller, L. L., Mann, K. R. & Frisbie, C. D. (2004a). J. Phys. Chem. B, 108, 19281-19292.],b[Chesterfield, R. J., McKeen, J. C., Newman, C. R., Frisbie, C. D., Ewbank, P. C., Mann, K. R. & Miller, L. L. (2004b). Appl. Phys. Lett. 95, 6396-6405.]); Facceti et al. (2008[Facceti, A., Yoon, M.-H. & Marks, T. J. (2008). Adv. Mater. 17, 1705-1725.]); Jones et al. (2004[Jones, B. A., Ahrens, M. J., Yoon, M.-H., Facchetti, A., Marks, T. J. & Wasielewski, M. R. (2004). Angew. Chem. Int. Ed. 43, 6363-6366.]); Katz et al. (2000a[Katz, H. E., Johnson, J., Lovinger, A. J. & Li, W. (2000a). J. Am. Chem. Soc. 122, 7787-7792.],b[Katz, H. E., Lovinger, A. J., Johnson, J., Kloc, C., Siegrist, T., Li, W., Lin, Y.-Y. & Dodabalapur, A. (2000b). Nature (London), 404, 478-481.]); Shukla et al. (2008[Shukla, D., Nelson, S. F., Freeman, D. C., Rajeswaran, M., Ahearn, W. G., Meyer, D. M. & Carey, J. T. (2008). Chem. Mater. Submitted.]).

[Scheme 1]

Experimental

Crystal data
  • C26H26N2O4

  • Mr = 430.49

  • Monoclinic, C 2/m

  • a = 8.5410 (2) Å

  • b = 6.6780 (2) Å

  • c = 18.4270 (9) Å

  • β = 102.4790 (18)°

  • V = 1026.19 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.35 × 0.25 × 0.17 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 3354 measured reflections

  • 1227 independent reflections

  • 787 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.182

  • S = 1.06

  • 1227 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2007[Westrip, S. P. (2007). publCIF. In preparation.]).

Supporting information


Comment top

Amongst n-type semiconductors, naphthalene diimide (NDI) and perylene diimide (PDI) based systems have been studied extensively (Chesterfield, et al., 2004a; Chesterfield et al., 2004b; Facceti et al., 2008; Jones, et al., 2004; Katz, et al., 2000a; Katz, et al., 2000b). We report here the structure of the title diimide molecule, I, (Fig. 1).

Related literature top

For general background on the semi-conducting properties and use of this class of material in organic thin-film transistor applications, see: Chesterfield et al. (2004a,b); Facceti et al. (2008); Jones et al. (2004); Katz et al. (2000a,b); Shukla et al. (2008).

Experimental top

The diimide 1 was prepared by direct condensation of 1,4,5,8-naphthalenetetracarboxylic acid anhydride (1.34 g, 5.00 mmol) and cyclohexylamine (30 mmol) in the presence of zinc acetate (50 mg) in 15 mL quinoline. The mixture was heated at 140-150°C for four hours, cooled and diluted with several volumes of methanol. The resulting slurry was filtered, the collected solid washed with methanol and dried in air. The crude product was then purified by train sublimation at 10-4 to 10-6 torr. 1H NMR (CD2Cl2,500.05 MHz): δ (ppm) = 8.76 (s, 4H), 5.10 (t,2H, J = 12 Hz), 2.64 (dt, 2H, J = 12 and 11.7 Hzs), 1.57 (dt, 2H, J = 12 and11.7 Hz), 2.03 (d, 2H, J = 12 Hz), 1.87 (d, 2H, J = 12 Hz), 1.47 (m, 2H); 13C(CD2Cl2, 500.05 MHz): d = 163.23, 130.74, 127.13, 126.70,54.85, 29.38, 26.66, 25.52; MS (MALDI-TOF) m/z cald. for [C26H26N2O4]430.5 found: 430.2.

Refinement top

All H-atoms were positioned geometrically using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C) for aromatic 0.97Å, Uiso = 1.2Ueq (C) for CH2 atoms.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. Structure of the title compound (I), with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.
N,N'-dicyclohexylnaphthalene-1,8;4:5-dicarboximide top
Crystal data top
C26H26N2O4F(000) = 456
Mr = 430.49Dx = 1.393 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 21067 reflections
a = 8.5410 (2) Åθ = 1.0–27.5°
b = 6.6780 (2) ŵ = 0.09 mm1
c = 18.4270 (9) ÅT = 293 K
β = 102.4790 (18)°Block, orange
V = 1026.19 (6) Å30.35 × 0.25 × 0.17 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
787 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.087
Graphite monochromatorθmax = 27.4°, θmin = 4.3°
Detector resolution: 9 pixels mm-1h = 1010
ϕ and ω scansk = 88
3354 measured reflectionsl = 2320
1227 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0638P)2 + 1.0546P]
where P = (Fo2 + 2Fc2)/3
1227 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C26H26N2O4V = 1026.19 (6) Å3
Mr = 430.49Z = 2
Monoclinic, C2/mMo Kα radiation
a = 8.5410 (2) ŵ = 0.09 mm1
b = 6.6780 (2) ÅT = 293 K
c = 18.4270 (9) Å0.35 × 0.25 × 0.17 mm
β = 102.4790 (18)°
Data collection top
Nonius KappaCCD
diffractometer
787 reflections with I > 2σ(I)
3354 measured reflectionsRint = 0.087
1227 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.06Δρmax = 0.39 e Å3
1227 reflectionsΔρmin = 0.29 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2160 (3)0.00000.28476 (12)0.0594 (8)
O20.7630 (3)0.00000.33332 (13)0.0647 (8)
N10.4894 (3)0.00000.30625 (13)0.0431 (7)
C10.6391 (4)0.00000.35566 (18)0.0457 (8)
C20.6418 (3)0.00000.43622 (17)0.0422 (8)
C30.7854 (4)0.00000.48703 (18)0.0510 (9)
H30.88060.00000.47030.061*
C40.4979 (3)0.00000.46157 (16)0.0384 (7)
C50.2086 (4)0.00000.43639 (18)0.0494 (9)
H50.11000.00000.40300.059*
C60.3486 (3)0.00000.41020 (17)0.0410 (7)
C70.3427 (4)0.00000.32968 (18)0.0446 (8)
C80.4868 (4)0.00000.22507 (16)0.0460 (8)
H80.59910.00000.22070.055*
C90.4125 (3)0.1896 (4)0.18665 (13)0.0591 (7)
H9A0.46840.30600.21100.071*
H9B0.30100.19860.19010.071*
C100.4238 (3)0.1862 (5)0.10529 (14)0.0708 (9)
H10A0.36990.30310.08030.085*
H10B0.53560.19260.10220.085*
C110.3488 (5)0.00000.0665 (2)0.0664 (11)
H11A0.36240.00000.01560.080*
H11B0.23480.00000.06540.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0365 (12)0.088 (2)0.0494 (14)0.0000.0005 (9)0.000
O20.0363 (12)0.105 (2)0.0535 (14)0.0000.0113 (10)0.000
N10.0330 (12)0.0522 (17)0.0428 (14)0.0000.0052 (10)0.000
C10.0323 (15)0.051 (2)0.0514 (19)0.0000.0047 (12)0.000
C20.0322 (15)0.0478 (19)0.0456 (18)0.0000.0066 (12)0.000
C30.0296 (15)0.071 (2)0.0513 (19)0.0000.0072 (12)0.000
C40.0309 (14)0.0364 (16)0.0459 (16)0.0000.0040 (11)0.000
C50.0292 (14)0.065 (2)0.0503 (19)0.0000.0012 (12)0.000
C60.0303 (15)0.0445 (18)0.0460 (17)0.0000.0033 (12)0.000
C70.0357 (15)0.0466 (19)0.0491 (18)0.0000.0038 (13)0.000
C80.0379 (15)0.059 (2)0.0403 (17)0.0000.0059 (12)0.000
C90.0643 (15)0.0483 (15)0.0601 (16)0.0050 (13)0.0033 (11)0.0031 (12)
C100.0716 (17)0.080 (2)0.0561 (16)0.0103 (17)0.0045 (12)0.0170 (15)
C110.056 (2)0.094 (3)0.047 (2)0.0000.0059 (16)0.000
Geometric parameters (Å, º) top
O1—C71.212 (3)C5—H50.9300
O2—C11.216 (4)C6—C71.474 (4)
N1—C11.401 (4)C8—C9ii1.521 (3)
N1—C71.411 (4)C8—C91.521 (3)
N1—C81.491 (4)C8—H80.9800
C1—C21.480 (4)C9—C101.523 (3)
C2—C31.373 (4)C9—H9A0.9700
C2—C41.406 (4)C9—H9B0.9700
C3—C5i1.401 (4)C10—C111.506 (4)
C3—H30.9300C10—H10A0.9700
C4—C4i1.409 (6)C10—H10B0.9700
C4—C61.415 (4)C11—C10ii1.506 (4)
C5—C61.382 (4)C11—H11A0.9700
C5—C3i1.401 (4)C11—H11B0.9700
C1—N1—C7123.2 (3)N1—C8—C9ii112.42 (17)
C1—N1—C8117.8 (3)N1—C8—C9112.42 (17)
C7—N1—C8119.0 (2)C9ii—C8—C9112.7 (3)
O2—C1—N1121.3 (3)N1—C8—H8106.2
O2—C1—C2120.9 (3)C9ii—C8—H8106.2
N1—C1—C2117.8 (3)C9—C8—H8106.2
C3—C2—C4119.3 (3)C8—C9—C10109.7 (2)
C3—C2—C1120.1 (3)C8—C9—H9A109.7
C4—C2—C1120.5 (3)C10—C9—H9A109.7
C2—C3—C5i121.3 (3)C8—C9—H9B109.7
C2—C3—H3119.3C10—C9—H9B109.7
C5i—C3—H3119.3H9A—C9—H9B108.2
C2—C4—C4i120.0 (3)C11—C10—C9111.6 (3)
C2—C4—C6120.3 (3)C11—C10—H10A109.3
C4i—C4—C6119.7 (3)C9—C10—H10A109.3
C6—C5—C3i120.4 (3)C11—C10—H10B109.3
C6—C5—H5119.8C9—C10—H10B109.3
C3i—C5—H5119.8H10A—C10—H10B108.0
C5—C6—C4119.3 (3)C10—C11—C10ii111.3 (3)
C5—C6—C7120.5 (3)C10—C11—H11A109.4
C4—C6—C7120.2 (3)C10ii—C11—H11A109.4
O1—C7—N1120.8 (3)C10—C11—H11B109.4
O1—C7—C6121.2 (3)C10ii—C11—H11B109.4
N1—C7—C6118.0 (2)H11A—C11—H11B108.0
C7—N1—C1—O2180.0C2—C4—C6—C70.0
C8—N1—C1—O20.0C4i—C4—C6—C7180.0
C7—N1—C1—C20.0C1—N1—C7—O1180.0
C8—N1—C1—C2180.0C8—N1—C7—O10.0
O2—C1—C2—C30.0C1—N1—C7—C60.0
N1—C1—C2—C3180.0C8—N1—C7—C6180.0
O2—C1—C2—C4180.0C5—C6—C7—O10.0
N1—C1—C2—C40.0C4—C6—C7—O1180.0
C4—C2—C3—C5i0.000 (1)C5—C6—C7—N1180.0
C1—C2—C3—C5i180.0C4—C6—C7—N10.0
C3—C2—C4—C4i0.0C1—N1—C8—C9ii115.76 (19)
C1—C2—C4—C4i180.0C7—N1—C8—C9ii64.24 (19)
C3—C2—C4—C6180.0C1—N1—C8—C9115.76 (19)
C1—C2—C4—C60.0C7—N1—C8—C964.24 (19)
C3i—C5—C6—C40.000 (1)N1—C8—C9—C10176.2 (2)
C3i—C5—C6—C7180.0C9ii—C8—C9—C1055.5 (4)
C2—C4—C6—C5180.0C8—C9—C10—C1155.2 (3)
C4i—C4—C6—C50.000 (1)C9—C10—C11—C10ii56.5 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC26H26N2O4
Mr430.49
Crystal system, space groupMonoclinic, C2/m
Temperature (K)293
a, b, c (Å)8.5410 (2), 6.6780 (2), 18.4270 (9)
β (°) 102.4790 (18)
V3)1026.19 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.25 × 0.17
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3354, 1227, 787
Rint0.087
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.182, 1.06
No. of reflections1227
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.29

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2007).

 

Acknowledgements

We thank Ms Wendy Ahearn and Ms Dianne Meyer of Eastman Kodak Company for material purification and crystal growth via sublimation.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChesterfield, R. J., McKeen, J. C., Newman, C. R., Ewbank, P. C., da SilvaFilho, D. A., Brédas, J. L., Miller, L. L., Mann, K. R. & Frisbie, C. D. (2004a). J. Phys. Chem. B, 108, 19281–19292.  Web of Science CrossRef CAS Google Scholar
First citationChesterfield, R. J., McKeen, J. C., Newman, C. R., Frisbie, C. D., Ewbank, P. C., Mann, K. R. & Miller, L. L. (2004b). Appl. Phys. Lett. 95, 6396–6405.  CAS Google Scholar
First citationFacceti, A., Yoon, M.-H. & Marks, T. J. (2008). Adv. Mater. 17, 1705–1725.  Google Scholar
First citationJones, B. A., Ahrens, M. J., Yoon, M.–H., Facchetti, A., Marks, T. J. & Wasielewski, M. R. (2004). Angew. Chem. Int. Ed. 43, 6363–6366.  Web of Science CSD CrossRef CAS Google Scholar
First citationKatz, H. E., Johnson, J., Lovinger, A. J. & Li, W. (2000a). J. Am. Chem. Soc. 122, 7787–7792.  Web of Science CrossRef CAS Google Scholar
First citationKatz, H. E., Lovinger, A. J., Johnson, J., Kloc, C., Siegrist, T., Li, W., Lin, Y.-Y. & Dodabalapur, A. (2000b). Nature (London), 404, 478–481.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShukla, D., Nelson, S. F., Freeman, D. C., Rajeswaran, M., Ahearn, W. G., Meyer, D. M. & Carey, J. T. (2008). Chem. Mater. Submitted.  Google Scholar
First citationWestrip, S. P. (2007). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds