organic compounds
N,N′-Dicyclohexylnaphthalene-1,8;4:5-dicarboximide
aEastman Kodak Company, Kodak Research Laboratories, Rochester, NY 14650-2106, USA
*Correspondence e-mail: manju.rajeswaran@kodak.com
The title compound, C26H26N2O4, synthesized by the reaction of naphthalene-1,4,5,8-tetracarboxylic acid anhydride and cyclohexylamine, exhibits good n-type semiconducting properties. Accordingly, thin-film transistor devices comprising this compound show n-type behavior with high field-effect electron moblity ca 6 cm2/Vs [Shukla, Nelson, Freeman, Rajeswaran, Ahearn, Meyer & Carey(2008). Chem. Mater. Submitted]. The comprises one-quarter of the centrosymmetric molecule in which all but two methylene C atoms of the cyclohexane ring lie on a mirror plane; the point-group symmetry is 2/m. The naphthalenediimide unit is strictly planar, and the cyclohexane rings adopt chair conformations with the diimide unit in an equatorial position on each ring.
Related literature
For general background on the semi-conducting properties and use of this class of material in organic thin-film transistor applications, see: Chesterfield et al. (2004a,b); Facceti et al. (2008); Jones et al. (2004); Katz et al. (2000a,b); Shukla et al. (2008).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2007).
Supporting information
10.1107/S1600536808025221/sj2528sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808025221/sj2528Isup2.hkl
The diimide 1 was prepared by direct condensation of 1,4,5,8-naphthalenetetracarboxylic acid anhydride (1.34 g, 5.00 mmol) and cyclohexylamine (30 mmol) in the presence of zinc acetate (50 mg) in 15 mL quinoline. The mixture was heated at 140-150°C for four hours, cooled and diluted with several volumes of methanol. The resulting slurry was filtered, the collected solid washed with methanol and dried in air. The crude product was then purified by train δ (ppm) = 8.76 (s, 4H), 5.10 (t,2H, J = 12 Hz), 2.64 (dt, 2H, J = 12 and 11.7 Hzs), 1.57 (dt, 2H, J = 12 and11.7 Hz), 2.03 (d, 2H, J = 12 Hz), 1.87 (d, 2H, J = 12 Hz), 1.47 (m, 2H); 13C(CD2Cl2, 500.05 MHz): d = 163.23, 130.74, 127.13, 126.70,54.85, 29.38, 26.66, 25.52; MS (MALDI-TOF) m/z cald. for [C26H26N2O4]430.5 found: 430.2.
at 10-4 to 10-6 torr. 1H NMR (CD2Cl2,500.05 MHz):All H-atoms were positioned geometrically using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C) for aromatic 0.97Å, Uiso = 1.2Ueq (C) for CH2 atoms.
Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2007).Fig. 1. Structure of the title compound (I), with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. |
C26H26N2O4 | F(000) = 456 |
Mr = 430.49 | Dx = 1.393 Mg m−3 |
Monoclinic, C2/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2y | Cell parameters from 21067 reflections |
a = 8.5410 (2) Å | θ = 1.0–27.5° |
b = 6.6780 (2) Å | µ = 0.09 mm−1 |
c = 18.4270 (9) Å | T = 293 K |
β = 102.4790 (18)° | Block, orange |
V = 1026.19 (6) Å3 | 0.35 × 0.25 × 0.17 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 787 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.087 |
Graphite monochromator | θmax = 27.4°, θmin = 4.3° |
Detector resolution: 9 pixels mm-1 | h = −10→10 |
ϕ and ω scans | k = −8→8 |
3354 measured reflections | l = −23→20 |
1227 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.067 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.182 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0638P)2 + 1.0546P] where P = (Fo2 + 2Fc2)/3 |
1227 reflections | (Δ/σ)max < 0.001 |
91 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
C26H26N2O4 | V = 1026.19 (6) Å3 |
Mr = 430.49 | Z = 2 |
Monoclinic, C2/m | Mo Kα radiation |
a = 8.5410 (2) Å | µ = 0.09 mm−1 |
b = 6.6780 (2) Å | T = 293 K |
c = 18.4270 (9) Å | 0.35 × 0.25 × 0.17 mm |
β = 102.4790 (18)° |
Nonius KappaCCD diffractometer | 787 reflections with I > 2σ(I) |
3354 measured reflections | Rint = 0.087 |
1227 independent reflections |
R[F2 > 2σ(F2)] = 0.067 | 0 restraints |
wR(F2) = 0.182 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.39 e Å−3 |
1227 reflections | Δρmin = −0.29 e Å−3 |
91 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2160 (3) | 0.0000 | 0.28476 (12) | 0.0594 (8) | |
O2 | 0.7630 (3) | 0.0000 | 0.33332 (13) | 0.0647 (8) | |
N1 | 0.4894 (3) | 0.0000 | 0.30625 (13) | 0.0431 (7) | |
C1 | 0.6391 (4) | 0.0000 | 0.35566 (18) | 0.0457 (8) | |
C2 | 0.6418 (3) | 0.0000 | 0.43622 (17) | 0.0422 (8) | |
C3 | 0.7854 (4) | 0.0000 | 0.48703 (18) | 0.0510 (9) | |
H3 | 0.8806 | 0.0000 | 0.4703 | 0.061* | |
C4 | 0.4979 (3) | 0.0000 | 0.46157 (16) | 0.0384 (7) | |
C5 | 0.2086 (4) | 0.0000 | 0.43639 (18) | 0.0494 (9) | |
H5 | 0.1100 | 0.0000 | 0.4030 | 0.059* | |
C6 | 0.3486 (3) | 0.0000 | 0.41020 (17) | 0.0410 (7) | |
C7 | 0.3427 (4) | 0.0000 | 0.32968 (18) | 0.0446 (8) | |
C8 | 0.4868 (4) | 0.0000 | 0.22507 (16) | 0.0460 (8) | |
H8 | 0.5991 | 0.0000 | 0.2207 | 0.055* | |
C9 | 0.4125 (3) | 0.1896 (4) | 0.18665 (13) | 0.0591 (7) | |
H9A | 0.4684 | 0.3060 | 0.2110 | 0.071* | |
H9B | 0.3010 | 0.1986 | 0.1901 | 0.071* | |
C10 | 0.4238 (3) | 0.1862 (5) | 0.10529 (14) | 0.0708 (9) | |
H10A | 0.3699 | 0.3031 | 0.0803 | 0.085* | |
H10B | 0.5356 | 0.1926 | 0.1022 | 0.085* | |
C11 | 0.3488 (5) | 0.0000 | 0.0665 (2) | 0.0664 (11) | |
H11A | 0.3624 | 0.0000 | 0.0156 | 0.080* | |
H11B | 0.2348 | 0.0000 | 0.0654 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0365 (12) | 0.088 (2) | 0.0494 (14) | 0.000 | 0.0005 (9) | 0.000 |
O2 | 0.0363 (12) | 0.105 (2) | 0.0535 (14) | 0.000 | 0.0113 (10) | 0.000 |
N1 | 0.0330 (12) | 0.0522 (17) | 0.0428 (14) | 0.000 | 0.0052 (10) | 0.000 |
C1 | 0.0323 (15) | 0.051 (2) | 0.0514 (19) | 0.000 | 0.0047 (12) | 0.000 |
C2 | 0.0322 (15) | 0.0478 (19) | 0.0456 (18) | 0.000 | 0.0066 (12) | 0.000 |
C3 | 0.0296 (15) | 0.071 (2) | 0.0513 (19) | 0.000 | 0.0072 (12) | 0.000 |
C4 | 0.0309 (14) | 0.0364 (16) | 0.0459 (16) | 0.000 | 0.0040 (11) | 0.000 |
C5 | 0.0292 (14) | 0.065 (2) | 0.0503 (19) | 0.000 | 0.0012 (12) | 0.000 |
C6 | 0.0303 (15) | 0.0445 (18) | 0.0460 (17) | 0.000 | 0.0033 (12) | 0.000 |
C7 | 0.0357 (15) | 0.0466 (19) | 0.0491 (18) | 0.000 | 0.0038 (13) | 0.000 |
C8 | 0.0379 (15) | 0.059 (2) | 0.0403 (17) | 0.000 | 0.0059 (12) | 0.000 |
C9 | 0.0643 (15) | 0.0483 (15) | 0.0601 (16) | −0.0050 (13) | 0.0033 (11) | 0.0031 (12) |
C10 | 0.0716 (17) | 0.080 (2) | 0.0561 (16) | −0.0103 (17) | 0.0045 (12) | 0.0170 (15) |
C11 | 0.056 (2) | 0.094 (3) | 0.047 (2) | 0.000 | 0.0059 (16) | 0.000 |
O1—C7 | 1.212 (3) | C5—H5 | 0.9300 |
O2—C1 | 1.216 (4) | C6—C7 | 1.474 (4) |
N1—C1 | 1.401 (4) | C8—C9ii | 1.521 (3) |
N1—C7 | 1.411 (4) | C8—C9 | 1.521 (3) |
N1—C8 | 1.491 (4) | C8—H8 | 0.9800 |
C1—C2 | 1.480 (4) | C9—C10 | 1.523 (3) |
C2—C3 | 1.373 (4) | C9—H9A | 0.9700 |
C2—C4 | 1.406 (4) | C9—H9B | 0.9700 |
C3—C5i | 1.401 (4) | C10—C11 | 1.506 (4) |
C3—H3 | 0.9300 | C10—H10A | 0.9700 |
C4—C4i | 1.409 (6) | C10—H10B | 0.9700 |
C4—C6 | 1.415 (4) | C11—C10ii | 1.506 (4) |
C5—C6 | 1.382 (4) | C11—H11A | 0.9700 |
C5—C3i | 1.401 (4) | C11—H11B | 0.9700 |
C1—N1—C7 | 123.2 (3) | N1—C8—C9ii | 112.42 (17) |
C1—N1—C8 | 117.8 (3) | N1—C8—C9 | 112.42 (17) |
C7—N1—C8 | 119.0 (2) | C9ii—C8—C9 | 112.7 (3) |
O2—C1—N1 | 121.3 (3) | N1—C8—H8 | 106.2 |
O2—C1—C2 | 120.9 (3) | C9ii—C8—H8 | 106.2 |
N1—C1—C2 | 117.8 (3) | C9—C8—H8 | 106.2 |
C3—C2—C4 | 119.3 (3) | C8—C9—C10 | 109.7 (2) |
C3—C2—C1 | 120.1 (3) | C8—C9—H9A | 109.7 |
C4—C2—C1 | 120.5 (3) | C10—C9—H9A | 109.7 |
C2—C3—C5i | 121.3 (3) | C8—C9—H9B | 109.7 |
C2—C3—H3 | 119.3 | C10—C9—H9B | 109.7 |
C5i—C3—H3 | 119.3 | H9A—C9—H9B | 108.2 |
C2—C4—C4i | 120.0 (3) | C11—C10—C9 | 111.6 (3) |
C2—C4—C6 | 120.3 (3) | C11—C10—H10A | 109.3 |
C4i—C4—C6 | 119.7 (3) | C9—C10—H10A | 109.3 |
C6—C5—C3i | 120.4 (3) | C11—C10—H10B | 109.3 |
C6—C5—H5 | 119.8 | C9—C10—H10B | 109.3 |
C3i—C5—H5 | 119.8 | H10A—C10—H10B | 108.0 |
C5—C6—C4 | 119.3 (3) | C10—C11—C10ii | 111.3 (3) |
C5—C6—C7 | 120.5 (3) | C10—C11—H11A | 109.4 |
C4—C6—C7 | 120.2 (3) | C10ii—C11—H11A | 109.4 |
O1—C7—N1 | 120.8 (3) | C10—C11—H11B | 109.4 |
O1—C7—C6 | 121.2 (3) | C10ii—C11—H11B | 109.4 |
N1—C7—C6 | 118.0 (2) | H11A—C11—H11B | 108.0 |
C7—N1—C1—O2 | 180.0 | C2—C4—C6—C7 | 0.0 |
C8—N1—C1—O2 | 0.0 | C4i—C4—C6—C7 | 180.0 |
C7—N1—C1—C2 | 0.0 | C1—N1—C7—O1 | 180.0 |
C8—N1—C1—C2 | 180.0 | C8—N1—C7—O1 | 0.0 |
O2—C1—C2—C3 | 0.0 | C1—N1—C7—C6 | 0.0 |
N1—C1—C2—C3 | 180.0 | C8—N1—C7—C6 | 180.0 |
O2—C1—C2—C4 | 180.0 | C5—C6—C7—O1 | 0.0 |
N1—C1—C2—C4 | 0.0 | C4—C6—C7—O1 | 180.0 |
C4—C2—C3—C5i | 0.000 (1) | C5—C6—C7—N1 | 180.0 |
C1—C2—C3—C5i | 180.0 | C4—C6—C7—N1 | 0.0 |
C3—C2—C4—C4i | 0.0 | C1—N1—C8—C9ii | 115.76 (19) |
C1—C2—C4—C4i | 180.0 | C7—N1—C8—C9ii | −64.24 (19) |
C3—C2—C4—C6 | 180.0 | C1—N1—C8—C9 | −115.76 (19) |
C1—C2—C4—C6 | 0.0 | C7—N1—C8—C9 | 64.24 (19) |
C3i—C5—C6—C4 | 0.000 (1) | N1—C8—C9—C10 | 176.2 (2) |
C3i—C5—C6—C7 | 180.0 | C9ii—C8—C9—C10 | −55.5 (4) |
C2—C4—C6—C5 | 180.0 | C8—C9—C10—C11 | 55.2 (3) |
C4i—C4—C6—C5 | 0.000 (1) | C9—C10—C11—C10ii | −56.5 (4) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y, z. |
Experimental details
Crystal data | |
Chemical formula | C26H26N2O4 |
Mr | 430.49 |
Crystal system, space group | Monoclinic, C2/m |
Temperature (K) | 293 |
a, b, c (Å) | 8.5410 (2), 6.6780 (2), 18.4270 (9) |
β (°) | 102.4790 (18) |
V (Å3) | 1026.19 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.35 × 0.25 × 0.17 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3354, 1227, 787 |
Rint | 0.087 |
(sin θ/λ)max (Å−1) | 0.646 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.067, 0.182, 1.06 |
No. of reflections | 1227 |
No. of parameters | 91 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.29 |
Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2007).
Acknowledgements
We thank Ms Wendy Ahearn and Ms Dianne Meyer of Eastman Kodak Company for material purification and crystal growth via sublimation.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chesterfield, R. J., McKeen, J. C., Newman, C. R., Ewbank, P. C., da SilvaFilho, D. A., Brédas, J. L., Miller, L. L., Mann, K. R. & Frisbie, C. D. (2004a). J. Phys. Chem. B, 108, 19281–19292. Web of Science CrossRef CAS Google Scholar
Chesterfield, R. J., McKeen, J. C., Newman, C. R., Frisbie, C. D., Ewbank, P. C., Mann, K. R. & Miller, L. L. (2004b). Appl. Phys. Lett. 95, 6396–6405. CAS Google Scholar
Facceti, A., Yoon, M.-H. & Marks, T. J. (2008). Adv. Mater. 17, 1705–1725. Google Scholar
Jones, B. A., Ahrens, M. J., Yoon, M.–H., Facchetti, A., Marks, T. J. & Wasielewski, M. R. (2004). Angew. Chem. Int. Ed. 43, 6363–6366. Web of Science CSD CrossRef CAS Google Scholar
Katz, H. E., Johnson, J., Lovinger, A. J. & Li, W. (2000a). J. Am. Chem. Soc. 122, 7787–7792. Web of Science CrossRef CAS Google Scholar
Katz, H. E., Lovinger, A. J., Johnson, J., Kloc, C., Siegrist, T., Li, W., Lin, Y.-Y. & Dodabalapur, A. (2000b). Nature (London), 404, 478–481. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shukla, D., Nelson, S. F., Freeman, D. C., Rajeswaran, M., Ahearn, W. G., Meyer, D. M. & Carey, J. T. (2008). Chem. Mater. Submitted. Google Scholar
Westrip, S. P. (2007). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Amongst n-type semiconductors, naphthalene diimide (NDI) and perylene diimide (PDI) based systems have been studied extensively (Chesterfield, et al., 2004a; Chesterfield et al., 2004b; Facceti et al., 2008; Jones, et al., 2004; Katz, et al., 2000a; Katz, et al., 2000b). We report here the structure of the title diimide molecule, I, (Fig. 1).