organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1720-o1721

3-(2-Chloro-6-fluoro­phen­yl)-1-(2-thien­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 31 July 2008; accepted 2 August 2008; online 9 August 2008)

The title chalcone derivative, C13H8ClFOS, crystallized as an inversion twin with two independent mol­ecules in the asymmetric unit. The thio­phene rings in both mol­ecules are disordered over two sites: the ratios of occupancies for the major and minor components in the two mol­ecules are 0.820 (2):0.180 (2) and 0.853 (2):0.147 (2). The dihedral angles between the major and minor components of the thio­phene and benzene rings are 1.13 (18) and 2.2 (6)°, respectively, in one mol­ecule, with corresponding values 6.09 (17) and 1.3 (6)° in the other. Weak intra­molecular C—H⋯O and C—H⋯F inter­actions involving the prop-2-en-1-one group generate an S(5)S(5) ring motif, whereas a weak intra­molecular C—H⋯Cl contact generates an S(6) ring motif. In the crystal structure, mol­ecules of both the major and minor components are linked into infinite one-dimensional chains along the b axis. The crystal structure is stabilized by weak C—H⋯O, C—H⋯F, C—H⋯Cl and C—H⋯π inter­actions.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures, see, for example: Fun et al. (2008[Fun, H.-K., Jebas, S. R., Patil, P. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1510-o1511.]); Patil et al. (2007b[Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o2497-o2498.],c[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007c). Acta Cryst. E63, o2122-o2123.]). For background to the applications of substituted chalcones, see, for example: Agrinskaya et al. (1999[Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State. 41, 1914-1917.]); Chopra et al. (2007[Chopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, o704-o710.]). Patil et al. (2007a[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007a). J. Cryst. Growth. 303, 520-524.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8ClFOS

  • Mr = 266.71

  • Monoclinic, C c

  • a = 12.1137 (3) Å

  • b = 10.5012 (3) Å

  • c = 18.6689 (5) Å

  • β = 107.882 (3)°

  • V = 2260.11 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 100.0 (1) K

  • 0.38 × 0.27 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.830, Tmax = 0.911

  • 26405 measured reflections

  • 6525 independent reflections

  • 5474 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.171

  • S = 1.05

  • 6525 reflections

  • 347 parameters

  • 233 restraints

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.92 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3231 Friedel pairs

  • Flack parameter: 0.43 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7A—H7AA⋯F1A 0.93 2.39 2.814 (4) 107
C7A—H7AA⋯O1A 0.93 2.45 2.827 (4) 104
C8A—H8AA⋯Cl1A 0.93 2.44 3.103 (3) 129
C7B—H7BA⋯F1B 0.93 2.37 2.794 (3) 107
C7B—H7BA⋯O1B 0.93 2.43 2.812 (3) 104
C8B—H8BA⋯Cl1B 0.93 2.46 3.105 (3) 126
C11A—H11A⋯F1Ai 0.93 2.54 3.375 (6) 150
C12A—H12A⋯O1Ai 0.93 2.51 3.402 (5) 161
C12B—H12C⋯O1Bii 0.93 2.50 3.427 (4) 174
C3A—H3AACg1iii 0.93 3.06 3.748 (4) 132
C3A—H3AACg3iii 0.93 3.14 3.825 (7) 132
C3B—H3BACg5iv 0.93 3.02 3.778 (4) 140
C11B—H11CCg6v 0.93 2.81 3.677 (4) 155
C13A—H13ACg2iv 0.93 2.82 3.608 (4) 143
C13A—H13ACg4iv 0.93 2.82 3.625 (8) 145
C12X—H12BCg2iv 0.93 3.21 3.835 (16) 126
C12X—H12BCg4iv 0.93 3.18 3.840 (18) 129
C12Y—H12DCg6v 0.93 3.04 3.79 (2) 139
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) [x, -y+1, z+{\script{1\over 2}}]. Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of the S1A/C10A–C13A, S1B/C10B–C13B, S1X/C10A/C10X–C13X, S1Y/C10B/C11Y–C13Y, C1A–C6A and C1B–C6B rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Chalcone derivatives have received much attention in recent years (Chopra et al., 2007). Some chalcone derivatives have been found to have nonlinear optical properties (Agrinskaya et al., 1999). As part of our research on the synthesis and characterization of chalcone derivatives (Patil et al., 2007a, b, c), we report here the structure of the title compound.

In the asymmetric unit of the title compound (Fig. 1), there are two independent molecules A and B. The enone fragment, thiophene and benzene rings are individually essentially co-planar. The thiophene rings in both molecules are disordered over two sites which correspond to a rotation of approximately 180° about the single C—C bond (C9—C10). The approximate ratios of occupancies for the major and minor components are 0.820 (2):0.180 (2) in A and 0.853 (2):0.147 (2) in B. The dihedral angles between the major and and minor components of thiophene and the benzene rings are 1.13 (18)° [S1A/C10A–C13A with C1A–C6A] and 2.2 (6)° [S1X/C10A/C11X–C13X with C1A–C6A] in A and 6.09 (17)° [S1B/C10B–C13B with C1B–C6B] and 1.3 (6)° [S1Y/C10B/C11Y–C13Y with C1B–C6B] in B. Weak intramolecular C—H···O and C—H···F interactions involving the prop-2-en-1-one moiety generate an S(5)S(5) ring motif whereas a weak intramolecular C—H···Cl interaction generates an S(6) ring motif (Bernstein et al., 1995) (Fig. 1 and Table 1). Bond lengths and angles in molecules A and B are slightly different but all are in normal ranges (Allen et al., 1987) and comparable to those in a related structure (Fun et al., 2008).

Since the thiophene rings in both molecules are disordered over two sites, there will be four discrete modes of packing in the structure involving the major and minor components. In Fig. 2 only the molecules of the two major components are shown and they are linked into chains along the b axis. The crystal is stabilized by weak C—H···O, C—H···F and C—H···Cl interactions (Table 1) and further stabilized by C—H···π interactions (Table 1); Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of the S1A/C10A–C13A, S1B/C10B—C13B, S1X/C10A/C11X–C13X, S1Y/C10B/C11Y–C13Y, C1A–C6A and C1B–C6B rings, respectively.

Related literature top

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related structures, see, for example: Fun et al. (2008); Patil et al. (2007b,c). For background to the applications of substituted chalcones, see, for example: Agrinskaya et al. (1999); Chopra et al. (2007). Patil et al. (2007a).

Experimental top

The title compound was synthesized by the condensation of 2-chloro-6-fluorobenzaldehyde (0.01 mol, 1.58 g) with 2-acetylthiophene (0.01 mol, 1.07 ml) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring (6 h), the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered and dried. Colorless single crystals of the title compound suitable for x-ray structure determination were grown by slow evaporation of an acetone solution at room temperature.

Refinement top

All H atoms were placed in calculated positions with d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for CH and aromatic. The highest residual electron density peak is located at 0.36 Å from F1B and the deepest hole is located at 0.56 Å from Cl1B. Similarity and rigid-bond restraints were applied to the disordered atoms in the thiophene rings. Even though the structure contains heavy atoms, the absolute structure cannot be acertained from the Flack parameter because of the racemic twinning of the crystal with BASF = 0.43 (7).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Weak intramolecular C—H···O, C—H···F and C—H···Cl interactions are drawn as dashed lines. The major disorder components are shown with the solid bonds whereas the minor disorder components are shown with open bonds.
[Figure 2] Fig. 2. The crystal packing of the major components of (I), viewed along the a axis showing that the molecules are linked in infinite one-dimensional chains approximately along the b axis. Hydrogen bonds are drawn as dashed lines.
3-(2-Chloro-6-fluorophenyl)-1-(2-thienyl)prop-2-en-1-one top
Crystal data top
C13H8ClFOSF(000) = 1088
Mr = 266.71Dx = 1.568 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 6525 reflections
a = 12.1137 (3) Åθ = 2.3–30.0°
b = 10.5012 (3) ŵ = 0.51 mm1
c = 18.6689 (5) ÅT = 100 K
β = 107.882 (3)°Block, colorless
V = 2260.11 (11) Å30.38 × 0.27 × 0.19 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6525 independent reflections
Radiation source: fine-focus sealed tube5474 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 2.3°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1414
Tmin = 0.830, Tmax = 0.911l = 2626
26405 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.089P)2 + 4.5385P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
6525 reflectionsΔρmax = 0.83 e Å3
347 parametersΔρmin = 0.92 e Å3
233 restraintsAbsolute structure: Flack (1983), 3231 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.43 (7)
Crystal data top
C13H8ClFOSV = 2260.11 (11) Å3
Mr = 266.71Z = 8
Monoclinic, CcMo Kα radiation
a = 12.1137 (3) ŵ = 0.51 mm1
b = 10.5012 (3) ÅT = 100 K
c = 18.6689 (5) Å0.38 × 0.27 × 0.19 mm
β = 107.882 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6525 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5474 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.911Rint = 0.084
26405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.171Δρmax = 0.83 e Å3
S = 1.05Δρmin = 0.92 e Å3
6525 reflectionsAbsolute structure: Flack (1983), 3231 Friedel pairs
347 parametersAbsolute structure parameter: 0.43 (7)
233 restraints
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A0.16981 (8)0.06049 (9)0.04048 (5)0.0439 (2)
F1A0.22351 (13)0.16353 (19)0.01215 (9)0.0282 (4)
O1A0.23551 (18)0.1662 (2)0.18144 (12)0.0271 (5)
C1A0.0753 (3)0.0405 (3)0.05750 (18)0.0304 (7)
C2A0.1172 (3)0.1253 (3)0.11799 (18)0.0368 (8)
H2AA0.19430.12080.14780.044*
C3A0.0444 (4)0.2155 (3)0.1335 (2)0.0450 (9)
H3AA0.07250.27010.17440.054*
C4A0.0684 (4)0.2251 (3)0.0895 (2)0.0408 (9)
H4AA0.11710.28700.09890.049*
C5A0.1078 (3)0.1421 (3)0.03161 (18)0.0326 (7)
C6A0.0413 (3)0.0465 (3)0.01129 (16)0.0248 (6)
C7A0.0979 (3)0.0341 (3)0.05309 (16)0.0240 (6)
H7AA0.17640.01720.07520.029*
C8A0.0570 (3)0.1277 (3)0.08580 (17)0.0250 (6)
H8AA0.02040.15160.06610.030*
C9A0.1314 (2)0.1940 (2)0.15224 (16)0.0209 (6)
C10A0.0801 (2)0.2973 (2)0.18457 (15)0.0206 (5)
S1A0.16312 (8)0.37629 (9)0.26092 (5)0.0256 (2)0.821 (2)
C11A0.0339 (4)0.3415 (5)0.1616 (3)0.0319 (11)0.821 (2)
H11A0.09220.30780.12120.038*0.821 (2)
C12A0.0509 (4)0.4447 (4)0.2072 (2)0.0288 (9)0.821 (2)
H12A0.12060.48770.19970.035*0.821 (2)
C13A0.0498 (3)0.4716 (3)0.2634 (2)0.0244 (8)0.821 (2)
H13A0.05570.53500.29920.029*0.821 (2)
S1X0.0540 (5)0.3451 (5)0.1503 (3)0.0244 (12)*0.179 (2)
C11X0.1495 (13)0.3737 (17)0.2410 (11)0.035 (5)*0.179 (2)
H11B0.23000.36920.25970.042*0.179 (2)
C12X0.0788 (12)0.4597 (16)0.2659 (9)0.020 (4)*0.179 (2)
H12B0.10500.50930.30910.025*0.179 (2)
C13X0.0334 (13)0.4609 (17)0.2182 (10)0.026 (4)*0.179 (2)
H13B0.09060.51700.22220.031*0.179 (2)
Cl1B0.16932 (8)0.69186 (9)0.16305 (5)0.0416 (2)
F1B0.22038 (13)0.9255 (2)0.10610 (9)0.0291 (4)
O1B0.23296 (17)0.60229 (19)0.06450 (12)0.0267 (5)
C1B0.0721 (3)0.7932 (3)0.18114 (17)0.0250 (6)
C2B0.1171 (3)0.8706 (4)0.24489 (19)0.0353 (8)
H2BA0.19300.86030.27580.042*
C3B0.0460 (3)0.9621 (3)0.2606 (2)0.0352 (7)
H3BA0.07431.01400.30260.042*
C4B0.0651 (3)0.9774 (3)0.21507 (17)0.0341 (7)
H4BA0.11271.03970.22540.041*
C5B0.1055 (3)0.8987 (3)0.15358 (16)0.0248 (6)
C6B0.0415 (2)0.8020 (3)0.13370 (16)0.0206 (5)
C7B0.0981 (2)0.7253 (2)0.06705 (15)0.0205 (5)
H7BA0.17260.75140.04010.025*
C8B0.0591 (3)0.6225 (3)0.03853 (16)0.0232 (6)
H8BA0.01360.58850.06290.028*
C9B0.1334 (3)0.5649 (3)0.03181 (16)0.0229 (6)
C10B0.0835 (2)0.4603 (3)0.06389 (15)0.0195 (5)
S1B0.16576 (7)0.39734 (8)0.14734 (5)0.02200 (18)0.853 (2)
C11B0.0601 (3)0.2918 (4)0.1489 (2)0.0220 (9)0.853 (2)
H11C0.06620.23410.18770.026*0.853 (2)
C12B0.0348 (3)0.3014 (4)0.0865 (2)0.0243 (8)0.853 (2)
H12C0.10070.25070.07730.029*0.853 (2)
C13B0.0199 (4)0.3982 (4)0.0380 (2)0.0222 (8)0.853 (2)
H13C0.07550.41790.00740.027*0.853 (2)
S1Y0.0509 (5)0.4042 (6)0.0261 (3)0.0182 (12)0.147 (2)
C11Y0.0421 (15)0.293 (2)0.0931 (12)0.028 (5)*0.147 (2)
H11D0.10160.23800.09470.034*0.147 (2)
C12Y0.0663 (16)0.295 (2)0.1448 (13)0.028 (6)*0.147 (2)
H12D0.09120.24180.18630.033*0.147 (2)
C13Y0.1343 (15)0.3903 (17)0.1263 (10)0.028 (5)*0.147 (2)
H13D0.21060.40450.15550.034*0.147 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0386 (4)0.0458 (5)0.0426 (5)0.0123 (4)0.0056 (4)0.0065 (4)
F1A0.0116 (6)0.0517 (10)0.0204 (7)0.0127 (7)0.0036 (6)0.0033 (7)
O1A0.0269 (9)0.0264 (9)0.0285 (10)0.0043 (8)0.0090 (8)0.0000 (8)
C1A0.0317 (15)0.0328 (15)0.0268 (14)0.0066 (12)0.0090 (12)0.0026 (12)
C2A0.0403 (17)0.0429 (17)0.0254 (15)0.0147 (15)0.0074 (14)0.0034 (13)
C3A0.081 (2)0.0263 (14)0.0353 (16)0.0153 (16)0.0295 (17)0.0072 (12)
C4A0.069 (2)0.0250 (14)0.0328 (16)0.0000 (16)0.0216 (16)0.0028 (13)
C5A0.0544 (17)0.0239 (13)0.0264 (13)0.0046 (13)0.0225 (12)0.0031 (11)
C6A0.0343 (14)0.0207 (11)0.0227 (12)0.0018 (11)0.0138 (11)0.0031 (9)
C7A0.0270 (12)0.0229 (12)0.0233 (12)0.0017 (11)0.0094 (10)0.0029 (10)
C8A0.0279 (13)0.0218 (12)0.0264 (13)0.0039 (10)0.0102 (11)0.0016 (10)
C9A0.0295 (13)0.0158 (10)0.0185 (11)0.0010 (10)0.0089 (10)0.0008 (9)
C10A0.0254 (12)0.0199 (11)0.0193 (11)0.0015 (10)0.0110 (10)0.0031 (9)
S1A0.0276 (4)0.0256 (4)0.0234 (4)0.0015 (3)0.0078 (3)0.0045 (3)
C11A0.0287 (19)0.044 (2)0.0208 (18)0.0121 (17)0.0050 (15)0.0007 (15)
C12A0.0340 (17)0.0274 (17)0.0274 (18)0.0059 (15)0.0130 (14)0.0062 (14)
C13A0.0245 (15)0.0188 (14)0.0354 (17)0.0091 (13)0.0172 (13)0.0001 (12)
Cl1B0.0370 (4)0.0403 (4)0.0428 (4)0.0098 (3)0.0053 (4)0.0077 (4)
F1B0.0074 (6)0.0587 (11)0.0163 (7)0.0102 (7)0.0037 (5)0.0189 (7)
O1B0.0227 (9)0.0250 (9)0.0307 (10)0.0037 (8)0.0059 (8)0.0044 (8)
C1B0.0251 (13)0.0275 (13)0.0227 (13)0.0006 (11)0.0076 (11)0.0039 (11)
C2B0.0312 (15)0.0475 (18)0.0287 (15)0.0180 (14)0.0111 (12)0.0114 (13)
C3B0.0498 (17)0.0322 (14)0.0287 (14)0.0198 (14)0.0196 (13)0.0133 (12)
C4B0.0592 (19)0.0254 (13)0.0247 (14)0.0095 (13)0.0235 (13)0.0042 (11)
C5B0.0328 (14)0.0222 (12)0.0212 (12)0.0005 (11)0.0108 (11)0.0018 (10)
C6B0.0231 (12)0.0189 (11)0.0222 (12)0.0012 (9)0.0108 (10)0.0025 (9)
C7B0.0229 (11)0.0195 (11)0.0210 (12)0.0001 (10)0.0096 (10)0.0004 (9)
C8B0.0256 (13)0.0210 (12)0.0220 (12)0.0015 (10)0.0059 (10)0.0003 (10)
C9B0.0278 (13)0.0172 (11)0.0253 (13)0.0019 (10)0.0108 (11)0.0005 (10)
C10B0.0208 (11)0.0191 (11)0.0187 (11)0.0013 (10)0.0061 (9)0.0008 (9)
S1B0.0200 (4)0.0232 (3)0.0219 (4)0.0004 (3)0.0051 (3)0.0069 (3)
C11B0.0279 (15)0.0198 (15)0.0219 (15)0.0022 (12)0.0132 (12)0.0063 (11)
C12B0.0255 (15)0.0203 (14)0.0292 (17)0.0052 (12)0.0117 (13)0.0045 (12)
C13B0.0195 (16)0.0220 (15)0.0212 (16)0.0032 (13)0.0005 (13)0.0009 (12)
S1Y0.006 (2)0.029 (2)0.015 (2)0.0037 (18)0.0044 (16)0.0052 (18)
Geometric parameters (Å, º) top
Cl1A—C1A1.661 (4)Cl1B—C1B1.697 (3)
F1A—C5A1.407 (4)F1B—C5B1.430 (3)
O1A—C9A1.245 (3)O1B—C9B1.237 (3)
C1A—C2A1.405 (5)C1B—C6B1.392 (4)
C1A—C6A1.413 (4)C1B—C2B1.405 (4)
C2A—C3A1.385 (6)C2B—C3B1.380 (5)
C2A—H2AA0.9300C2B—H2BA0.9300
C3A—C4A1.365 (6)C3B—C4B1.363 (5)
C3A—H3AA0.9300C3B—H3BA0.9300
C4A—C5A1.355 (5)C4B—C5B1.377 (4)
C4A—H4AA0.9300C4B—H4BA0.9300
C5A—C6A1.410 (4)C5B—C6B1.395 (4)
C6A—C7A1.458 (4)C6B—C7B1.464 (4)
C7A—C8A1.331 (4)C7B—C8B1.351 (4)
C7A—H7AA0.9300C7B—H7BA0.9300
C8A—C9A1.466 (4)C8B—C9B1.474 (4)
C8A—H8AA0.9300C8B—H8BA0.9300
C9A—C10A1.470 (4)C9B—C10B1.467 (4)
C10A—C11X1.384 (14)C10B—C13Y1.355 (14)
C10A—C11A1.394 (5)C10B—C13B1.363 (5)
C10A—S1X1.631 (6)C10B—S1Y1.671 (6)
C10A—S1A1.688 (3)C10B—S1B1.704 (3)
S1A—C13A1.712 (4)S1B—C11B1.700 (4)
C11A—C12A1.431 (6)C11B—C12B1.366 (5)
C11A—H11A0.9300C11B—H11C0.9300
C12A—C13A1.372 (5)C12B—C13B1.409 (6)
C12A—H12A0.9300C12B—H12C0.9300
C13A—H13A0.9300C13B—H13C0.9300
S1X—C13X1.718 (14)S1Y—C11Y1.692 (16)
C11X—C12X1.418 (16)C11Y—C12Y1.369 (16)
C11X—H11B0.9300C11Y—H11D0.9300
C12X—C13X1.377 (15)C12Y—C13Y1.402 (17)
C12X—H12B0.9300C12Y—H12D0.9300
C13X—H13B0.9300C13Y—H13D0.9300
C2A—C1A—C6A120.6 (3)C6B—C1B—C2B123.5 (3)
C2A—C1A—Cl1A117.3 (3)C6B—C1B—Cl1B121.7 (2)
C6A—C1A—Cl1A122.0 (2)C2B—C1B—Cl1B114.7 (2)
C3A—C2A—C1A120.4 (3)C3B—C2B—C1B118.5 (3)
C3A—C2A—H2AA119.8C3B—C2B—H2BA120.8
C1A—C2A—H2AA119.8C1B—C2B—H2BA120.8
C4A—C3A—C2A120.5 (3)C4B—C3B—C2B120.7 (3)
C4A—C3A—H3AA119.7C4B—C3B—H3BA119.6
C2A—C3A—H3AA119.7C2B—C3B—H3BA119.6
C5A—C4A—C3A118.4 (4)C3B—C4B—C5B118.6 (3)
C5A—C4A—H4AA120.8C3B—C4B—H4BA120.7
C3A—C4A—H4AA120.8C5B—C4B—H4BA120.7
C4A—C5A—F1A113.8 (3)C4B—C5B—C6B125.1 (3)
C4A—C5A—C6A125.6 (3)C4B—C5B—F1B115.3 (3)
F1A—C5A—C6A120.5 (3)C6B—C5B—F1B119.5 (2)
C5A—C6A—C1A114.5 (3)C1B—C6B—C5B113.6 (3)
C5A—C6A—C7A118.2 (3)C1B—C6B—C7B128.1 (3)
C1A—C6A—C7A127.4 (3)C5B—C6B—C7B118.3 (2)
C8A—C7A—C6A131.3 (3)C8B—C7B—C6B130.2 (3)
C8A—C7A—H7AA114.4C8B—C7B—H7BA114.9
C6A—C7A—H7AA114.4C6B—C7B—H7BA114.9
C7A—C8A—C9A121.3 (3)C7B—C8B—C9B119.2 (3)
C7A—C8A—H8AA119.4C7B—C8B—H8BA120.4
C9A—C8A—H8AA119.4C9B—C8B—H8BA120.4
O1A—C9A—C8A122.5 (3)O1B—C9B—C10B119.8 (3)
O1A—C9A—C10A119.5 (2)O1B—C9B—C8B123.0 (3)
C8A—C9A—C10A118.0 (2)C10B—C9B—C8B117.1 (2)
C11X—C10A—C11A110.8 (7)C13Y—C10B—C13B99.8 (8)
C11X—C10A—C9A120.4 (7)C13Y—C10B—C9B128.5 (8)
C11A—C10A—C9A128.6 (3)C13B—C10B—C9B131.5 (3)
C11X—C10A—S1X114.8 (7)C13Y—C10B—S1Y107.3 (8)
C9A—C10A—S1X124.2 (3)C9B—C10B—S1Y124.2 (3)
C11A—C10A—S1A111.9 (3)C13B—C10B—S1B110.7 (3)
C9A—C10A—S1A119.5 (2)C9B—C10B—S1B117.7 (2)
S1X—C10A—S1A116.3 (3)S1Y—C10B—S1B118.0 (3)
C10A—S1A—C13A92.04 (16)C11B—S1B—C10B92.09 (15)
C10A—C11A—C12A112.2 (4)C12B—C11B—S1B112.3 (3)
C10A—C11A—H11A123.9C12B—C11B—H11C123.9
C12A—C11A—H11A123.9S1B—C11B—H11C123.9
C13A—C12A—C11A110.8 (4)C11B—C12B—C13B111.1 (3)
C13A—C12A—H12A124.6C11B—C12B—H12C124.4
C11A—C12A—H12A124.6C13B—C12B—H12C124.4
C12A—C13A—S1A112.9 (3)C10B—C13B—C12B113.8 (3)
C12A—C13A—H13A123.5C10B—C13B—H13C123.1
S1A—C13A—H13A123.5C12B—C13B—H13C123.1
C10A—S1X—C13X91.6 (6)C10B—S1Y—C11Y95.7 (6)
C10A—C11X—C12X109.3 (11)C12Y—C11Y—S1Y109.6 (13)
C10A—C11X—H11B125.3C12Y—C11Y—H11D125.2
C12X—C11X—H11B125.3S1Y—C11Y—H11D125.2
C13X—C12X—C11X111.7 (13)C11Y—C12Y—C13Y110.5 (15)
C13X—C12X—H12B124.1C11Y—C12Y—H12D124.7
C11X—C12X—H12B124.1C13Y—C12Y—H12D124.7
C12X—C13X—S1X111.1 (11)C10B—C13Y—C12Y116.8 (13)
C12X—C13X—H13B124.4C10B—C13Y—H13D121.6
S1X—C13X—H13B124.4C12Y—C13Y—H13D121.6
C6A—C1A—C2A—C3A0.5 (5)C6B—C1B—C2B—C3B1.5 (5)
Cl1A—C1A—C2A—C3A177.4 (3)Cl1B—C1B—C2B—C3B175.4 (3)
C1A—C2A—C3A—C4A1.3 (5)C1B—C2B—C3B—C4B0.2 (5)
C2A—C3A—C4A—C5A1.7 (5)C2B—C3B—C4B—C5B0.7 (5)
C3A—C4A—C5A—F1A177.4 (3)C3B—C4B—C5B—C6B0.6 (5)
C3A—C4A—C5A—C6A1.4 (5)C3B—C4B—C5B—F1B176.4 (3)
C4A—C5A—C6A—C1A0.5 (5)C2B—C1B—C6B—C5B2.5 (4)
F1A—C5A—C6A—C1A176.3 (3)Cl1B—C1B—C6B—C5B174.2 (2)
C4A—C5A—C6A—C7A179.7 (3)C2B—C1B—C6B—C7B178.7 (3)
F1A—C5A—C6A—C7A3.9 (4)Cl1B—C1B—C6B—C7B4.6 (4)
C2A—C1A—C6A—C5A0.1 (4)C4B—C5B—C6B—C1B2.1 (4)
Cl1A—C1A—C6A—C5A176.8 (2)F1B—C5B—C6B—C1B174.8 (3)
C2A—C1A—C6A—C7A179.8 (3)C4B—C5B—C6B—C7B179.0 (3)
Cl1A—C1A—C6A—C7A3.4 (5)F1B—C5B—C6B—C7B4.1 (4)
C5A—C6A—C7A—C8A177.9 (3)C1B—C6B—C7B—C8B5.9 (5)
C1A—C6A—C7A—C8A2.3 (5)C5B—C6B—C7B—C8B175.4 (3)
C6A—C7A—C8A—C9A178.5 (3)C6B—C7B—C8B—C9B178.0 (3)
C7A—C8A—C9A—O1A0.3 (4)C7B—C8B—C9B—O1B3.7 (4)
C7A—C8A—C9A—C10A179.3 (3)C7B—C8B—C9B—C10B175.0 (3)
O1A—C9A—C10A—C11X8.0 (11)O1B—C9B—C10B—C13Y3.0 (13)
C8A—C9A—C10A—C11X171.6 (11)C8B—C9B—C10B—C13Y178.2 (12)
O1A—C9A—C10A—C11A178.8 (4)O1B—C9B—C10B—C13B176.5 (4)
C8A—C9A—C10A—C11A1.6 (5)C8B—C9B—C10B—C13B4.7 (5)
O1A—C9A—C10A—S1X178.4 (3)O1B—C9B—C10B—S1Y178.4 (4)
C8A—C9A—C10A—S1X1.2 (4)C8B—C9B—C10B—S1Y0.4 (5)
O1A—C9A—C10A—S1A0.2 (4)O1B—C9B—C10B—S1B1.6 (4)
C8A—C9A—C10A—S1A179.8 (2)C8B—C9B—C10B—S1B177.1 (2)
C11X—C10A—S1A—C13A81 (5)C13Y—C10B—S1B—C11B19 (5)
C11A—C10A—S1A—C13A1.0 (3)C13B—C10B—S1B—C11B1.8 (3)
C9A—C10A—S1A—C13A179.7 (2)C9B—C10B—S1B—C11B179.7 (3)
S1X—C10A—S1A—C13A1.6 (3)S1Y—C10B—S1B—C11B2.7 (3)
C11X—C10A—C11A—C12A6.0 (11)C10B—S1B—C11B—C12B1.5 (3)
C9A—C10A—C11A—C12A179.8 (3)S1B—C11B—C12B—C13B0.9 (5)
S1X—C10A—C11A—C12A151 (5)C13Y—C10B—C13B—C12B5.0 (11)
S1A—C10A—C11A—C12A1.6 (5)C9B—C10B—C13B—C12B179.9 (3)
C10A—C11A—C12A—C13A1.5 (6)S1Y—C10B—C13B—C12B150 (3)
C11A—C12A—C13A—S1A0.8 (5)S1B—C10B—C13B—C12B1.6 (4)
C10A—S1A—C13A—C12A0.1 (3)C11B—C12B—C13B—C10B0.5 (5)
C11X—C10A—S1X—C13X7.8 (13)C13Y—C10B—S1Y—C11Y1.6 (14)
C11A—C10A—S1X—C13X29 (4)C13B—C10B—S1Y—C11Y28 (2)
C9A—C10A—S1X—C13X178.6 (8)C9B—C10B—S1Y—C11Y179.5 (10)
S1A—C10A—S1X—C13X0.0 (8)S1B—C10B—S1Y—C11Y2.8 (10)
C11A—C10A—C11X—C12X9.6 (18)C10B—S1Y—C11Y—C12Y1 (2)
C9A—C10A—C11X—C12X176.1 (11)S1Y—C11Y—C12Y—C13Y1 (3)
S1X—C10A—C11X—C12X12.7 (19)C13B—C10B—C13Y—C12Y5 (2)
S1A—C10A—C11X—C12X91 (6)C9B—C10B—C13Y—C12Y179.7 (16)
C10A—C11X—C12X—C13X12 (2)S1Y—C10B—C13Y—C12Y1 (2)
C11X—C12X—C13X—S1X7 (2)S1B—C10B—C13Y—C12Y159 (6)
C10A—S1X—C13X—C12X0.4 (16)C11Y—C12Y—C13Y—C10B0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7A—H7AA···F1A0.932.392.814 (4)107
C7A—H7AA···O1A0.932.452.827 (4)104
C8A—H8AA···Cl1A0.932.443.103 (3)129
C7B—H7BA···F1B0.932.372.794 (3)107
C7B—H7BA···O1B0.932.432.812 (3)104
C8B—H8BA···Cl1B0.932.463.105 (3)126
C11A—H11A···F1Ai0.932.543.375 (6)150
C12A—H12A···O1Ai0.932.513.402 (5)161
C12B—H12C···O1Bii0.932.503.427 (4)174
C3A—H3AA···Cg1iii0.933.063.748 (4)132
C3A—H3AA···Cg3iii0.933.143.825 (7)132
C3B—H3BA···Cg5iv0.933.023.778 (4)140
C11B—H11C···Cg6v0.932.813.677 (4)155
C13A—H13A···Cg2iv0.932.823.608 (4)143
C13A—H13A···Cg4iv0.932.823.625 (8)145
C12X—H12B···Cg2iv0.933.213.835 (16)126
C12X—H12B···Cg4iv0.933.183.840 (18)129
C12Y—H12D···Cg6v0.933.043.79 (2)139
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y1/2, z; (iii) x, y, z+1/2; (iv) x, y+1, z1/2; (v) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H8ClFOS
Mr266.71
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)12.1137 (3), 10.5012 (3), 18.6689 (5)
β (°) 107.882 (3)
V3)2260.11 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.38 × 0.27 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.830, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
26405, 6525, 5474
Rint0.084
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.171, 1.05
No. of reflections6525
No. of parameters347
No. of restraints233
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.92
Absolute structureFlack (1983), 3231 Friedel pairs
Absolute structure parameter0.43 (7)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7A—H7AA···F1A0.932.39282.814 (4)107
C7A—H7AA···O1A0.932.45412.827 (4)104
C8A—H8AA···Cl1A0.932.43693.103 (3)129
C7B—H7BA···F1B0.932.37352.794 (3)107
C7B—H7BA···O1B0.932.43372.812 (3)104
C8B—H8BA···Cl1B0.932.46303.105 (3)126
C11A—H11A···F1Ai0.932.53533.375 (6)150
C12A—H12A···O1Ai0.932.51063.402 (5)161
C12B—H12C···O1Bii0.932.50013.427 (4)174
C3A—H3AA···Cg1iii0.933.06053.748 (4)132
C3A—H3AA···Cg3iii0.933.13883.825 (7)132
C3B—H3BA···Cg5iv0.933.01803.778 (4)140
C11B—H11C···Cg6v0.932.81233.677 (4)155
C13A—H13A···Cg2iv0.932.82243.608 (4)143
C13A—H13A···Cg4iv0.932.82323.625 (8)145
C12X—H12B···Cg2iv0.933.20813.835 (16)126
C12X—H12B···Cg4iv0.933.18373.840 (18)129
C12Y—H12D···Cg6v0.933.04123.79 (2)139
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y1/2, z; (iii) x, y, z+1/2; (iv) x, y+1, z1/2; (v) x, y+1, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

This work is supported by Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAgrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State. 41, 1914–1917.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, o704–o710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Patil, P. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1510–o1511.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007a). J. Cryst. Growth. 303, 520–524.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007c). Acta Cryst. E63, o2122–o2123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1720-o1721
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds