organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1858-o1859

S-Benzyl­thiouronium 4-anilino­benzene­sulfonate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and dDepartment of Physics, KLE Society's KLE Institute of Technology, Gokul Road, Hubli 590 030, India
*Correspondence e-mail: hkfun@usm.my

(Received 23 August 2008; accepted 24 August 2008; online 30 August 2008)

In the title compound, C8H11N2S+·C12H10NO3S, the NH group of the S-benzyl­thiuronium is protonated and the inter­planar angle between the phenyl ring and the CH2—S=C(NH2)2 unit is 47.44 (10)°. In the 4-anilinobenzene­sulfonate anion, the inter­planar angle between the two rings is 44.07 (8)°. In the crystal structure, anions are linked into chains along the c-axis direction by N—H⋯O hydrogen bonds, while additional N—H⋯O inter­actions link the cations to the anions in chains along the b-axis direction. These chains are further inter­connected into a two-dimensional network parallel to the bc plane by C—H⋯O inter­actions. C—H⋯π contacts are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For background to the applications of S-benzyl­thiuronium chloride and sodium diphenyl­amine-4-sulfonate, see, for example: Liao et al. (2004[Liao, L.-B., Liu, W.-H. & Xiao, X.-M. (2004). J. Electroanal. Chem. 566, 341-350.]); Liu et al. (2006a[Liu, Q., Liu, H., Zhou, Q., Liang, Y., Yin, G. & Xu, Z. (2006a). J. Mater. Sci. 41, 3657-3662.],b[Liu, Q., Liu, H., Zhu, J., Liang, Y., Xu, Z., Yin, G. & Han, M. (2006b). J. Nanosci. 6, 231-234.]); Mostafa (2006[Mostafa, G. A. E. (2006). J. Pharm. Biomed. Anal. 41, 1110-1115.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10NO3S+·C8H11N2S

  • Mr = 415.54

  • Monoclinic, P 21 /c

  • a = 14.4918 (4) Å

  • b = 9.2024 (2) Å

  • c = 16.3944 (4) Å

  • β = 113.529 (1)°

  • V = 2004.57 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100.0 (1) K

  • 0.24 × 0.07 × 0.03 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.879, Tmax = 0.992

  • 45812 measured reflections

  • 5838 independent reflections

  • 4320 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.107

  • S = 1.07

  • 5838 reflections

  • 337 parameters

  • All H-atom parameters refined

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.85 (2) 1.99 (2) 2.836 (2) 173.0 (18)
N2—H1N2⋯O3ii 0.92 (3) 2.04 (3) 2.9561 (19) 172 (3)
N3—H1N3⋯O1 0.809 (19) 2.015 (19) 2.8204 (19) 174 (2)
N2—H2N2⋯O3iii 0.839 (19) 2.015 (19) 2.8069 (19) 157.2 (19)
N3—H2N3⋯O2ii 0.91 (2) 1.96 (2) 2.8633 (17) 173 (2)
C9—H9⋯O1 0.97 (2) 2.463 (18) 2.8563 (18) 103.8 (13)
C19—H19B⋯O2iv 0.97 (2) 2.57 (2) 3.332 (2) 134.8 (14)
C4—H4⋯Cg2v 0.947 (19) 3.22 (2) 3.943 (2) 134.7 (14)
C17—H17⋯Cg1iii 0.99 (2) 2.92 (2) 3.471 (2) 116.0 (15)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) x, y+1, z; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1. Cg1 and Cg2 are the centroids of C7–C12 and C13–C18 benzene rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

S-benzylthiouronium chloride is a useful compound in pharmaceutical and biomedical science (Mostafa, 2006) and also in electrochemistry (Liao et al., 2004) whereas sodium diphenylamine-4-sulfonate is extensively used in nanomaterial studies (Liu et al., (2006a, b). Both compounds have the potential to form hydrogen bonds. As part of our investigations into solid state hydrogen bonding, the title compound (I) was synthesized and herein we report its crystal structure.

The molecular structure of the title compound consists of a C8H11N2S+ cation and a C12H10NO3S- anion (Fig. 1). An NH group of the S-benzylthiouronium unit was protonated to become a NH2 moiety. Neither the cation and the anion are planar as can be seen from the interplanar angle between the C13–C18 benzene ring and the least-squares plane through the S2/C20/N2/N3 unit being 47.44 (10)°. In the diphenylamine-4-sulfonate anion, the interplanar angle between the the two benzene rings (C1–C6 and C7–C12) is 44.07 (8)°. The C13–C18 benzene ring makes dihedral angles of 71.72 (9)° and 29.45 (9)° with the C1–C6 and C7–C12 benzene rings, respectively. The cation is linked to the anion by an N—H···O hydrogen bond (Fig. 1). The conformation of the dimethylamino group with respect to the S-benzyl substituent is reflected in the torsion angles C20–S2–C19–C18 = -177.78 (11)° and C19–S2–C20–N2 = 14.60 (17)°. Bond lengths and angles in (I) are in normal ranges (Allen et al., 1987).

In the crystal packing (Fig. 2 and Table 1), the anions are linked into chains along the c direction by N1—H1N1···O1 hydrogen bonds whereas the cations are linked with the anions into chains along the b direction by N2—H1N2···O3, N2—H2N2···O3 and N3—H2N3···O2 hydrogen bonds. These chains are further inter-connected into a two dimensional network parallel to the bc plane by C19—H19B···O2 interactions. C—H···π interactions were also observed in the crystal (Table 1); Cg1 and Cg2 are the centroids of C7–C12 and C13–C18 benzene rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For background to the applications of S-benzylthiouronium chloride and sodium diphenylamine-4-sulfonate, see, for example: Liao et al. (2004); Liu et al. (2006a,b); Mostafa (2006). Cg1 and Cg2 are the centroids of C7–C12 and C13–C18 benzene rings, respectively.

Experimental top

The title compound was synthesized by mixing solutions of the sodium salt of diphenylamine sulfonate (0.54 g) in distilled water (5 ml) with 5 drops of 1 M HCl and S-benzylthiouronium chloride (1.0 g) in distilled water (5 ml). The mixed solution immediately yields a precipitate in ice cold water. This was filtered and dried. Colorless block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from methanol by slow evaporation of the solvent at room temperature.

Refinement top

All H atoms were located in a difference map and were refined isotropically. The highest residual electron density peak is located at 0.86 Å from C10 and the deepest hole is located at 0.65 Å from S1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The N—H···O hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the a axis. Hydrogen bonds are drawn as dashed lines.
S-Benzylthiouronium 4-anilinobenzenesulfonate top
Crystal data top
C12H10NO3S+·C8H11N2SF(000) = 872
Mr = 415.54Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5838 reflections
a = 14.4918 (4) Åθ = 2.5–30.0°
b = 9.2024 (2) ŵ = 0.29 mm1
c = 16.3944 (4) ÅT = 100 K
β = 113.529 (1)°Block, colorless
V = 2004.57 (9) Å30.24 × 0.07 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5838 independent reflections
Radiation source: fine-focus sealed tube4320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 2.5°
ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1212
Tmin = 0.879, Tmax = 0.992l = 2323
45812 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.7114P]
where P = (Fo2 + 2Fc2)/3
5838 reflections(Δ/σ)max < 0.001
337 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C12H10NO3S+·C8H11N2SV = 2004.57 (9) Å3
Mr = 415.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.4918 (4) ŵ = 0.29 mm1
b = 9.2024 (2) ÅT = 100 K
c = 16.3944 (4) Å0.24 × 0.07 × 0.03 mm
β = 113.529 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5838 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4320 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.992Rint = 0.057
45812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.107All H-atom parameters refined
S = 1.07Δρmax = 0.50 e Å3
5838 reflectionsΔρmin = 0.43 e Å3
337 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08636 (3)0.27987 (4)0.16160 (2)0.01695 (10)
S20.19068 (4)0.70226 (5)0.20872 (3)0.02907 (12)
O10.15746 (9)0.34329 (13)0.12876 (7)0.0216 (3)
O20.00092 (8)0.37242 (12)0.14360 (7)0.0200 (2)
O30.05615 (10)0.13272 (12)0.12701 (7)0.0274 (3)
N10.28844 (11)0.27210 (17)0.55470 (9)0.0234 (3)
N20.08033 (12)0.85826 (16)0.06346 (10)0.0231 (3)
N30.10880 (11)0.61743 (16)0.04555 (9)0.0221 (3)
C10.37263 (13)0.4172 (2)0.68520 (11)0.0237 (4)
C20.45695 (15)0.4866 (2)0.74499 (12)0.0303 (4)
C30.54646 (15)0.4825 (2)0.73360 (12)0.0319 (4)
C40.55080 (13)0.4064 (2)0.66248 (11)0.0267 (4)
C50.46709 (12)0.33550 (19)0.60270 (11)0.0215 (3)
C60.37628 (12)0.34205 (18)0.61244 (10)0.0191 (3)
C70.24732 (12)0.27071 (17)0.46289 (10)0.0176 (3)
C80.29225 (12)0.33508 (18)0.41073 (10)0.0188 (3)
C90.24368 (12)0.33377 (18)0.31869 (10)0.0186 (3)
C100.15065 (12)0.26719 (16)0.27700 (9)0.0163 (3)
C110.10566 (12)0.19952 (17)0.32809 (10)0.0183 (3)
C120.15354 (12)0.20140 (18)0.41962 (10)0.0195 (3)
C130.22213 (14)0.71334 (19)0.40844 (11)0.0235 (4)
C140.28471 (15)0.6889 (2)0.49686 (12)0.0287 (4)
C150.36132 (15)0.7846 (2)0.54192 (12)0.0325 (4)
C160.37589 (15)0.9061 (2)0.49858 (12)0.0325 (4)
C170.31450 (13)0.9297 (2)0.40940 (11)0.0248 (4)
C180.23738 (12)0.83402 (18)0.36394 (10)0.0192 (3)
C190.17094 (13)0.85965 (18)0.26715 (10)0.0199 (3)
C200.11899 (12)0.73130 (18)0.09651 (10)0.0191 (3)
H10.3074 (15)0.419 (2)0.6925 (13)0.032 (5)*
H20.4509 (15)0.539 (2)0.7926 (14)0.041 (6)*
H30.6056 (15)0.527 (2)0.7781 (13)0.035 (5)*
H40.6119 (15)0.402 (2)0.6544 (12)0.029 (5)*
H50.4718 (13)0.2865 (19)0.5562 (12)0.020 (5)*
H80.3557 (14)0.384 (2)0.4365 (12)0.023 (5)*
H90.2763 (13)0.381 (2)0.2840 (12)0.022 (5)*
H110.0404 (13)0.1511 (19)0.2983 (11)0.015 (4)*
H120.1223 (13)0.156 (2)0.4549 (12)0.023 (5)*
H130.1681 (15)0.647 (2)0.3794 (13)0.029 (5)*
H140.2756 (14)0.609 (2)0.5268 (13)0.029 (5)*
H150.4034 (17)0.771 (2)0.6006 (15)0.042 (6)*
H160.4294 (15)0.973 (2)0.5305 (13)0.038 (6)*
H170.3262 (14)1.017 (2)0.3794 (12)0.034 (5)*
H19A0.1915 (13)0.943 (2)0.2439 (12)0.024 (5)*
H19B0.1000 (14)0.863 (2)0.2565 (12)0.023 (5)*
H1N10.2478 (15)0.245 (2)0.5773 (13)0.027 (5)*
H1N20.0428 (18)0.863 (3)0.0029 (17)0.058 (7)*
H2N20.0853 (15)0.931 (2)0.0958 (13)0.032 (6)*
H1N30.1265 (15)0.539 (2)0.0688 (13)0.030 (6)*
H2N30.0790 (17)0.624 (2)0.0146 (15)0.045 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0226 (2)0.01564 (19)0.01148 (17)0.00260 (15)0.00556 (15)0.00000 (14)
S20.0387 (3)0.0255 (2)0.01363 (19)0.0129 (2)0.00060 (18)0.00185 (16)
O10.0260 (6)0.0249 (6)0.0173 (5)0.0073 (5)0.0123 (5)0.0050 (5)
O20.0197 (6)0.0224 (6)0.0167 (5)0.0031 (5)0.0061 (4)0.0002 (4)
O30.0423 (7)0.0159 (6)0.0162 (5)0.0007 (5)0.0034 (5)0.0021 (5)
N10.0212 (7)0.0359 (8)0.0135 (6)0.0095 (6)0.0075 (6)0.0006 (6)
N20.0325 (8)0.0175 (7)0.0143 (7)0.0026 (6)0.0043 (6)0.0017 (6)
N30.0312 (8)0.0168 (7)0.0138 (6)0.0035 (6)0.0045 (6)0.0005 (6)
C10.0231 (9)0.0303 (9)0.0184 (7)0.0017 (7)0.0089 (7)0.0008 (7)
C20.0356 (10)0.0353 (10)0.0193 (8)0.0066 (9)0.0102 (8)0.0068 (8)
C30.0282 (10)0.0414 (11)0.0207 (8)0.0135 (9)0.0041 (7)0.0027 (8)
C40.0186 (8)0.0371 (10)0.0223 (8)0.0013 (8)0.0060 (7)0.0047 (7)
C50.0214 (8)0.0246 (8)0.0182 (7)0.0015 (7)0.0075 (6)0.0013 (7)
C60.0198 (8)0.0214 (8)0.0130 (7)0.0009 (7)0.0032 (6)0.0032 (6)
C70.0191 (8)0.0191 (8)0.0139 (7)0.0006 (6)0.0058 (6)0.0004 (6)
C80.0190 (8)0.0198 (8)0.0160 (7)0.0035 (7)0.0053 (6)0.0008 (6)
C90.0221 (8)0.0183 (7)0.0167 (7)0.0016 (7)0.0091 (6)0.0011 (6)
C100.0208 (8)0.0149 (7)0.0128 (6)0.0026 (6)0.0062 (6)0.0008 (6)
C110.0186 (8)0.0188 (8)0.0162 (7)0.0019 (6)0.0056 (6)0.0004 (6)
C120.0209 (8)0.0234 (8)0.0149 (7)0.0014 (7)0.0078 (6)0.0031 (6)
C130.0295 (9)0.0212 (8)0.0198 (8)0.0024 (7)0.0099 (7)0.0006 (7)
C140.0390 (11)0.0283 (9)0.0202 (8)0.0112 (8)0.0134 (8)0.0051 (7)
C150.0343 (10)0.0405 (11)0.0160 (8)0.0115 (9)0.0029 (8)0.0023 (8)
C160.0279 (10)0.0387 (11)0.0238 (9)0.0001 (9)0.0028 (8)0.0087 (8)
C170.0252 (9)0.0253 (9)0.0220 (8)0.0001 (7)0.0073 (7)0.0030 (7)
C180.0209 (8)0.0195 (8)0.0162 (7)0.0054 (7)0.0064 (6)0.0009 (6)
C190.0233 (9)0.0189 (8)0.0161 (7)0.0021 (7)0.0064 (6)0.0003 (6)
C200.0200 (8)0.0204 (8)0.0150 (7)0.0006 (7)0.0051 (6)0.0001 (6)
Geometric parameters (Å, º) top
S1—O21.4541 (12)C5—H50.912 (18)
S1—O11.4612 (11)C7—C81.397 (2)
S1—O31.4658 (12)C7—C121.410 (2)
S1—C101.7474 (15)C8—C91.387 (2)
S2—C201.7347 (16)C8—H80.957 (19)
S2—C191.8208 (17)C9—C101.387 (2)
N1—C71.3800 (19)C9—H90.974 (18)
N1—C61.403 (2)C10—C111.397 (2)
N1—H1N10.85 (2)C11—C121.379 (2)
N2—C201.315 (2)C11—H110.982 (17)
N2—H1N20.92 (3)C12—H120.961 (18)
N2—H2N20.84 (2)C13—C141.387 (2)
N3—C201.311 (2)C13—C181.394 (2)
N3—H1N30.81 (2)C13—H130.96 (2)
N3—H2N30.91 (2)C14—C151.378 (3)
C1—C21.380 (2)C14—H140.92 (2)
C1—C61.398 (2)C15—C161.386 (3)
C1—H11.00 (2)C15—H150.92 (2)
C2—C31.383 (3)C16—C171.392 (2)
C2—H20.95 (2)C16—H160.96 (2)
C3—C41.383 (3)C17—C181.384 (2)
C3—H30.97 (2)C17—H170.99 (2)
C4—C51.382 (2)C18—C191.510 (2)
C4—H40.947 (19)C19—H19A0.955 (19)
C5—C61.389 (2)C19—H19B0.973 (18)
O2—S1—O1112.06 (7)C10—C9—C8120.73 (14)
O2—S1—O3111.18 (7)C10—C9—H9120.8 (11)
O1—S1—O3111.84 (7)C8—C9—H9118.5 (11)
O2—S1—C10107.66 (7)C9—C10—C11119.74 (14)
O1—S1—C10106.02 (7)C9—C10—S1119.82 (11)
O3—S1—C10107.76 (7)C11—C10—S1120.28 (12)
C20—S2—C19106.38 (8)C12—C11—C10119.63 (15)
C7—N1—C6128.35 (14)C12—C11—H11120.9 (10)
C7—N1—H1N1113.6 (13)C10—C11—H11119.5 (10)
C6—N1—H1N1116.2 (13)C11—C12—C7121.22 (14)
C20—N2—H1N2117.4 (16)C11—C12—H12119.7 (11)
C20—N2—H2N2122.1 (14)C7—C12—H12119.1 (11)
H1N2—N2—H2N2120 (2)C14—C13—C18120.14 (17)
C20—N3—H1N3118.7 (14)C14—C13—H13118.8 (12)
C20—N3—H2N3121.6 (14)C18—C13—H13121.1 (12)
H1N3—N3—H2N3120 (2)C15—C14—C13120.46 (18)
C2—C1—C6120.70 (16)C15—C14—H14118.7 (12)
C2—C1—H1121.4 (11)C13—C14—H14120.9 (13)
C6—C1—H1117.9 (11)C14—C15—C16119.74 (17)
C1—C2—C3120.23 (17)C14—C15—H15121.8 (14)
C1—C2—H2118.2 (13)C16—C15—H15118.4 (14)
C3—C2—H2121.6 (13)C15—C16—C17120.03 (18)
C4—C3—C2119.27 (17)C15—C16—H16119.3 (12)
C4—C3—H3121.7 (12)C17—C16—H16120.7 (12)
C2—C3—H3118.9 (11)C18—C17—C16120.40 (17)
C5—C4—C3120.97 (17)C18—C17—H17120.7 (11)
C5—C4—H4119.0 (12)C16—C17—H17118.9 (11)
C3—C4—H4120.0 (12)C17—C18—C13119.20 (15)
C4—C5—C6120.13 (16)C17—C18—C19120.36 (15)
C4—C5—H5119.3 (12)C13—C18—C19120.44 (15)
C6—C5—H5120.6 (12)C18—C19—S2105.09 (11)
C5—C6—C1118.68 (15)C18—C19—H19A112.0 (11)
C5—C6—N1123.27 (15)S2—C19—H19A106.8 (11)
C1—C6—N1118.01 (15)C18—C19—H19B112.3 (11)
N1—C7—C8124.05 (15)S2—C19—H19B108.1 (11)
N1—C7—C12117.57 (14)H19A—C19—H19B112.0 (15)
C8—C7—C12118.37 (14)N3—C20—N2121.75 (15)
C9—C8—C7120.28 (15)N3—C20—S2114.84 (12)
C9—C8—H8117.7 (11)N2—C20—S2123.36 (12)
C7—C8—H8121.9 (11)
C6—C1—C2—C30.0 (3)O1—S1—C10—C11174.82 (12)
C1—C2—C3—C40.9 (3)O3—S1—C10—C1154.93 (15)
C2—C3—C4—C50.3 (3)C9—C10—C11—C120.9 (2)
C3—C4—C5—C61.2 (3)S1—C10—C11—C12174.38 (12)
C4—C5—C6—C12.1 (3)C10—C11—C12—C70.1 (2)
C4—C5—C6—N1179.60 (16)N1—C7—C12—C11177.74 (15)
C2—C1—C6—C51.6 (3)C8—C7—C12—C111.5 (2)
C2—C1—C6—N1179.16 (16)C18—C13—C14—C151.1 (3)
C7—N1—C6—C546.7 (3)C13—C14—C15—C160.0 (3)
C7—N1—C6—C1135.84 (18)C14—C15—C16—C171.2 (3)
C6—N1—C7—C84.1 (3)C15—C16—C17—C181.3 (3)
C6—N1—C7—C12175.08 (16)C16—C17—C18—C130.2 (3)
N1—C7—C8—C9177.33 (16)C16—C17—C18—C19179.89 (16)
C12—C7—C8—C91.8 (2)C14—C13—C18—C171.0 (2)
C7—C8—C9—C100.8 (2)C14—C13—C18—C19178.70 (15)
C8—C9—C10—C110.6 (2)C17—C18—C19—S2118.32 (15)
C8—C9—C10—S1174.76 (12)C13—C18—C19—S261.34 (17)
O2—S1—C10—C9110.24 (13)C20—S2—C19—C18177.78 (11)
O1—S1—C10—C99.86 (15)C19—S2—C20—N3167.79 (13)
O3—S1—C10—C9129.75 (13)C19—S2—C20—N214.60 (17)
O2—S1—C10—C1165.08 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.85 (2)1.99 (2)2.836 (2)173.0 (18)
N2—H1N2···O3ii0.92 (3)2.04 (3)2.9561 (19)172 (3)
N3—H1N3···O10.809 (19)2.015 (19)2.8204 (19)174 (2)
N2—H2N2···O3iii0.839 (19)2.015 (19)2.8069 (19)157.2 (19)
N3—H2N3···O2ii0.91 (2)1.96 (2)2.8633 (17)173 (2)
C9—H9···O10.97 (2)2.463 (18)2.8563 (18)103.8 (13)
C19—H19B···O2iv0.97 (2)2.57 (2)3.332 (2)134.8 (14)
C4—H4···Cg2v0.947 (19)3.22 (2)3.943 (2)134.7 (14)
C17—H17···Cg1iii0.99 (2)2.92 (2)3.471 (2)116.0 (15)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H10NO3S+·C8H11N2S
Mr415.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.4918 (4), 9.2024 (2), 16.3944 (4)
β (°) 113.529 (1)
V3)2004.57 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.24 × 0.07 × 0.03
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.879, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
45812, 5838, 4320
Rint0.057
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.107, 1.07
No. of reflections5838
No. of parameters337
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.50, 0.43

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.85 (2)1.99 (2)2.836 (2)173.0 (18)
N2—H1N2···O3ii0.92 (3)2.04 (3)2.9561 (19)172 (3)
N3—H1N3···O10.809 (19)2.015 (19)2.8204 (19)174 (2)
N2—H2N2···O3iii0.839 (19)2.015 (19)2.8069 (19)157.2 (19)
N3—H2N3···O2ii0.91 (2)1.96 (2)2.8633 (17)173 (2)
C9—H9···O10.97 (2)2.463 (18)2.8563 (18)103.8 (13)
C19—H19B···O2iv0.97 (2)2.57 (2)3.332 (2)134.8 (14)
C4—H4···Cg2v0.947 (19)3.22 (2)3.943 (2)134.7 (14)
C17—H17···Cg1iii0.99 (2)2.92 (2)3.471 (2)116.0 (15)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2; (v) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

§Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India.

Acknowledgements

This work is supported by the Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiao, L.-B., Liu, W.-H. & Xiao, X.-M. (2004). J. Electroanal. Chem. 566, 341–350.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Q., Liu, H., Zhou, Q., Liang, Y., Yin, G. & Xu, Z. (2006a). J. Mater. Sci. 41, 3657–3662.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Q., Liu, H., Zhu, J., Liang, Y., Xu, Z., Yin, G. & Han, M. (2006b). J. Nanosci. 6, 231–234.  CAS Google Scholar
First citationMostafa, G. A. E. (2006). J. Pharm. Biomed. Anal. 41, 1110–1115.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1858-o1859
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds