organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-[Butane-1,4-diylbis(nitrilo­methyl­­idyne)]dibenzo­nitrile

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 25 August 2008; accepted 26 August 2008; online 30 August 2008)

The title Schiff base compound, C20H18N4, lies across a crystallographic inversion centre and adopts E configurations with respect to the C=N bonds. The asymmetric unit of the compound is composed of one half-mol­ecule. The imino group is coplanar with the benzene ring. Within the mol­ecule, the planar units are parallel but extend in opposite directions from the methyl­ene bridge. In the crystal structure, neighbouring mol­ecules are linked together by weak inter­molecular C—H⋯N hydrogen bonds involving the cyano N atoms. These form ten-membered rings, generating R22(10) ring motifs, and link the mol­ecules along the c axis.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For information on Schiff base ligands, their complexes and applications, see, for example: Fun, Kargar & Kia (2008[Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.]); Fun, Kia & Kargar (2008[Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.]); Fun & Kia (2008a[Fun, H.-K. & Kia, R. (2008a). Acta Cryst. E64, m1081-m1082.],b[Fun, H.-K. & Kia, R. (2008b). Acta Cryst. E64, m1116-m1117.]); Calligaris & Randaccio (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]); Casellato & Vigato (1977[Casellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev. 23, 31-50.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N4

  • Mr = 314.38

  • Monoclinic, P 21 /n

  • a = 4.9720 (2) Å

  • b = 10.5047 (5) Å

  • c = 16.0315 (6) Å

  • β = 97.220 (3)°

  • V = 830.68 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100.0 (1) K

  • 0.52 × 0.33 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.990

  • 10382 measured reflections

  • 2603 independent reflections

  • 2035 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.143

  • S = 1.11

  • 2603 reflections

  • 145 parameters

  • All H-atom parameters refined

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N2i 0.945 (13) 2.541 (14) 3.3973 (14) 150.8 (12)
Symmetry code: (i) -x-1, -y, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The condensation of primary amines with carbonyl compounds yields Schiff base compounds (Casellato & Vigato, 1977); these are still one of the most prevalent mixed-donor ligands in coordination chemistry. In the past two decades, the synthesis, structure and properties of Schiff base complexes have stimulated much interest due to their noteworthy contributions in single molecule-based magnetism, materials science and the catalysis of many reactions such as carbonylation, hydroformylation, reduction, oxidation, epoxidation and hydrolysis (Casellato & Vigato 1977). However, only a relatively small number of free Schiff base ligands have been characterized (Calligaris & Randaccio, 1987). As an extension of our work (Fun, Kargar & Kia 2008; Fun, Kia & Kargar 2008; Fun & Kia 2008a,b) on the structural characterization of Schiff base ligands, the structure of the title compound, (I), is reported here.

The molecule of the title compound (I, Fig 1), lies across a crystallographic inversion centre and adopts E configurations with respect to the CN bonds. The bond lengths and angles are within normal ranges (Allen et al.,1987). The asymmetric unit of the compound is composed of one-half of the molecule. The imino group is coplanar with the benzene ring. Within the molecule, the planar units are parallel but extend in opposite directions from the methylene bridge. In the crystal structure, neighbouring molecules are linked together by weak intermolecular C—H···N hydrogen bonds involving the cyano N atoms. These form ten-membered rings, generate R22(10) ring motifs (Bernstein et al. 1995) and link the molecules along the c-axis.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For information on Schiff base ligands, their complexes and applications, see, for example: Fun, Kargar & Kia (2008); Fun, Kia & Kargar (2008); Fun & Kia (2008a,b); Calligaris & Randaccio (1987); Casellato & Vigato (1977).

Experimental top

The synthetic method has been described earlier (Fun, Kia & Kargar et al., 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

All of the hydrogen atoms were located from the difference Fourier map and refined freely with fixed isotropic displacement parameters.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms. The suffix A corresponds to symmetry code (-x + 1, -y, -z + 1).
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis showing chains along the c-axis. Intermolecular interactions are shown as dashed lines.
4,4'-[Butane-1,4-diylbis(nitrilomethylidyne)]dibenzonitrile top
Crystal data top
C20H18N4F(000) = 332
Mr = 314.38Dx = 1.257 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2704 reflections
a = 4.9720 (2) Åθ = 3.2–30.8°
b = 10.5047 (5) ŵ = 0.08 mm1
c = 16.0315 (6) ÅT = 100 K
β = 97.220 (3)°Block, colourless
V = 830.68 (6) Å30.52 × 0.33 × 0.13 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2603 independent reflections
Radiation source: fine-focus sealed tube2035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 30.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.942, Tmax = 0.990k = 1215
10382 measured reflectionsl = 2320
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143All H-atom parameters refined
S = 1.12 w = 1/[σ2(Fo2) + (0.08P)2 + 0.042P]
where P = (Fo2 + 2Fc2)/3
2603 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H18N4V = 830.68 (6) Å3
Mr = 314.38Z = 2
Monoclinic, P21/nMo Kα radiation
a = 4.9720 (2) ŵ = 0.08 mm1
b = 10.5047 (5) ÅT = 100 K
c = 16.0315 (6) Å0.52 × 0.33 × 0.13 mm
β = 97.220 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2603 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2035 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.990Rint = 0.027
10382 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.143All H-atom parameters refined
S = 1.12Δρmax = 0.31 e Å3
2603 reflectionsΔρmin = 0.20 e Å3
145 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.31548 (17)0.07369 (8)0.67193 (5)0.0242 (2)
N20.5866 (2)0.17550 (9)1.01544 (6)0.0364 (3)
C10.0130 (2)0.06350 (9)0.81305 (6)0.0255 (2)
C20.1490 (2)0.06318 (10)0.87727 (6)0.0269 (2)
C30.3002 (2)0.17138 (9)0.89127 (6)0.0240 (2)
C40.2917 (2)0.27859 (10)0.84069 (6)0.0260 (2)
C50.1254 (2)0.27847 (10)0.77740 (6)0.0246 (2)
C60.02661 (18)0.17141 (9)0.76284 (6)0.0213 (2)
C70.20222 (19)0.17330 (9)0.69517 (6)0.0218 (2)
C80.49150 (19)0.08750 (10)0.60619 (6)0.0245 (2)
C90.39698 (18)0.00237 (9)0.53129 (6)0.0226 (2)
C100.4614 (2)0.17317 (10)0.95980 (6)0.0276 (2)
H10.121 (3)0.0110 (13)0.8041 (8)0.033 (3)*
H20.153 (3)0.0091 (13)0.9122 (8)0.035 (3)*
H40.401 (3)0.3560 (13)0.8497 (8)0.032 (3)*
H50.116 (2)0.3552 (12)0.7446 (8)0.033 (3)*
H70.224 (2)0.2575 (12)0.6706 (8)0.028 (3)*
H8A0.502 (2)0.1786 (11)0.5893 (8)0.028 (3)*
H8B0.678 (2)0.0626 (11)0.6313 (7)0.025 (3)*
H9A0.222 (2)0.0346 (11)0.5017 (7)0.024 (3)*
H9B0.363 (2)0.0864 (12)0.5502 (8)0.029 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0259 (4)0.0289 (4)0.0189 (4)0.0028 (3)0.0071 (3)0.0027 (3)
N20.0469 (6)0.0336 (5)0.0326 (5)0.0050 (4)0.0199 (4)0.0056 (4)
C10.0297 (5)0.0240 (5)0.0242 (5)0.0005 (4)0.0086 (4)0.0012 (4)
C20.0333 (5)0.0267 (5)0.0225 (5)0.0032 (4)0.0102 (4)0.0004 (4)
C30.0246 (5)0.0285 (5)0.0199 (5)0.0065 (4)0.0067 (3)0.0060 (3)
C40.0277 (5)0.0265 (5)0.0248 (5)0.0017 (4)0.0079 (4)0.0046 (4)
C50.0287 (5)0.0241 (5)0.0221 (5)0.0022 (4)0.0073 (4)0.0009 (3)
C60.0213 (4)0.0247 (5)0.0183 (4)0.0041 (3)0.0041 (3)0.0040 (3)
C70.0231 (4)0.0248 (5)0.0182 (4)0.0047 (3)0.0045 (3)0.0018 (3)
C80.0229 (5)0.0321 (5)0.0200 (5)0.0042 (4)0.0080 (3)0.0036 (4)
C90.0189 (4)0.0307 (5)0.0189 (4)0.0028 (4)0.0052 (3)0.0036 (4)
C100.0325 (5)0.0267 (5)0.0252 (5)0.0055 (4)0.0104 (4)0.0054 (4)
Geometric parameters (Å, º) top
N1—C71.2663 (13)C4—H40.999 (13)
N1—C81.4594 (12)C5—C61.3910 (14)
N2—C101.1505 (13)C5—H50.967 (13)
C1—C21.3845 (14)C6—C71.4757 (13)
C1—C61.3969 (14)C7—H70.979 (13)
C1—H10.971 (13)C8—C91.5233 (13)
C2—C31.3963 (15)C8—H8A0.998 (12)
C2—H20.946 (14)C8—H8B0.996 (12)
C3—C41.3916 (14)C9—C9i1.5220 (18)
C3—C101.4392 (14)C9—H9A0.997 (11)
C4—C51.3869 (14)C9—H9B1.002 (12)
C7—N1—C8117.36 (8)C1—C6—C7120.70 (8)
C2—C1—C6120.36 (9)N1—C7—C6122.09 (9)
C2—C1—H1119.5 (7)N1—C7—H7123.5 (7)
C6—C1—H1120.1 (7)C6—C7—H7114.4 (7)
C1—C2—C3119.52 (9)N1—C8—C9110.94 (8)
C1—C2—H2120.1 (8)N1—C8—H8A110.5 (7)
C3—C2—H2120.3 (8)C9—C8—H8A111.8 (7)
C4—C3—C2120.58 (9)N1—C8—H8B107.0 (7)
C4—C3—C10119.66 (9)C9—C8—H8B110.1 (7)
C2—C3—C10119.75 (9)H8A—C8—H8B106.4 (10)
C5—C4—C3119.35 (9)C9i—C9—C8111.85 (9)
C5—C4—H4119.5 (7)C9i—C9—H9A108.5 (6)
C3—C4—H4121.2 (7)C8—C9—H9A109.9 (7)
C4—C5—C6120.66 (9)C9i—C9—H9B108.8 (7)
C4—C5—H5118.1 (8)C8—C9—H9B110.8 (7)
C6—C5—H5121.2 (8)H9A—C9—H9B106.8 (10)
C5—C6—C1119.52 (9)N2—C10—C3178.83 (11)
C5—C6—C7119.78 (8)
C6—C1—C2—C30.35 (15)C2—C1—C6—C7178.98 (9)
C1—C2—C3—C40.77 (15)C8—N1—C7—C6178.16 (8)
C1—C2—C3—C10177.82 (9)C5—C6—C7—N1170.25 (9)
C2—C3—C4—C51.76 (15)C1—C6—C7—N110.32 (14)
C10—C3—C4—C5176.82 (9)C7—N1—C8—C9122.71 (9)
C3—C4—C5—C61.66 (14)N1—C8—C9—C9i170.18 (10)
C4—C5—C6—C10.57 (15)C4—C3—C10—N287 (6)
C4—C5—C6—C7180.00 (8)C2—C3—C10—N292 (6)
C2—C1—C6—C50.45 (15)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N2ii0.945 (13)2.541 (14)3.3973 (14)150.8 (12)
Symmetry code: (ii) x1, y, z+2.

Experimental details

Crystal data
Chemical formulaC20H18N4
Mr314.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)4.9720 (2), 10.5047 (5), 16.0315 (6)
β (°) 97.220 (3)
V3)830.68 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.52 × 0.33 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.942, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
10382, 2603, 2035
Rint0.027
(sin θ/λ)max1)0.722
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.143, 1.12
No. of reflections2603
No. of parameters145
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.31, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N2i0.945 (13)2.541 (14)3.3973 (14)150.8 (12)
Symmetry code: (i) x1, y, z+2.
 

Footnotes

Additional correspondence author, e-mail: hadi_kargar@yahoo.com.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund (grant No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for the award of a post-doctoral research fellowship. HK thanks PNU for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.  Google Scholar
First citationCasellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev. 23, 31–50.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008a). Acta Cryst. E64, m1081–m1082.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008b). Acta Cryst. E64, m1116–m1117.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds