organic compounds
2,8-Dibromo-4,10-dichloro-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine
aDepartment of Chemistry and Biomolecular Sciences, Building F7B, Macquarie University, Sydney, NSW 2109, Australia, and bSchool of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
*Correspondence e-mail: andrew.try@mq.edu.au
The title compound, C15H10Br2Cl2N2, a 2,8-dibromo-4,10-dichloro Tröger's base analogue derived from 4-bromo-2-chloroaniline, has a dihedral angle of 110.9 (10)° between the two aryl rings, the largest yet measured for a simple dibenzo analogue.
Related literature
For related literature on the synthesis and crystal structures of dihalogenated Tröger's base analogues, see: Jensen & Wärnmark (2001); Faroughi et al. (2006a, 2007a,b). For Tröger's base analogues substituted with multiple electron-withdrawing groups, see: Faroughi et al. (2006b); Bhuiyan et al. (2006, 2007); Vande Velde et al. (2008). For reactions of halogenated Tröger's base analogues, see: Jensen et al. (2002); Hof et al. (2005). For literature on of Tröger's base analogues and the effect of substituents ortho to the diazocine N atoms, see: Lenev et al. (2006).
Experimental
Crystal data
|
Data collection: CAD-4 (Schagen et al., 1989); cell CAD-4; data reduction: local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: RAELS (Rae, 1996); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: local programs.
Supporting information
10.1107/S1600536808026226/tk2290sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808026226/tk2290Isup2.hkl
4-Bromo-2-chloroaniline (1 g, 4.84 mmol) and paraformaldehyde (232 mg, 7.74 mmol) were added to an ice-cold solution of trifluoroacetic acid (10 ml). The reaction mixture was then stirred in dark at room temperature for 7 days under an atmosphere of argon. The ice-cold reaction mixture was basified by the dropwise addition of a mixture of ammonia (28%, 20 ml) and water (40 ml), followed by the additon of a saturated sodium hydrogen carbonate solution (20 ml). The resultant mixture was then extracted with dichloromethane (3 x 20 ml) and the combined organic layers were washed with brine (40 ml), dried over anhydrous sodium sulfate, filtered and evaporated to dryness. The crude product was chromatographed (silica gel, dichloromethane:hexane 8:2) to afford 2,8-dibromo-4,10-dichloro-6H,12H-5,11-methanodibenzo [b,f][1,5]diazocine (I) (613 mg, 56%) as a white solid and as a δ 4.21–4.33 (4H, m), 4.55 (2H, d, J 17.3 Hz), 7.04 (2H, d, J 2.1 Hz), 7.41 (2H, d, J 2.1 Hz); 13C NMR (100 MHz, CDCl3) δ 54.37, 67.32, 117.15, 128.49, 130.17, 131.02, 131.71, 142.33. Analysis found: C 40.46; H 2.22; N 6.46; C15H10Br2Cl2N2 requires C 40.13; H 2.25; N 6.24. Single crystals were obtained from slow evaporation from dichloromethane solution of (I).
m.p. 471–472 K; 1H NMR (400 MHz, CDCl3)Hydrogen atoms were included in positions calculated each cycle (C—H = 1.0 Å), and were assigned thermal parameters equal to their bonded atom. The maximum and minimum electron density peaks were located 0.73 and 1.20Å from the Cl2 and Br1 atoms, respectively.
Data collection: CAD-4 (Schagen et al., 1989); cell
CAD-4 (Schagen et al., 1989); data reduction: local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: RAELS (Rae, 1996); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: local programs.C15H10Br2Cl2N2 | Dx = 1.96 Mg m−3 |
Mr = 449.0 | Melting point: 471 K |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 11 reflections |
a = 7.910 (2) Å | θ = 10–11° |
b = 12.601 (3) Å | µ = 5.64 mm−1 |
c = 15.230 (4) Å | T = 294 K |
V = 1518.0 (7) Å3 | Prism, colourless |
Z = 4 | 0.30 × 0.12 × 0.07 mm |
F(000) = 872.0 |
Enraf–Nonius CAD-4 diffractometer | θmax = 25° |
ω–2θ scans | h = 0→9 |
Absorption correction: analytical de Meulenaer & Tompa (1965) | k = 0→14 |
Tmin = 0.52, Tmax = 0.69 | l = −18→0 |
1394 measured reflections | 1 standard reflections every 30 min |
1394 independent reflections | intensity decay: none |
1028 reflections with I > 2σ(I) |
Refinement on F | w = 1/[σ2(F) + 0.0004F2] |
R[F2 > 2σ(F2)] = 0.056 | (Δ/σ)max = 0.002 |
wR(F2) = 0.061 | Δρmax = 0.98 e Å−3 |
S = 1.61 | Δρmin = −1.02 e Å−3 |
1394 reflections | Absolute structure: Flack (1983), 0 Friedel pairs |
189 parameters | Absolute structure parameter: 0.09 (2) |
H-atom parameters constrained |
C15H10Br2Cl2N2 | V = 1518.0 (7) Å3 |
Mr = 449.0 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 7.910 (2) Å | µ = 5.64 mm−1 |
b = 12.601 (3) Å | T = 294 K |
c = 15.230 (4) Å | 0.30 × 0.12 × 0.07 mm |
Enraf–Nonius CAD-4 diffractometer | 1394 independent reflections |
Absorption correction: analytical de Meulenaer & Tompa (1965) | 1028 reflections with I > 2σ(I) |
Tmin = 0.52, Tmax = 0.69 | 1 standard reflections every 30 min |
1394 measured reflections | intensity decay: none |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.061 | Δρmax = 0.98 e Å−3 |
S = 1.61 | Δρmin = −1.02 e Å−3 |
1394 reflections | Absolute structure: Flack (1983), 0 Friedel pairs |
189 parameters | Absolute structure parameter: 0.09 (2) |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.8061 (2) | 0.6867 (1) | 0.3991 (1) | 0.0585 (5) | |
Br2 | 0.2324 (2) | 0.0800 (1) | 0.0428 (2) | 0.0527 (5) | |
Cl1 | 0.9770 (5) | 0.5167 (4) | 0.0779 (3) | 0.057 (1) | |
Cl2 | 0.5654 (5) | 0.0565 (3) | 0.3603 (3) | 0.052 (1) | |
N1 | 0.9460 (14) | 0.3064 (10) | 0.1658 (8) | 0.041 (3) | |
N2 | 0.8319 (15) | 0.1842 (9) | 0.2739 (8) | 0.044 (3) | |
C1 | 0.9798 (19) | 0.2123 (12) | 0.2198 (10) | 0.044 (4) | |
C2 | 0.8998 (18) | 0.3929 (12) | 0.2193 (10) | 0.043 (4) | |
C3 | 0.8445 (18) | 0.3790 (11) | 0.3054 (8) | 0.041 (4) | |
C4 | 0.817 (2) | 0.2693 (12) | 0.3414 (8) | 0.049 (4) | |
C5 | 0.6842 (19) | 0.1696 (11) | 0.2226 (9) | 0.039 (4) | |
C6 | 0.6740 (19) | 0.2086 (11) | 0.1360 (9) | 0.036 (4) | |
C7 | 0.8206 (17) | 0.2753 (12) | 0.0978 (9) | 0.040 (4) | |
C8 | 0.9155 (17) | 0.4984 (13) | 0.1855 (9) | 0.043 (4) | |
C9 | 0.8825 (19) | 0.5861 (12) | 0.2397 (11) | 0.048 (4) | |
C10 | 0.839 (2) | 0.5684 (13) | 0.3247 (11) | 0.050 (4) | |
C11 | 0.818 (2) | 0.4666 (13) | 0.3570 (10) | 0.056 (4) | |
C12 | 0.5565 (17) | 0.1082 (10) | 0.2538 (8) | 0.031 (3) | |
C13 | 0.4158 (17) | 0.0854 (10) | 0.2036 (8) | 0.035 (3) | |
C14 | 0.4117 (17) | 0.1221 (11) | 0.1168 (9) | 0.040 (4) | |
C15 | 0.5433 (19) | 0.1819 (10) | 0.0853 (9) | 0.034 (3) | |
H1C1 | 1.0780 | 0.2273 | 0.2593 | 0.044 | |
H2C1 | 1.0078 | 0.1513 | 0.1804 | 0.044 | |
H1C4 | 0.7008 | 0.2660 | 0.3674 | 0.049 | |
H2C4 | 0.9027 | 0.2559 | 0.3883 | 0.049 | |
H1C7 | 0.7726 | 0.3410 | 0.0708 | 0.040 | |
H2C7 | 0.8794 | 0.2326 | 0.0517 | 0.040 | |
HC9 | 0.8906 | 0.6600 | 0.2162 | 0.048 | |
HC11 | 0.7825 | 0.4567 | 0.4195 | 0.056 | |
HC13 | 0.3194 | 0.0438 | 0.2286 | 0.035 | |
HC15 | 0.5411 | 0.2061 | 0.0228 | 0.034 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.060 (1) | 0.060 (1) | 0.0549 (9) | −0.0011 (8) | −0.001 (1) | −0.0138 (9) |
Br2 | 0.0470 (9) | 0.0650 (9) | 0.0461 (8) | −0.0118 (8) | −0.0026 (9) | −0.0091 (9) |
Cl1 | 0.061 (3) | 0.066 (3) | 0.044 (2) | −0.019 (2) | 0.010 (2) | 0.000 (2) |
Cl2 | 0.063 (3) | 0.056 (2) | 0.037 (2) | 0.000 (2) | 0.006 (2) | 0.018 (2) |
N1 | 0.029 (7) | 0.058 (8) | 0.037 (7) | 0.001 (6) | 0.002 (6) | −0.003 (6) |
N2 | 0.046 (7) | 0.048 (7) | 0.038 (7) | 0.004 (6) | −0.009 (6) | 0.020 (6) |
C1 | 0.029 (9) | 0.067 (9) | 0.036 (8) | 0.005 (8) | −0.016 (7) | 0.012 (8) |
C2 | 0.051 (9) | 0.043 (9) | 0.034 (8) | 0.009 (8) | 0.020 (8) | −0.006 (7) |
C3 | 0.045 (9) | 0.059 (9) | 0.019 (8) | −0.012 (8) | −0.004 (7) | −0.005 (7) |
C4 | 0.083 (9) | 0.053 (8) | 0.013 (7) | 0.004 (9) | −0.006 (7) | 0.007 (7) |
C5 | 0.048 (9) | 0.043 (9) | 0.026 (7) | 0.000 (7) | 0.013 (7) | 0.007 (7) |
C6 | 0.039 (8) | 0.042 (8) | 0.026 (8) | 0.010 (8) | 0.002 (6) | −0.006 (7) |
C7 | 0.037 (8) | 0.052 (9) | 0.030 (8) | −0.007 (8) | 0.007 (7) | −0.002 (7) |
C8 | 0.029 (8) | 0.062 (9) | 0.039 (9) | −0.002 (8) | −0.002 (7) | 0.004 (9) |
C9 | 0.047 (9) | 0.038 (9) | 0.059 (9) | −0.010 (8) | −0.001 (8) | −0.007 (8) |
C10 | 0.047 (9) | 0.057 (9) | 0.046 (9) | −0.005 (8) | 0.017 (8) | −0.007 (8) |
C11 | 0.085 (9) | 0.052 (9) | 0.029 (8) | −0.011 (9) | 0.009 (9) | −0.007 (8) |
C12 | 0.037 (8) | 0.032 (8) | 0.024 (7) | 0.009 (7) | 0.010 (6) | −0.002 (6) |
C13 | 0.046 (9) | 0.043 (9) | 0.016 (6) | 0.014 (8) | 0.001 (6) | 0.000 (7) |
C14 | 0.029 (8) | 0.039 (8) | 0.052 (9) | 0.006 (7) | 0.010 (7) | −0.015 (8) |
C15 | 0.034 (8) | 0.039 (8) | 0.027 (7) | 0.004 (7) | 0.009 (7) | −0.004 (7) |
Br1—C10 | 1.890 (15) | C4—H2C4 | 1.000 |
Br2—C14 | 1.888 (14) | C5—C6 | 1.410 (18) |
Cl1—C8 | 1.724 (14) | C5—C12 | 1.358 (18) |
Cl2—C12 | 1.750 (13) | C6—C7 | 1.55 (2) |
N1—C1 | 1.468 (18) | C6—C15 | 1.333 (19) |
N1—C2 | 1.409 (17) | C7—H1C7 | 1.000 |
N1—C7 | 1.487 (18) | C7—H2C7 | 1.000 |
N2—C1 | 1.474 (19) | C8—C9 | 1.40 (2) |
N2—C4 | 1.491 (18) | C9—C10 | 1.357 (19) |
N2—C5 | 1.417 (18) | C9—HC9 | 1.000 |
C1—H1C1 | 1.000 | C10—C11 | 1.39 (2) |
C1—H2C1 | 1.000 | C11—HC11 | 1.000 |
C2—C3 | 1.394 (18) | C12—C13 | 1.381 (17) |
C2—C8 | 1.43 (2) | C13—C14 | 1.402 (18) |
C3—C4 | 1.50 (2) | C13—HC13 | 1.000 |
C3—C11 | 1.37 (2) | C14—C15 | 1.371 (19) |
C4—H1C4 | 1.000 | C15—HC15 | 1.000 |
C1—N1—C2 | 110.4 (12) | N1—C7—C6 | 112.5 (11) |
C1—N1—C7 | 107.4 (11) | N1—C7—H1C7 | 108.7 |
C2—N1—C7 | 115.7 (11) | N1—C7—H2C7 | 108.7 |
C1—N2—C4 | 106.0 (11) | C6—C7—H1C7 | 108.7 |
C1—N2—C5 | 112.2 (11) | C6—C7—H2C7 | 108.7 |
C4—N2—C5 | 114.1 (12) | H1C7—C7—H2C7 | 109.5 |
N1—C1—N2 | 111.3 (11) | Cl1—C8—C2 | 119.3 (11) |
N1—C1—H1C1 | 109.0 | Cl1—C8—C9 | 120.4 (12) |
N1—C1—H2C1 | 109.0 | C2—C8—C9 | 120.2 (12) |
N2—C1—H1C1 | 109.0 | C8—C9—C10 | 118.6 (15) |
N2—C1—H2C1 | 109.0 | C8—C9—HC9 | 120.7 |
H1C1—C1—H2C1 | 109.5 | C10—C9—HC9 | 120.7 |
N1—C2—C3 | 121.9 (14) | Br1—C10—C9 | 118.5 (13) |
N1—C2—C8 | 119.2 (12) | Br1—C10—C11 | 120.0 (11) |
C3—C2—C8 | 118.8 (13) | C9—C10—C11 | 121.4 (15) |
C2—C3—C4 | 120.3 (13) | C3—C11—C10 | 121.6 (14) |
C2—C3—C11 | 119.1 (14) | C3—C11—HC11 | 119.2 |
C4—C3—C11 | 120.6 (12) | C10—C11—HC11 | 119.2 |
N2—C4—C3 | 113.5 (10) | Cl2—C12—C5 | 120.5 (12) |
N2—C4—H1C4 | 108.4 | Cl2—C12—C13 | 117.9 (10) |
N2—C4—H2C4 | 108.4 | C5—C12—C13 | 121.6 (13) |
C3—C4—H1C4 | 108.4 | C12—C13—C14 | 118.2 (13) |
C3—C4—H2C4 | 108.4 | C12—C13—HC13 | 120.9 |
H1C4—C4—H2C4 | 109.5 | C14—C13—HC13 | 120.9 |
N2—C5—C6 | 121.2 (13) | Br2—C14—C13 | 119.2 (11) |
N2—C5—C12 | 119.6 (13) | Br2—C14—C15 | 121.0 (11) |
C6—C5—C12 | 118.9 (15) | C13—C14—C15 | 119.6 (13) |
C5—C6—C7 | 119.8 (13) | C6—C15—C14 | 121.6 (13) |
C5—C6—C15 | 119.9 (14) | C6—C15—HC15 | 119.2 |
C7—C6—C15 | 120.1 (12) | C14—C15—HC15 | 119.2 |
C2—N1—C1—N2 | 57.5 (15) | C2—C3—C11—C10 | 2 (2) |
C2—N1—C1—H1C1 | −62.8 | C2—C3—C11—HC11 | −177.7 |
C2—N1—C1—H2C1 | 177.8 | C4—C3—C11—C10 | −178.6 (16) |
C7—N1—C1—N2 | −69.4 (15) | C4—C3—C11—HC11 | 1.4 |
C7—N1—C1—H1C1 | 170.3 | N2—C5—C6—C7 | −4 (2) |
C7—N1—C1—H2C1 | 50.8 | N2—C5—C6—C15 | 171.2 (13) |
C1—N1—C2—C3 | −18.2 (18) | C12—C5—C6—C7 | −177.9 (12) |
C1—N1—C2—C8 | 159.5 (13) | C12—C5—C6—C15 | −2 (2) |
C7—N1—C2—C3 | 103.9 (16) | N2—C5—C12—Cl2 | 5.4 (18) |
C7—N1—C2—C8 | −78.3 (17) | N2—C5—C12—C13 | −175.2 (12) |
C1—N1—C7—C6 | 44.6 (15) | C6—C5—C12—Cl2 | 179.1 (10) |
C1—N1—C7—H1C7 | 165.1 | C6—C5—C12—C13 | −2 (2) |
C1—N1—C7—H2C7 | −75.8 | C5—C6—C7—N1 | −10.2 (17) |
C2—N1—C7—C6 | −79.1 (15) | C5—C6—C7—H1C7 | −130.7 |
C2—N1—C7—H1C7 | 41.3 | C5—C6—C7—H2C7 | 110.2 |
C2—N1—C7—H2C7 | 160.4 | C15—C6—C7—N1 | 174.2 (13) |
C4—N2—C1—N1 | −69.8 (13) | C15—C6—C7—H1C7 | 53.8 |
C4—N2—C1—H1C1 | 50.5 | C15—C6—C7—H2C7 | −65.3 |
C4—N2—C1—H2C1 | 169.9 | C5—C6—C15—C14 | 4 (2) |
C5—N2—C1—N1 | 55.3 (16) | C5—C6—C15—HC15 | −176.1 |
C5—N2—C1—H1C1 | 175.6 | C7—C6—C15—C14 | 179.5 (12) |
C5—N2—C1—H2C1 | −65.0 | C7—C6—C15—HC15 | −0.5 |
C1—N2—C4—C3 | 42.4 (15) | Cl1—C8—C9—C10 | −178.1 (12) |
C1—N2—C4—H1C4 | 163.0 | Cl1—C8—C9—HC9 | 1.9 |
C1—N2—C4—H2C4 | −78.2 | C2—C8—C9—C10 | 1 (2) |
C5—N2—C4—C3 | −81.5 (16) | C2—C8—C9—HC9 | −178.6 |
C5—N2—C4—H1C4 | 39.1 | C8—C9—C10—Br1 | 176.8 (11) |
C5—N2—C4—H2C4 | 157.9 | C8—C9—C10—C11 | −4 (3) |
C1—N2—C5—C6 | −17.3 (19) | HC9—C9—C10—Br1 | −3.2 |
C1—N2—C5—C12 | 156.2 (13) | HC9—C9—C10—C11 | 176.3 |
C4—N2—C5—C6 | 103.2 (14) | Br1—C10—C11—C3 | −178.6 (12) |
C4—N2—C5—C12 | −83.3 (16) | Br1—C10—C11—HC11 | 1.4 |
N1—C2—C3—C4 | −6 (2) | C9—C10—C11—C3 | 2 (3) |
N1—C2—C3—C11 | 173.3 (14) | C9—C10—C11—HC11 | −178.1 |
C8—C2—C3—C4 | 176.4 (14) | Cl2—C12—C13—C14 | −176.9 (10) |
C8—C2—C3—C11 | −4 (2) | Cl2—C12—C13—HC13 | 3.1 |
N1—C2—C8—Cl1 | 4.3 (19) | C5—C12—C13—C14 | 3.7 (19) |
N1—C2—C8—C9 | −175.2 (13) | C5—C12—C13—HC13 | −176.3 |
C3—C2—C8—Cl1 | −177.9 (11) | C12—C13—C14—Br2 | 173.5 (9) |
C3—C2—C8—C9 | 3 (2) | C12—C13—C14—C15 | −2.1 (18) |
C2—C3—C4—N2 | −8 (2) | HC13—C13—C14—Br2 | −6.5 |
C2—C3—C4—H1C4 | −128.1 | HC13—C13—C14—C15 | 177.9 |
C2—C3—C4—H2C4 | 113.1 | Br2—C14—C15—C6 | −177.3 (11) |
C11—C3—C4—N2 | 173.3 (14) | Br2—C14—C15—HC15 | 2.7 |
C11—C3—C4—H1C4 | 52.7 | C13—C14—C15—C6 | −2 (2) |
C11—C3—C4—H2C4 | −66.1 | C13—C14—C15—HC15 | 178.3 |
Experimental details
Crystal data | |
Chemical formula | C15H10Br2Cl2N2 |
Mr | 449.0 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 294 |
a, b, c (Å) | 7.910 (2), 12.601 (3), 15.230 (4) |
V (Å3) | 1518.0 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.64 |
Crystal size (mm) | 0.30 × 0.12 × 0.07 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | Analytical de Meulenaer & Tompa (1965) |
Tmin, Tmax | 0.52, 0.69 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1394, 1394, 1028 |
Rint | ? |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.061, 1.61 |
No. of reflections | 1394 |
No. of parameters | 189 |
No. of restraints | ? |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.98, −1.02 |
Absolute structure | Flack (1983), 0 Friedel pairs |
Absolute structure parameter | 0.09 (2) |
Computer programs: CAD-4 (Schagen et al., 1989), SIR92 (Altomare et al., 1994), RAELS (Rae, 1996), ORTEPII (Johnson, 1976), local programs.
Acknowledgements
The authors thank Macquarie University for the award of a Macquarie University Research Development Grant to ACT.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bhuiyan, M. D. H., Jensen, P. & Try, A. C. (2007). Acta Cryst. E63, o4393. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bhuiyan, M. D. H., Try, A. C., Klepetko, J. & Turner, P. (2006). Acta Cryst. E62, o4887–o4888. Web of Science CSD CrossRef IUCr Journals Google Scholar
Faroughi, M., Try, A. C., Klepetko, J. & Turner, P. (2007a). Tetrahedron Lett. 48, 6548–6551. Web of Science CSD CrossRef CAS Google Scholar
Faroughi, M., Try, A. C. & Turner, P. (2006a). Acta Cryst. E62, o3674–o3675. Web of Science CSD CrossRef IUCr Journals Google Scholar
Faroughi, M., Try, A. C. & Turner, P. (2006b). Acta Cryst. E62, o3893–o3894. Web of Science CSD CrossRef IUCr Journals Google Scholar
Faroughi, M., Try, A. C. & Turner, P. (2007b). Acta Cryst. E63, o2695. Web of Science CSD CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hof, F., Schar, M., Scofield, D. M., Fischer, F., Diederich, F. & Sergeyev, S. (2005). Helv. Chim. Acta, 88, 2333–2344. Web of Science CrossRef CAS Google Scholar
Jensen, J., Strozyk, M. & Wärnmark, K. (2002). Synthesis, pp. 2761–2765. Google Scholar
Jensen, J. & Wärnmark, K. (2001). Synthesis, pp. 1873–1877. CrossRef Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Lenev, D. A., Lyssenko, K. A., Golovanov, D. G., Buss, V. & Kostyanovsky, R. G. (2006). Chem. Eur. J. 12, 6412–6418. Web of Science CSD CrossRef PubMed CAS Google Scholar
Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018. CrossRef IUCr Journals Web of Science Google Scholar
Rae, A. D. (1996). RAELS. University of New South Wales, Australia. Google Scholar
Schagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Manual. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Vande Velde, C. M. L., Didier, D., Blockhuys, F. & Sergeyev, S. (2008). Acta Cryst. E64, o538. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tröger's base analogues bearing electron-withdrawing groups were long thought to be difficult, if not impossible, to prepare. However, the synthesis of dihalogenated (Jensen & Wärnmark, 2001), octafluoro (Vande Velde et al., 2008) and tetranitro (Bhuiyan et al., 2007) Tröger's base analogues highlight the possiblities that now exist in terms of incorporating electron-withdrawing groups on the starting anilines. The synthetic utility of halogen-substituted Tröger's base analogue has been demonstrated with their conversion to alkyne- (Jensen & Wärnmark, 2001; Jensen et al., 2002) and functionalized phenyl- (Hof et al., 2005) substituted analogues, among others. It is noteworthy that crystal structures of several other 2,4,8,10-tetrasubstituted Tröger's base analogues exhibit large dihedral angles that are close to that in (I). Tröger's base analogues are known to undergo racemization in acidic solution, however the presence of a substituent at the ortho-position, relative to the bridge nitrogen atoms, has been shown to increase the racemization barrier (Lenev et al., 2006).
The molecular structure of (I) is shown in Fig. 1 and it was prepared as outlined in Fig. 2.