organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3α-Azido-5-cholestene

aInstitute for Glycomics, Griffith University, Gold Coast 4222, Australia, and bEskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane 4111, Australia
*Correspondence e-mail: P.Healy@griffith.edu.au

(Received 4 August 2008; accepted 6 August 2008; online 9 August 2008)

The crystal structure of the title compound, C27H45N3, has been determined as part of our investigation into the hydro­phobic modification of amino­glycoside anti­biotics. The isopropyl group showed disorder for the tertiary carbon (equal occupancies), with high thermal motion for the peripheral atoms of the isopropyl and azide groups also apparent in the structure. The axial disposition of the azide group is consistent with the clean inversion of stereochemistry at C-3 under Mitsunobu conditions.

Related literature

For related literature, see: Freiberg (1965[Freiberg, L. A. (1965). J. Org. Chem. 30, 2476-2479.]); Loibner & Zbiral (1976[Loibner, H. & Zbiral, E. (1976). Helv. Chim. Acta, 59, 2100-2113.]); Quader et al. (2006[Quader, S., Boyd, S. E., Houston, T. A., Jenkins, I. D. & Healy, P. C. (2006). Acta Cryst. E62, o162-o164.], 2007[Quader, S., Boyd, S. E., Jenkins, I. D. & Houston, T. A. (2007). J. Org. Chem. 72, 1962-1979.]); Stoffel & Klotzbuecher (1978[Stoffel, W. & Klotzbuecher, R. (1978). Hoppe-Seyler's Z. Physiol. Chem. 359, 199-209.]); Viaud & Rollin (1990[Viaud, M. C. & Rollin, P. (1990). Synthesis, pp. 130-132.]); Wilkinson et al. (2007[Wilkinson, B. L., Bornaghi, L. F., Wright, A. D., Houston, T. A. & Poulsen, S.-A. (2007). Bioorg. Med. Chem. Lett. 17, 1355-1357.]).

[Scheme 1]

Experimental

Crystal data
  • C27H45N3

  • Mr = 411.66

  • Monoclinic, P 21

  • a = 13.3763 (3) Å

  • b = 6.2288 (1) Å

  • c = 15.0495 (4) Å

  • β = 94.205 (2)°

  • V = 1250.52 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 223 K

  • 0.44 × 0.39 × 0.28 mm

Data collection
  • Oxford-Diffraction Gemini S Ultra diffractometer

  • Absorption correction: none

  • 10298 measured reflections

  • 2428 independent reflections

  • 1883 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.125

  • S = 0.98

  • 2428 reflections

  • 280 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

As part of our program to identify new anti-tubercular compounds, we have created a diverse range of azide and alkyne coupling partners to generate a variety of compounds (Quader et al., 2007; Wilkinson et al., 2007). Among these are steroid and lipid components for the hydrophobic modification of aminoglycosides to aid in penetration of the waxy coat of mycobacteria (Quader et al., 2006). Here, we describe the synthesis and X-ray crystal structure of 3α-azido-5-cholestene, (II, Fig. 1). This compound was previously tested for its ability to inhibit cholesterol biosynthesis (Stoffel et al., 1978).

Compound (II) was synthesized directly from cholesterol (I) in 74% yield using the Mitsunobu reaction catalysed with the zinc azide-pyridine complex [Zn(N3)2(py)2] (Viaud & Rollin, 1990). This reaction compares favourably with the use of toxic HN3 for this purpose (Loibner & Zbiral, 1976). The clean inversion of stereochemistry under these conditions makes this method preferable in both efficiency and selectivity over azide displacement of 3-tosylate (Freiberg, 1965). A competing reaction at C-6 and a mixture of isomers at C-3 was reported in the latter case.

Compound (II) crystallizes in the polar space group P21 with one molecule in the asymmetric unit. The fused tetracyclic ring system adopts the expected conformations for the all-trans A/B/C/D junctions. The six-membered rings A and C adopt normal chair conformations. The C5—C6 bond length of 1.320 (4)Å confirms the presence of the double bond in this position while the axial disposition of the azide substituent on C3 confirms inversion of the alcohol stereochemistry has occurred. The azide group is almost linear with the N31—N32—N33 angle 173.4 (5)° while the C3—N31—N32 angle is 115.4 (4)°. The molecules are linked in the crystal lattice by van der Waals interactions only.

Related literature top

For related literature, see: Freiberg (1965); Loibner & Zbiral (1976); Quader et al. (2006, 2007); Stoffel & Klotzbuecher (1978); Viaud & Rollin (1990); Wilkinson et al. (2007).

Experimental top

Diisopropyl azodicarboxylate (DIAD) (520 µL, 2.58 mmol) was slowly added to a suspension of cholesterol (I) (500 mg, 1.29 mmol), triphenylphosphine (676 mg, 2.58 mmol) and [Zn(N3)2(py)2] (Viand & Rollin, 1990) (400 mg, 1.29 mmol) in toluene at RT and stirred (4 h). The reaction mixture was then concentrated under reduced pressure and subjected to column chromatography to furnish 3α-azido-5-cholestene as a pale-yellow solid (394 mg, 74%). Crystals suitable for X-ray diffraction analysis, were obtained after recrystallization from CDCl3: mp 387–389 K [lit. mp 388–389 K (Freiberg, 1965)].

1H NMR (400 MHz, CDCl3, 298 K): δ p.p.m. 5.41 (1H, m, H6), 3.88 (1H, dddd, J = 4, 5, 11, 11 Hz, H3), 2.54 (1H, ddd, J = 2.2, 2.2, 15 Hz H4a), 2.20 (1H, ddd, J = 2.5, 2.5, 15 Hz H4b), 2.06–1.91 (2H, m, H7a,16a), 1.90–0.97 (24H, m), 1.10 (3H, s, CH3,H19), 0.92 (3H, d, J = 6.6, CH3, H21), 0.88 (3H, d, J = 1.8, CH3, H26/H27) 0.86 (3H, s, J = 1.8, CH3, H26/H27) 0.69 (3H, s, CH3, H18).

13C{1H} NMR (100 MHz, CDCl3, 298 K): δ p.p.m. 138.06 (C5), 123.15 (C6), 58.26 (C3), 56.68 (C14), 56.10 (C17), 49.88 (C9), 42.28 (C13), 39.71 (C12), 39.51 (C24), 37.10 (C10), 36.18 (C22), 36.10 (C4), 35.80 (C20), 33.61(C1), 31.80, 31.76 (C7/C8), 28.22 (C16), 28.00 (C25), 26.10 (C2), 24.25 (C15), 23.81 (C23), 22.81, 22.55 (C26/27), 20.71 (C11), 18.98 (C19), 18.70 (C21), 11.84 (C18).

Refinement top

H atoms attached to carbon were constrained as riding atoms, with C–H set to 0.93 - 0.97Å. Uiso(H) values were set to 1.2Ueq of the parent atom. The isopropyl group showed disorder with the C25 atom modelled as two atoms with 50% occupancy. High thermal motion of peripheral carbon atoms (C26, C27) for the isopropyl group and the nitrogen atom N33 of the azide group was also apparent in the structure. In the absence of significant anomalous dispersion effects, Friedel pairs were merged before refinement. The absolute configuration was assigned on the basis of the C atoms retaining their configuration during the synthesis of the azide.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (II), with atom labels and 40% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The formation of the title compound.
3α-azido-5-cholestene top
Crystal data top
C27H45N3F(000) = 456
Mr = 411.66Dx = 1.093 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ybCell parameters from 6446 reflections
a = 13.3763 (3) Åθ = 3.0–28.8°
b = 6.2288 (1) ŵ = 0.06 mm1
c = 15.0495 (4) ÅT = 223 K
β = 94.205 (2)°Block, colourless
V = 1250.52 (5) Å30.44 × 0.39 × 0.28 mm
Z = 2
Data collection top
Oxford-Diffraction GEMINI Ultra
diffractometer
1883 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.027
Graphite monochromatorθmax = 25.1°, θmin = 3.0°
Detector resolution: 16.0774 pixels mm-1h = 015
ω and ϕ scansk = 77
10298 measured reflectionsl = 1717
2428 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0932P)2]
where P = (Fo2 + 2Fc2)/3
2428 reflections(Δ/σ)max = 0.019
280 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C27H45N3V = 1250.52 (5) Å3
Mr = 411.66Z = 2
Monoclinic, P21Mo Kα radiation
a = 13.3763 (3) ŵ = 0.06 mm1
b = 6.2288 (1) ÅT = 223 K
c = 15.0495 (4) Å0.44 × 0.39 × 0.28 mm
β = 94.205 (2)°
Data collection top
Oxford-Diffraction GEMINI Ultra
diffractometer
1883 reflections with I > 2σ(I)
10298 measured reflectionsRint = 0.027
2428 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.125H-atom parameters constrained
S = 0.99Δρmax = 0.20 e Å3
2428 reflectionsΔρmin = 0.20 e Å3
280 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N310.0644 (2)0.4907 (5)0.3662 (2)0.0638 (11)
N320.0062 (3)0.3729 (6)0.3817 (2)0.0697 (12)
N330.0652 (3)0.2474 (7)0.3963 (4)0.124 (2)
C10.2026 (2)0.7988 (5)0.26902 (18)0.0471 (10)
C20.1368 (2)0.8453 (6)0.35372 (19)0.0529 (10)
C30.0392 (2)0.7231 (6)0.3553 (2)0.0511 (10)
C40.0146 (2)0.7594 (6)0.2716 (2)0.0485 (10)
C50.0524 (2)0.7326 (5)0.18621 (18)0.0390 (8)
C60.0231 (2)0.6140 (6)0.12045 (19)0.0447 (9)
C70.08021 (19)0.5861 (5)0.03207 (18)0.0422 (9)
C80.16458 (19)0.7473 (4)0.01577 (17)0.0338 (8)
C90.22078 (18)0.7753 (4)0.10085 (17)0.0350 (8)
C100.1518 (2)0.8525 (5)0.18214 (17)0.0372 (8)
C110.3143 (2)0.9172 (5)0.08280 (18)0.0448 (9)
C120.38295 (19)0.8491 (6)0.00183 (18)0.0443 (9)
C130.32634 (19)0.8317 (5)0.08311 (17)0.0357 (8)
C140.23823 (19)0.6769 (4)0.06031 (18)0.0336 (8)
C150.1992 (2)0.6228 (5)0.15046 (18)0.0433 (9)
C160.2943 (2)0.6222 (5)0.21424 (18)0.0438 (9)
C170.38102 (19)0.7131 (5)0.16239 (18)0.0385 (8)
C180.2909 (2)1.0517 (5)0.1121 (2)0.0464 (9)
C190.1302 (2)1.0949 (6)0.1771 (2)0.0512 (10)
C200.4598 (2)0.8319 (5)0.22355 (18)0.0447 (9)
C210.5409 (3)0.9376 (7)0.1724 (2)0.0687 (14)
C220.5077 (2)0.6834 (6)0.2950 (2)0.0504 (10)
C230.5700 (3)0.7965 (8)0.3692 (3)0.0881 (17)
C240.6160 (2)0.6573 (6)0.4412 (2)0.0546 (10)
C25A0.6989 (9)0.746 (2)0.5021 (7)0.078 (4)0.500
C25B0.6538 (6)0.7565 (18)0.5303 (5)0.052 (3)0.500
C260.7182 (4)0.6018 (10)0.5855 (3)0.1035 (19)
C270.7052 (5)0.9659 (11)0.5206 (3)0.113 (2)
H1A0.218900.649700.268400.0570*
H1B0.262100.880600.270100.0570*
H2A0.123100.994500.356800.0640*
H2B0.172000.803900.403900.0640*
H30.002900.768100.405400.0610*
H4A0.041000.900400.273200.0580*
H4B0.068000.658400.270900.0580*
H60.039100.539400.129700.0530*
H7A0.107700.445500.029200.0500*
H7B0.034900.602400.013400.0500*
H80.136700.881400.000800.0410*
H90.244400.636700.115700.0420*
H11A0.292701.059900.073600.0540*
H11B0.352000.912000.133900.0540*
H12A0.411500.713400.013700.0530*
H12B0.434700.952600.007700.0530*
H140.267500.547800.040500.0400*
H15A0.167500.486200.149100.0520*
H15B0.153200.728900.167500.0520*
H16A0.309400.479200.233100.0530*
H16B0.284600.709100.264500.0530*
H170.414000.593000.138400.0460*
H18A0.347601.139900.127300.0560*
H18B0.250801.115500.064800.0560*
H18C0.252901.035700.162600.0560*
H19A0.071301.127300.213800.0610*
H19B0.185201.172300.197400.0610*
H19C0.120801.133100.117300.0610*
H200.426100.942000.252900.0540*
H21A0.523401.082500.160400.0830*
H21B0.546700.863000.117800.0830*
H21C0.603100.931400.207000.0830*
H22A0.549900.585200.267000.0610*
H22B0.455700.606500.320700.0610*
H23A0.527900.896400.395800.1060*
H23B0.622600.870000.343200.1060*
H24A0.671600.587300.417900.0660*
H24B0.567100.552500.453800.0660*
H25A0.756500.723400.469600.0950*0.500
H25B0.597400.782200.562400.0560*0.500
H26A0.784500.612800.567200.1210*
H26B0.720100.636700.645600.1210*
H26C0.697100.459700.574500.1210*
H27A0.666201.058000.482000.1360*
H27B0.769000.942600.495800.1360*
H27C0.717701.032400.577200.1360*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N310.0661 (17)0.0602 (19)0.0640 (19)0.0036 (18)0.0020 (15)0.0113 (16)
N320.079 (2)0.058 (2)0.068 (2)0.009 (2)0.0227 (17)0.0007 (16)
N330.106 (3)0.067 (2)0.187 (5)0.016 (3)0.062 (3)0.006 (3)
C10.0395 (14)0.063 (2)0.0391 (15)0.0020 (15)0.0051 (12)0.0025 (15)
C20.0502 (17)0.069 (2)0.0391 (15)0.0002 (18)0.0008 (13)0.0010 (17)
C30.0527 (18)0.059 (2)0.0399 (16)0.0085 (17)0.0079 (14)0.0024 (16)
C40.0409 (14)0.0579 (19)0.0457 (16)0.0007 (15)0.0040 (13)0.0040 (16)
C50.0351 (13)0.0414 (16)0.0406 (15)0.0036 (14)0.0033 (11)0.0027 (14)
C60.0377 (14)0.0528 (18)0.0432 (15)0.0075 (15)0.0008 (12)0.0061 (15)
C70.0391 (14)0.0449 (17)0.0427 (15)0.0069 (14)0.0042 (12)0.0001 (15)
C80.0344 (13)0.0327 (13)0.0341 (13)0.0012 (12)0.0016 (11)0.0005 (12)
C90.0334 (13)0.0375 (16)0.0343 (13)0.0013 (12)0.0041 (11)0.0041 (12)
C100.0375 (14)0.0416 (16)0.0328 (14)0.0005 (13)0.0046 (12)0.0009 (13)
C110.0432 (15)0.0564 (19)0.0349 (15)0.0091 (15)0.0042 (12)0.0051 (14)
C120.0348 (13)0.0584 (18)0.0397 (15)0.0070 (15)0.0028 (12)0.0005 (15)
C130.0370 (13)0.0366 (15)0.0332 (13)0.0031 (13)0.0012 (11)0.0009 (12)
C140.0373 (13)0.0277 (14)0.0360 (13)0.0022 (12)0.0050 (11)0.0002 (11)
C150.0455 (15)0.0436 (16)0.0414 (15)0.0044 (15)0.0073 (12)0.0059 (14)
C160.0487 (15)0.0456 (17)0.0369 (15)0.0012 (15)0.0021 (12)0.0014 (14)
C170.0407 (14)0.0349 (15)0.0396 (14)0.0044 (13)0.0016 (12)0.0001 (13)
C180.0542 (17)0.0362 (16)0.0476 (16)0.0009 (14)0.0035 (14)0.0020 (14)
C190.0595 (18)0.0455 (17)0.0473 (17)0.0024 (17)0.0049 (14)0.0036 (16)
C200.0442 (15)0.0504 (17)0.0390 (15)0.0019 (15)0.0009 (12)0.0019 (15)
C210.0580 (19)0.089 (3)0.057 (2)0.024 (2)0.0108 (16)0.016 (2)
C220.0465 (16)0.062 (2)0.0416 (15)0.0025 (16)0.0034 (13)0.0008 (15)
C230.107 (3)0.078 (3)0.072 (3)0.003 (3)0.042 (2)0.004 (2)
C240.0471 (16)0.068 (2)0.0470 (17)0.0042 (17)0.0075 (14)0.0016 (16)
C25A0.081 (7)0.086 (7)0.063 (6)0.010 (7)0.024 (5)0.005 (6)
C25B0.052 (5)0.070 (5)0.032 (4)0.002 (5)0.001 (3)0.005 (4)
C260.129 (4)0.106 (3)0.067 (3)0.003 (4)0.051 (3)0.007 (3)
C270.141 (4)0.121 (5)0.073 (3)0.052 (4)0.020 (3)0.008 (3)
Geometric parameters (Å, º) top
N31—N321.205 (5)C4—H4A0.9500
N31—C31.498 (5)C4—H4B0.9500
N32—N331.121 (6)C6—H60.9500
C1—C21.523 (4)C7—H7A0.9500
C1—C101.554 (4)C7—H7B0.9500
C2—C31.510 (4)C8—H80.9500
C3—C41.513 (4)C9—H90.9500
C4—C51.521 (4)C11—H11A0.9500
C5—C61.317 (4)C11—H11B0.9500
C5—C101.522 (4)C12—H12A0.9500
C6—C71.495 (4)C12—H12B0.9500
C7—C81.517 (4)C14—H140.9500
C8—C91.542 (4)C15—H15A0.9500
C8—C141.519 (4)C15—H15B0.9500
C9—C101.554 (4)C16—H16A0.9500
C9—C111.540 (4)C16—H16B0.9500
C10—C191.540 (5)C17—H170.9500
C11—C121.531 (4)C18—H18A0.9500
C12—C131.537 (4)C18—H18B0.9500
C13—C141.542 (4)C18—H18C0.9500
C13—C171.542 (4)C19—H19A0.9500
C13—C181.524 (4)C19—H19B0.9500
C14—C151.527 (4)C19—H19C0.9500
C15—C161.536 (4)C20—H200.9500
C16—C171.552 (4)C21—H21A0.9500
C17—C201.537 (4)C21—H21B0.9500
C20—C211.525 (5)C21—H21C0.9500
C20—C221.524 (4)C22—H22A0.9500
C22—C231.517 (5)C22—H22B0.9500
C23—C241.486 (6)C23—H23A0.9500
C24—C25A1.492 (12)C23—H23B0.9500
C24—C25B1.528 (9)C24—H24A0.9500
C25A—C25B0.765 (14)C24—H24B0.9500
C25A—C261.550 (12)C25A—H25A0.9500
C25A—C271.399 (14)C25B—H25B0.9400
C25B—C261.502 (11)C26—H26A0.9500
C25B—C271.487 (13)C26—H26B0.9300
C1—H1A0.9500C26—H26C0.9400
C1—H1B0.9500C27—H27A0.9500
C2—H2A0.9500C27—H27B0.9700
C2—H2B0.9500C27—H27C0.9500
C3—H30.9500
N31···H1A2.6400H12A···H21Av2.5700
N32···H2Ai2.9300H12B···C212.7700
N32···H4B2.6100H12B···H18A2.5000
N33···H4Ai2.8500H12B···H21B2.2200
C12···C213.291 (4)H14···C113.0500
C18···C213.474 (5)H14···H7A2.4000
C21···C123.291 (4)H14···H92.4100
C21···C183.474 (5)H14···H12A2.3800
C1···H11B2.8300H14···H172.3800
C2···H19A2.9300H15A···C72.9500
C4···H19A2.6800H15B···C182.8900
C5···H83.0700H15B···H18C2.3300
C6···H92.9600H15B···H6vi2.5000
C7···H15A2.9500H16A···C223.0300
C8···H18B2.8000H16A···H22B2.4100
C8···H19C2.8800H16B···C222.9900
C11···H1B2.8600H16B···H18C2.5600
C11···H19C2.9300H16B···H202.4000
C11···H19B2.8400H16B···H22B2.4700
C11···H143.0500H17···H12A2.4100
C11···H18B2.7300H17···H142.3800
C12···H21B2.7300H17···H21B2.4800
C13···H21B2.9600H17···H22A2.5600
C15···H7B2.9000H18A···C202.7800
C15···H18C2.6700H18A···C212.9100
C15···H7A3.0900H18A···H12B2.5000
C16···H22B2.5900H18A···H202.4300
C16···H18C2.7400H18A···H21A2.3900
C18···H11A2.8000H18B···C82.8000
C18···H82.7800H18B···C112.7300
C18···H202.7700H18B···H82.2800
C18···H15B2.8900H18B···H11A2.2200
C19···H4A2.8800H18C···C152.6700
C19···H2A2.7700H18C···C162.7400
C19···H82.9600H18C···H15B2.3300
C19···H11A2.5900H18C···H16B2.5600
C20···H18A2.7800H19A···C22.9300
C21···H12B2.7700H19A···C42.6800
C21···H18A2.9100H19A···H2A2.4500
C21···H23B2.7500H19A···H4A2.2000
C21···H12Aii3.0500H19B···C112.8400
C22···H16A3.0300H19B···H1B2.3900
C22···H16B2.9900H19B···H11A2.3700
C23···H21C2.6500H19C···C82.8800
C23···H27A2.6200H19C···C112.9300
C27···H23A2.9500H19C···H7Aiii2.3700
C27···H23B2.8800H19C···H82.3500
H1A···N312.6400H19C···H11A2.3900
H1A···H92.3000H20···C182.7700
H1B···C112.8600H20···H16B2.4000
H1B···H11B2.3100H20···H18A2.4300
H1B···H19B2.3900H20···H23A2.4800
H2A···N32iii2.9300H21A···H18A2.3900
H2A···C192.7700H21A···H12Aii2.5700
H2A···H19A2.4500H21B···C122.7300
H4A···N33iii2.8500H21B···C132.9600
H4A···C192.8800H21B···H12B2.2200
H4A···H19A2.2000H21B···H172.4800
H4B···N322.6100H21C···C232.6500
H4B···H62.2600H21C···H22A2.4600
H6···H4B2.2600H21C···H23B2.0800
H6···H15Biv2.5000H22A···H172.5600
H7A···C153.0900H22A···H21C2.4600
H7A···H142.4000H22B···C162.5900
H7A···H19Ci2.3700H22B···H16A2.4100
H7B···C152.9000H22B···H16B2.4700
H8···C53.0700H22B···H24B2.4300
H8···C182.7800H23A···C272.9500
H8···C192.9600H23A···H202.4800
H8···H18B2.2800H23A···H27A2.4000
H8···H19C2.3500H23B···C212.7500
H9···C62.9600H23B···C272.8800
H9···H1A2.3000H23B···H21C2.0800
H9···H142.4100H23B···H27A2.4300
H11A···C182.8000H24A···H26C2.4900
H11A···C192.5900H24B···H22B2.4300
H11A···H18B2.2200H24B···H26C2.4900
H11A···H19B2.3700H26A···H27B2.3200
H11A···H19C2.3900H26C···H24A2.4900
H11B···C12.8300H26C···H24B2.4900
H11B···H1B2.3100H27A···C232.6200
H12A···H142.3800H27A···H23A2.4000
H12A···H172.4100H27A···H23B2.4300
H12A···C21v3.0500H27B···H26A2.3200
N32—N31—C3115.5 (3)C10—C9—H9107.00
N31—N32—N33173.2 (5)C11—C9—H9106.00
C2—C1—C10113.7 (2)C9—C11—H11A108.00
C1—C2—C3111.3 (3)C9—C11—H11B108.00
N31—C3—C2106.7 (2)C12—C11—H11A108.00
N31—C3—C4111.1 (3)C12—C11—H11B108.00
C2—C3—C4112.0 (3)H11A—C11—H11B110.00
C3—C4—C5113.6 (2)C11—C12—H12A109.00
C4—C5—C6120.5 (3)C11—C12—H12B109.00
C4—C5—C10116.0 (2)C13—C12—H12A109.00
C6—C5—C10123.5 (2)C13—C12—H12B109.00
C5—C6—C7125.0 (3)H12A—C12—H12B110.00
C6—C7—C8113.1 (2)C8—C14—H14105.00
C7—C8—C9110.1 (2)C13—C14—H14106.00
C7—C8—C14111.4 (2)C15—C14—H14105.00
C9—C8—C14109.3 (2)C14—C15—H15A111.00
C8—C9—C10113.0 (2)C14—C15—H15B111.00
C8—C9—C11111.0 (2)C16—C15—H15A111.00
C10—C9—C11112.9 (2)C16—C15—H15B111.00
C1—C10—C5107.2 (2)H15A—C15—H15B109.00
C1—C10—C9109.0 (2)C15—C16—H16A110.00
C1—C10—C19110.4 (2)C15—C16—H16B110.00
C5—C10—C9110.3 (2)C17—C16—H16A110.00
C5—C10—C19108.5 (2)C17—C16—H16B110.00
C9—C10—C19111.6 (2)H16A—C16—H16B110.00
C9—C11—C12114.4 (2)C13—C17—H17107.00
C11—C12—C13112.2 (2)C16—C17—H17107.00
C12—C13—C14105.9 (2)C20—C17—H17107.00
C12—C13—C17116.3 (2)C13—C18—H18A109.00
C12—C13—C18110.9 (3)C13—C18—H18B109.00
C14—C13—C17100.6 (2)C13—C18—H18C109.00
C14—C13—C18112.2 (2)H18A—C18—H18B110.00
C17—C13—C18110.4 (2)H18A—C18—H18C109.00
C8—C14—C13115.5 (2)H18B—C18—H18C110.00
C8—C14—C15119.2 (2)C10—C19—H19A109.00
C13—C14—C15104.2 (2)C10—C19—H19B109.00
C14—C15—C16103.6 (2)C10—C19—H19C109.00
C15—C16—C17107.5 (2)H19A—C19—H19B110.00
C13—C17—C16103.6 (2)H19A—C19—H19C110.00
C13—C17—C20119.9 (3)H19B—C19—H19C110.00
C16—C17—C20112.3 (2)C17—C20—H20107.00
C17—C20—C21112.8 (2)C21—C20—H20108.00
C17—C20—C22111.4 (3)C22—C20—H20107.00
C21—C20—C22109.9 (2)C20—C21—H21A109.00
C20—C22—C23114.7 (3)C20—C21—H21B109.00
C22—C23—C24116.2 (4)C20—C21—H21C109.00
C23—C24—C25A118.8 (5)H21A—C21—H21B110.00
C23—C24—C25B119.8 (5)H21A—C21—H21C110.00
C25A—C24—C25B29.3 (5)H21B—C21—H21C109.00
C24—C25A—C25B78.0 (11)C20—C22—H22A108.00
C24—C25A—C26110.8 (8)C20—C22—H22B108.00
C24—C25A—C27121.1 (9)C23—C22—H22A108.00
C25B—C25A—C2672.0 (11)C23—C22—H22B108.00
C25B—C25A—C2781.1 (13)H22A—C22—H22B109.00
C26—C25A—C27113.7 (8)C22—C23—H23A108.00
C24—C25B—C25A72.7 (10)C22—C23—H23B108.00
C24—C25B—C26111.4 (7)C24—C23—H23A108.00
C24—C25B—C27113.2 (6)C24—C23—H23B108.00
C25A—C25B—C2679.0 (11)H23A—C23—H23B110.00
C25A—C25B—C2768.4 (12)C23—C24—H24A107.00
C26—C25B—C27111.5 (6)C23—C24—H24B107.00
C25A—C26—C25B29.0 (5)C25A—C24—H24A80.00
C25A—C27—C25B30.6 (6)C25A—C24—H24B128.00
C2—C1—H1A108.00C25B—C24—H24A107.00
C2—C1—H1B109.00C25B—C24—H24B107.00
C10—C1—H1A108.00H24A—C24—H24B109.00
C10—C1—H1B109.00C24—C25A—H25A103.00
H1A—C1—H1B109.00C25B—C25A—H25A176.00
C1—C2—H2A109.00C26—C25A—H25A104.00
C1—C2—H2B109.00C27—C25A—H25A102.00
C3—C2—H2A109.00C24—C25B—H25B107.00
C3—C2—H2B109.00C25A—C25B—H25B175.00
H2A—C2—H2B109.00C26—C25B—H25B106.00
N31—C3—H3109.00C27—C25B—H25B107.00
C2—C3—H3109.00C25A—C26—H26A80.00
C4—C3—H3109.00C25A—C26—H26B130.00
C3—C4—H4A108.00C25A—C26—H26C112.00
C3—C4—H4B108.00C25B—C26—H26A108.00
C5—C4—H4A109.00C25B—C26—H26B111.00
C5—C4—H4B108.00C25B—C26—H26C111.00
H4A—C4—H4B110.00H26A—C26—H26B108.00
C5—C6—H6118.00H26A—C26—H26C107.00
C7—C6—H6117.00H26B—C26—H26C112.00
C6—C7—H7A109.00C25A—C27—H27A117.00
C6—C7—H7B108.00C25A—C27—H27B80.00
C8—C7—H7A109.00C25A—C27—H27C128.00
C8—C7—H7B109.00C25B—C27—H27A111.00
H7A—C7—H7B109.00C25B—C27—H27B109.00
C7—C8—H8109.00C25B—C27—H27C110.00
C9—C8—H8109.00H27A—C27—H27B108.00
C14—C8—H8109.00H27A—C27—H27C110.00
C8—C9—H9106.00H27B—C27—H27C108.00
N32—N31—C3—C2169.7 (3)C18—C13—C14—C861.1 (3)
N32—N31—C3—C467.9 (4)C18—C13—C14—C1571.7 (3)
C10—C1—C2—C357.8 (4)C12—C13—C17—C16152.4 (3)
C2—C1—C10—C554.5 (3)C12—C13—C17—C2081.5 (3)
C2—C1—C10—C9173.8 (2)C14—C13—C17—C1638.6 (3)
C2—C1—C10—C1963.4 (3)C14—C13—C17—C20164.7 (2)
C1—C2—C3—N3169.2 (3)C18—C13—C17—C1680.1 (3)
C1—C2—C3—C452.7 (4)C18—C13—C17—C2046.0 (3)
N31—C3—C4—C570.8 (3)C8—C14—C15—C16164.8 (2)
C2—C3—C4—C548.5 (4)C13—C14—C15—C1634.2 (3)
C3—C4—C5—C6131.6 (3)C14—C15—C16—C179.5 (3)
C3—C4—C5—C1049.4 (4)C15—C16—C17—C1318.5 (3)
C4—C5—C6—C7176.6 (3)C15—C16—C17—C20149.3 (2)
C10—C5—C6—C72.4 (5)C13—C17—C20—C2153.5 (4)
C4—C5—C10—C150.2 (3)C13—C17—C20—C22177.6 (2)
C4—C5—C10—C9168.6 (2)C16—C17—C20—C21175.3 (3)
C4—C5—C10—C1969.0 (3)C16—C17—C20—C2260.6 (3)
C6—C5—C10—C1130.9 (3)C17—C20—C22—C23168.0 (3)
C6—C5—C10—C912.4 (4)C21—C20—C22—C2366.3 (3)
C6—C5—C10—C19110.0 (3)C20—C22—C23—C24178.7 (3)
C5—C6—C7—C813.4 (4)C22—C23—C24—C25A163.8 (6)
C6—C7—C8—C942.4 (3)C22—C23—C24—C25B162.5 (4)
C6—C7—C8—C14163.7 (2)C23—C24—C25A—C25B100.3 (12)
C7—C8—C9—C1058.7 (3)C23—C24—C25A—C26165.6 (5)
C7—C8—C9—C11173.2 (2)C23—C24—C25A—C2728.6 (11)
C14—C8—C9—C10178.7 (2)C25B—C24—C25A—C2665.3 (11)
C14—C8—C9—C1150.7 (3)C25B—C24—C25A—C2771.7 (13)
C7—C8—C14—C13179.2 (2)C23—C24—C25B—C25A96.5 (12)
C7—C8—C14—C1553.9 (3)C23—C24—C25B—C26166.8 (4)
C9—C8—C14—C1359.0 (3)C23—C24—C25B—C2740.2 (8)
C9—C8—C14—C15175.7 (2)C25A—C24—C25B—C2670.3 (12)
C8—C9—C10—C1160.0 (2)C25A—C24—C25B—C2756.4 (11)
C8—C9—C10—C542.6 (3)C24—C25A—C25B—C26116.8 (6)
C8—C9—C10—C1978.0 (3)C24—C25A—C25B—C27124.6 (6)
C11—C9—C10—C173.0 (3)C26—C25A—C25B—C24116.8 (6)
C11—C9—C10—C5169.6 (2)C26—C25A—C25B—C27118.6 (6)
C11—C9—C10—C1949.0 (3)C27—C25A—C25B—C24124.6 (6)
C8—C9—C11—C1250.6 (3)C27—C25A—C25B—C26118.6 (6)
C10—C9—C11—C12178.7 (2)C24—C25A—C26—C25B69.1 (12)
C9—C11—C12—C1354.1 (4)C27—C25A—C26—C25B71.3 (12)
C11—C12—C13—C1454.9 (3)C24—C25A—C27—C25B70.1 (11)
C11—C12—C13—C17165.7 (3)C26—C25A—C27—C25B65.8 (10)
C11—C12—C13—C1867.0 (3)C24—C25B—C26—C25A66.3 (11)
C12—C13—C14—C860.1 (3)C27—C25B—C26—C25A61.3 (11)
C12—C13—C14—C15167.2 (2)C24—C25B—C27—C25A58.8 (10)
C17—C13—C14—C8178.5 (2)C26—C25B—C27—C25A67.8 (11)
C17—C13—C14—C1545.7 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z; (iii) x, y+1, z; (iv) x, y1/2, z; (v) x+1, y1/2, z; (vi) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···N320.952.612.929 (5)100

Experimental details

Crystal data
Chemical formulaC27H45N3
Mr411.66
Crystal system, space groupMonoclinic, P21
Temperature (K)223
a, b, c (Å)13.3763 (3), 6.2288 (1), 15.0495 (4)
β (°) 94.205 (2)
V3)1250.52 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.44 × 0.39 × 0.28
Data collection
DiffractometerOxford-Diffraction GEMINI Ultra
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10298, 2428, 1883
Rint0.027
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 0.99
No. of reflections2428
No. of parameters280
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2003).

 

Acknowledgements

We acknowledge support of this work by Griffith University, the Eskitis Institute for Cell and Molecular Therapies, and the Institute for Glycomics.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFreiberg, L. A. (1965). J. Org. Chem. 30, 2476–2479.  CrossRef CAS Web of Science Google Scholar
First citationLoibner, H. & Zbiral, E. (1976). Helv. Chim. Acta, 59, 2100–2113.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationQuader, S., Boyd, S. E., Houston, T. A., Jenkins, I. D. & Healy, P. C. (2006). Acta Cryst. E62, o162–o164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuader, S., Boyd, S. E., Jenkins, I. D. & Houston, T. A. (2007). J. Org. Chem. 72, 1962–1979.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoffel, W. & Klotzbuecher, R. (1978). Hoppe-Seyler's Z. Physiol. Chem. 359, 199–209.  CAS Google Scholar
First citationViaud, M. C. & Rollin, P. (1990). Synthesis, pp. 130–132.  CrossRef Google Scholar
First citationWilkinson, B. L., Bornaghi, L. F., Wright, A. D., Houston, T. A. & Poulsen, S.-A. (2007). Bioorg. Med. Chem. Lett. 17, 1355–1357.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds