organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl quinoxalin-2-yl ether

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 18 August 2008; accepted 19 August 2008; online 23 August 2008)

The aromatic ring systems in the title compound, C14H10N2O, form a dihedral angle of 63.8 (1)°, resulting in an opening up of the ether-O atom angle to 118.2 (1)°.

Related literature

The title compound exhibits fluorescence; see: Abdullah (2005[Abdullah, Z. (2005). Int. J. Chem. Sci. 3, 9-15.]); Kawai et al. (2001[Kawai, M., Lee, M. J., Evans, K. O. & Norlund, T. (2001). J. Fluoresc. 11, 23-32.]); Mohd Salleh et al. (2007[Mohd Salleh, N., Ling, L. P., Abdullah, Z. M. A. A. & Aiyub, Z. (2007). Malays. J. Anal. Sci. 11, 229-236.]). For the only previously reported structural example of a quinoxalin­oxy compound, see: Csikós et al. (1999[Csikós, É., Ferenczy, G. G., Ángyán, J. G., Böcskei, Z., Simon, K., Gönczi, C., Hermecz, I. & Hermecz, I. (1999). Eur. J. Org. Chem. pp. 2119-2125.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N2O

  • Mr = 222.24

  • Monoclinic, C 2/c

  • a = 18.175 (2) Å

  • b = 6.6589 (8) Å

  • c = 19.488 (2) Å

  • β = 112.937 (2)°

  • V = 2172.1 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 (2) K

  • 0.30 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 6018 measured reflections

  • 2478 independent reflections

  • 1909 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.104

  • S = 1.07

  • 2478 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The title compound (I) belongs to a class of compounds that exhibits fluorescence (Abdullah, 2005; Kawai et al., 2001; Mohd Salleh et al., 2007). In the crystal structure, the two aromatic systems aligned at 63.8 (1) °; these open up the angle at the oxygen atom to 118.2 (1) ° (Fig. 1).

In the structural literature, there is only one example of a quinoxalinoxy compound, 2(1H-quinoxalone O-(2'-quinoxalinyl)hydroxylamine, which exists in two colored forms (Csikós et al., 1999).

Related literature top

The title compound exhibits fluorescence; see: Abdullah (2005); Kawai et al. (2001); Mohd Salleh et al. (2007). For the only structural example of a quinoxalinoxy compound, see: Csikós et al. (1999).

Experimental top

Phenol (0.47 g, 5 mmol) was dissolved in a small volume of water containing potassium hydroxide (0.20 g, 5 mmol). The mixture was heated to remove the water to give a brown compound. The compound and 2-chloroquinoxaline (0.82 g, 5 mmol) were heated in THF (15 ml) for 8 h. The mixture was in 1 N sodium hydroxide; the aqueous solution was extracted with dichloromethane. The organic phase was dried over sodium sulfate. Evaporation of the solvent gave a yellow product, which was was washed with chloroform to remove impurities. Crystals were obtained upon recrystallization from an ethyl acetate/hexane mixture of (I).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) fixed at 1.2U(C).

Computing details top

Data collection: APEX2 software (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of (I) drawn at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Phenyl quinoxalin-2-yl ether top
Crystal data top
C14H10N2OF(000) = 928
Mr = 222.24Dx = 1.359 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1614 reflections
a = 18.175 (2) Åθ = 2.4–28.2°
b = 6.6589 (8) ŵ = 0.09 mm1
c = 19.488 (2) ÅT = 100 K
β = 112.937 (2)°Prism, colorless
V = 2172.1 (5) Å30.30 × 0.20 × 0.05 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
1909 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
ω scansh = 2316
6018 measured reflectionsk = 88
2478 independent reflectionsl = 2325
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.7132P]
where P = (Fo2 + 2Fc2)/3
2478 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H10N2OV = 2172.1 (5) Å3
Mr = 222.24Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.175 (2) ŵ = 0.09 mm1
b = 6.6589 (8) ÅT = 100 K
c = 19.488 (2) Å0.30 × 0.20 × 0.05 mm
β = 112.937 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1909 reflections with I > 2σ(I)
6018 measured reflectionsRint = 0.026
2478 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.07Δρmax = 0.27 e Å3
2478 reflectionsΔρmin = 0.27 e Å3
154 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.68658 (5)0.68613 (14)0.55215 (5)0.0196 (2)
N10.59181 (6)0.76551 (15)0.59977 (6)0.0166 (2)
N20.47638 (6)0.72591 (16)0.45219 (6)0.0176 (2)
C10.74734 (7)0.7128 (2)0.62327 (7)0.0178 (3)
C20.75301 (8)0.5866 (2)0.68141 (8)0.0242 (3)
H20.71430.48460.67490.029*
C30.81628 (9)0.6118 (2)0.74933 (8)0.0291 (4)
H30.82090.52690.79000.035*
C40.87301 (9)0.7599 (2)0.75850 (8)0.0293 (4)
H40.91630.77630.80530.035*
C50.86637 (8)0.8838 (2)0.69930 (8)0.0267 (3)
H50.90530.98490.70550.032*
C60.80290 (8)0.8608 (2)0.63088 (7)0.0208 (3)
H60.79800.94560.59010.025*
C70.60973 (7)0.71759 (18)0.54400 (7)0.0167 (3)
C80.55218 (8)0.69640 (19)0.46909 (7)0.0180 (3)
H80.56980.65990.43090.022*
C90.45400 (7)0.77709 (18)0.50983 (7)0.0156 (3)
C100.37309 (8)0.81243 (19)0.49536 (7)0.0184 (3)
H100.33410.80060.44600.022*
C110.35029 (8)0.86377 (19)0.55218 (7)0.0202 (3)
H110.29550.88820.54200.024*
C120.40760 (8)0.8806 (2)0.62563 (7)0.0204 (3)
H120.39120.91620.66470.025*
C130.48681 (8)0.8460 (2)0.64120 (7)0.0189 (3)
H130.52490.85640.69100.023*
C140.51180 (7)0.79510 (18)0.58369 (7)0.0157 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0157 (5)0.0261 (5)0.0182 (5)0.0021 (4)0.0079 (4)0.0013 (4)
N10.0167 (6)0.0160 (5)0.0179 (5)0.0007 (4)0.0077 (4)0.0009 (4)
N20.0214 (6)0.0154 (5)0.0166 (5)0.0008 (4)0.0079 (4)0.0009 (4)
C10.0158 (6)0.0218 (6)0.0172 (6)0.0052 (5)0.0079 (5)0.0004 (5)
C20.0238 (7)0.0257 (7)0.0295 (7)0.0071 (6)0.0174 (6)0.0064 (6)
C30.0297 (8)0.0404 (9)0.0233 (7)0.0181 (7)0.0169 (6)0.0118 (6)
C40.0222 (7)0.0439 (9)0.0184 (7)0.0127 (7)0.0045 (6)0.0019 (6)
C50.0208 (7)0.0291 (7)0.0277 (7)0.0011 (6)0.0067 (6)0.0045 (6)
C60.0196 (7)0.0228 (7)0.0215 (7)0.0036 (5)0.0097 (6)0.0029 (5)
C70.0161 (6)0.0148 (6)0.0208 (6)0.0003 (5)0.0090 (5)0.0005 (5)
C80.0221 (7)0.0164 (6)0.0176 (6)0.0006 (5)0.0102 (5)0.0007 (5)
C90.0182 (6)0.0120 (6)0.0170 (6)0.0008 (5)0.0074 (5)0.0006 (5)
C100.0177 (7)0.0159 (6)0.0185 (6)0.0008 (5)0.0037 (5)0.0000 (5)
C110.0149 (6)0.0189 (6)0.0270 (7)0.0001 (5)0.0084 (5)0.0006 (5)
C120.0220 (7)0.0213 (6)0.0215 (6)0.0001 (5)0.0123 (6)0.0019 (5)
C130.0196 (7)0.0205 (6)0.0168 (6)0.0005 (5)0.0072 (5)0.0009 (5)
C140.0152 (6)0.0133 (6)0.0184 (6)0.0006 (5)0.0062 (5)0.0003 (5)
Geometric parameters (Å, º) top
O1—C71.3591 (15)C5—H50.9500
O1—C11.4068 (15)C6—H60.9500
N1—C71.2904 (17)C7—C81.4335 (17)
N1—C141.3771 (16)C8—H80.9500
N2—C81.3006 (17)C9—C101.4051 (18)
N2—C91.3782 (17)C9—C141.4182 (17)
C1—C61.3769 (19)C10—C111.3685 (19)
C1—C21.3821 (18)C10—H100.9500
C2—C31.384 (2)C11—C121.4086 (18)
C2—H20.9500C11—H110.9500
C3—C41.387 (2)C12—C131.3703 (18)
C3—H30.9500C12—H120.9500
C4—C51.385 (2)C13—C141.4048 (18)
C4—H40.9500C13—H130.9500
C5—C61.3903 (18)
C7—O1—C1118.16 (10)O1—C7—C8114.37 (11)
C7—N1—C14115.75 (11)N2—C8—C7121.57 (12)
C8—N2—C9116.80 (11)N2—C8—H8119.2
C6—C1—C2121.99 (12)C7—C8—H8119.2
C6—C1—O1117.24 (11)N2—C9—C10119.73 (11)
C2—C1—O1120.65 (12)N2—C9—C14120.73 (12)
C1—C2—C3118.61 (14)C10—C9—C14119.54 (12)
C1—C2—H2120.7C11—C10—C9120.18 (12)
C3—C2—H2120.7C11—C10—H10119.9
C2—C3—C4120.54 (13)C9—C10—H10119.9
C2—C3—H3119.7C10—C11—C12120.33 (12)
C4—C3—H3119.7C10—C11—H11119.8
C5—C4—C3119.82 (13)C12—C11—H11119.8
C5—C4—H4120.1C13—C12—C11120.57 (12)
C3—C4—H4120.1C13—C12—H12119.7
C4—C5—C6120.25 (14)C11—C12—H12119.7
C4—C5—H5119.9C12—C13—C14120.16 (12)
C6—C5—H5119.9C12—C13—H13119.9
C1—C6—C5118.80 (13)C14—C13—H13119.9
C1—C6—H6120.6N1—C14—C13119.60 (11)
C5—C6—H6120.6N1—C14—C9121.18 (12)
N1—C7—O1121.67 (11)C13—C14—C9119.22 (12)
N1—C7—C8123.96 (12)
C7—O1—C1—C6117.62 (13)O1—C7—C8—N2178.58 (11)
C7—O1—C1—C266.18 (16)C8—N2—C9—C10179.57 (11)
C6—C1—C2—C30.5 (2)C8—N2—C9—C140.26 (17)
O1—C1—C2—C3176.56 (12)N2—C9—C10—C11179.85 (12)
C1—C2—C3—C40.4 (2)C14—C9—C10—C110.03 (19)
C2—C3—C4—C50.0 (2)C9—C10—C11—C120.3 (2)
C3—C4—C5—C60.3 (2)C10—C11—C12—C130.0 (2)
C2—C1—C6—C50.2 (2)C11—C12—C13—C140.6 (2)
O1—C1—C6—C5176.37 (11)C7—N1—C14—C13179.44 (12)
C4—C5—C6—C10.2 (2)C7—N1—C14—C91.19 (17)
C14—N1—C7—O1179.35 (11)C12—C13—C14—N1178.41 (11)
C14—N1—C7—C80.49 (18)C12—C13—C14—C90.98 (19)
C1—O1—C7—N11.81 (18)N2—C9—C14—N11.12 (18)
C1—O1—C7—C8177.15 (10)C10—C9—C14—N1178.70 (11)
C9—N2—C8—C70.45 (18)N2—C9—C14—C13179.50 (12)
N1—C7—C8—N20.3 (2)C10—C9—C14—C130.68 (18)

Experimental details

Crystal data
Chemical formulaC14H10N2O
Mr222.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)18.175 (2), 6.6589 (8), 19.488 (2)
β (°) 112.937 (2)
V3)2172.1 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6018, 2478, 1909
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 1.07
No. of reflections2478
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: APEX2 software (Bruker, 2007), SAINT (Bruker, 2007), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

 

Acknowledgements

We thank the University of Malaya for supporting this study (grant No. F2358/2008 A).

References

First citationAbdullah, Z. (2005). Int. J. Chem. Sci. 3, 9–15.  CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCsikós, É., Ferenczy, G. G., Ángyán, J. G., Böcskei, Z., Simon, K., Gönczi, C., Hermecz, I. & Hermecz, I. (1999). Eur. J. Org. Chem. pp. 2119–2125.  Google Scholar
First citationKawai, M., Lee, M. J., Evans, K. O. & Norlund, T. (2001). J. Fluoresc. 11, 23–32.  Web of Science CrossRef CAS Google Scholar
First citationMohd Salleh, N., Ling, L. P., Abdullah, Z. M. A. A. & Aiyub, Z. (2007). Malays. J. Anal. Sci. 11, 229–236.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds