organic compounds
Zwitterionic 6-methyl-2-oxo-3-[1-(ureidoiminio)ethyl]-2H-pyran-4-olate monohydrate
aLaboratoire d'Electrochimie des Matériaux Moléculaires et Complexes, Département de Génie des Procédés, Faculté des Science de l'Ingénieur, Université Farhet Abbes de Setif, DZ-19000 Sétif, Algeria, bUniversité 20 Aout 1955, Skikda, Algeria, cCIMM, CNRS UMR 6200, Faculté des Science, Angers Cedex, France, and dSONAS, EA 921, Université D'Angers, Faculté de Pharmacie, Angers Cedex, France
*Correspondence e-mail: boufas_sihem@yahoo.fr
The title compound, C9H11N3O4·H2O, was prepared by the reaction of dehydroacetic acid and semicarbazide hydrochloride. It crystallizes in a zwitterionic form with cationic iminium and anionic enolate groups. In the the almost planar molecules are held together by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, some of them involving the water molecules.
Related literature
For related literature, see: Tai et al. (2007); Zu-Pei Liang et al. (2007); Wojciechowski et al. (2003); Petek et al. (2006); Huang et al. (2006); Bernstein et al. (1995); Girija & Begum (2004a); Girija et al. (2004b); Gowda et al. (2007)..
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Nonius, 1997); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).
Supporting information
10.1107/S1600536808026032/wk2091sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808026032/wk2091Isup2.hkl
A mixture of dehydroacetic acid (0.01 mol) and semicarbazide hydrochloride (0.01 mol), in ethanol (20 ml) was refluxed for 1 h. After cooling, filtration and drying, the compound dehydroacetic acid semicarbazide was obtained. A small quantity of this compound (10 mg) was dissolved in aqueous ethanol (95 / 12 ml), and the solution was then allowed to evaporate at room temperature. Prismatic yellow single crystals of the title compound were formed after 8 days.
The O—H distances of the water molecules were restrained to 0.85 (1) Å, to ensure chemically reasonable geometry, with Uiso fixed at 1.5Ueq(O). The iminium and ammino H atoms was located in a difference Fourier map and were refined isotropically. The methyl H atoms were constrained to an ideal geometry (C—H = 0.96 Å) with Uiso(H) = 1.2Ueq(C), but were allowed to rotate freely about the C—C bonds. H7 atom was placed in a geometrically idealized position (C—H = 0.93 Å) and constrained to ride on its parent atom with Uiso(H) = 1.2Ueq(C).
Data collection: COLLECT (Nonius, 1997); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The crystal packing of (I), viewed down the b axis. Dashed lines indicate the N—H···O and O—H···O interactions. |
C9H11N3O4·H2O | F(000) = 512 |
Mr = 243.22 | Dx = 1.486 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2841 reflections |
a = 7.1731 (4) Å | θ = 3.1–25.8° |
b = 12.659 (1) Å | µ = 0.12 mm−1 |
c = 12.3698 (3) Å | T = 173 K |
β = 104.603 (6)° | Prism, yellow |
V = 1086.95 (11) Å3 | 0.35 × 0.05 × 0.02 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 1699 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.055 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 2.9° |
CCD scans | h = −9→9 |
11787 measured reflections | k = −16→15 |
2485 independent reflections | l = −15→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0289P)2 + 0.445P] where P = (Fo2 + 2Fc2)/3 |
2485 reflections | (Δ/σ)max < 0.001 |
178 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C9H11N3O4·H2O | V = 1086.95 (11) Å3 |
Mr = 243.22 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.1731 (4) Å | µ = 0.12 mm−1 |
b = 12.659 (1) Å | T = 173 K |
c = 12.3698 (3) Å | 0.35 × 0.05 × 0.02 mm |
β = 104.603 (6)° |
Nonius KappaCCD diffractometer | 1699 reflections with I > 2σ(I) |
11787 measured reflections | Rint = 0.055 |
2485 independent reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.121 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.33 e Å−3 |
2485 reflections | Δρmin = −0.26 e Å−3 |
178 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5343 (3) | −0.25527 (15) | 0.37044 (14) | 0.0287 (4) | |
C2 | 0.7633 (2) | −0.06094 (14) | 0.56842 (14) | 0.0253 (4) | |
C3 | 0.8032 (4) | −0.11552 (17) | 0.67854 (16) | 0.0476 (6) | |
H3A | 0.7151 | −0.1734 | 0.6744 | 0.057* | |
H3B | 0.7871 | −0.0666 | 0.7348 | 0.057* | |
H3C | 0.9329 | −0.1418 | 0.6974 | 0.057* | |
C4 | 0.8087 (2) | 0.04894 (13) | 0.55327 (13) | 0.0240 (4) | |
C5 | 0.9088 (3) | 0.11044 (14) | 0.64744 (15) | 0.0292 (4) | |
C6 | 0.8929 (3) | 0.26084 (15) | 0.52451 (15) | 0.0305 (4) | |
C7 | 0.8054 (3) | 0.20520 (15) | 0.43545 (15) | 0.0316 (4) | |
H7 | 0.7733 | 0.2375 | 0.3657 | 0.038* | |
C8 | 0.7593 (2) | 0.09564 (14) | 0.44518 (14) | 0.0269 (4) | |
C9 | 0.9441 (3) | 0.37503 (16) | 0.52619 (18) | 0.0422 (5) | |
H9A | 0.9024 | 0.4034 | 0.452 | 0.051* | |
H9B | 1.0812 | 0.3829 | 0.5527 | 0.051* | |
H9C | 0.8817 | 0.4123 | 0.5749 | 0.051* | |
N1 | 0.4877 (3) | −0.35801 (14) | 0.36960 (16) | 0.0397 (4) | |
N2 | 0.6282 (2) | −0.21693 (12) | 0.47382 (13) | 0.0336 (4) | |
N3 | 0.6811 (2) | −0.11234 (12) | 0.47752 (12) | 0.0272 (3) | |
O1 | 0.9689 (2) | 0.08309 (11) | 0.74427 (10) | 0.0424 (4) | |
O3 | 0.6744 (2) | 0.04451 (10) | 0.35702 (10) | 0.0369 (4) | |
O2 | 0.9464 (2) | 0.21590 (10) | 0.62831 (10) | 0.0355 (3) | |
O4 | 0.4983 (2) | −0.19779 (11) | 0.28793 (11) | 0.0414 (4) | |
O1W | 0.6521 (3) | −0.10956 (13) | 0.12207 (12) | 0.0470 (4) | |
H11W | 0.597 (4) | −0.131 (2) | 0.168 (2) | 0.071* | |
H21W | 0.763 (4) | −0.103 (2) | 0.160 (2) | 0.071* | |
H1A | 0.440 (3) | −0.3872 (19) | 0.308 (2) | 0.048 (7)* | |
H1B | 0.514 (3) | −0.3924 (17) | 0.4326 (19) | 0.037 (6)* | |
H2 | 0.650 (3) | −0.2591 (18) | 0.5351 (19) | 0.042 (6)* | |
H3 | 0.656 (4) | −0.069 (2) | 0.410 (2) | 0.075 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0301 (9) | 0.0304 (10) | 0.0238 (8) | −0.0033 (7) | 0.0036 (7) | −0.0023 (7) |
C2 | 0.0258 (9) | 0.0274 (9) | 0.0222 (8) | 0.0011 (7) | 0.0049 (7) | 0.0004 (7) |
C3 | 0.0780 (16) | 0.0371 (12) | 0.0232 (10) | −0.0137 (11) | 0.0043 (10) | 0.0025 (8) |
C4 | 0.0260 (9) | 0.0241 (9) | 0.0203 (8) | 0.0006 (7) | 0.0028 (7) | −0.0015 (6) |
C5 | 0.0318 (10) | 0.0288 (10) | 0.0254 (9) | −0.0014 (8) | 0.0042 (7) | −0.0023 (7) |
C6 | 0.0341 (10) | 0.0264 (9) | 0.0306 (9) | −0.0012 (7) | 0.0073 (8) | 0.0002 (7) |
C7 | 0.0379 (11) | 0.0283 (10) | 0.0256 (9) | 0.0005 (8) | 0.0023 (8) | 0.0046 (7) |
C8 | 0.0283 (9) | 0.0260 (9) | 0.0237 (9) | 0.0027 (7) | 0.0016 (7) | −0.0001 (7) |
C9 | 0.0557 (13) | 0.0270 (10) | 0.0417 (12) | −0.0078 (9) | 0.0082 (10) | −0.0023 (8) |
N1 | 0.0568 (12) | 0.0304 (9) | 0.0295 (9) | −0.0110 (8) | 0.0063 (8) | −0.0035 (8) |
N2 | 0.0488 (10) | 0.0240 (8) | 0.0243 (8) | −0.0078 (7) | 0.0023 (7) | 0.0014 (6) |
N3 | 0.0330 (8) | 0.0230 (8) | 0.0225 (7) | −0.0021 (6) | 0.0016 (6) | 0.0002 (6) |
O1 | 0.0586 (9) | 0.0412 (8) | 0.0201 (6) | −0.0112 (7) | −0.0036 (6) | 0.0005 (6) |
O3 | 0.0539 (9) | 0.0288 (7) | 0.0204 (6) | −0.0043 (6) | −0.0046 (6) | 0.0014 (5) |
O2 | 0.0480 (8) | 0.0284 (7) | 0.0264 (7) | −0.0085 (6) | 0.0024 (6) | −0.0033 (5) |
O4 | 0.0562 (9) | 0.0366 (8) | 0.0248 (7) | −0.0108 (7) | −0.0018 (6) | 0.0027 (6) |
O1W | 0.0593 (10) | 0.0501 (10) | 0.0294 (8) | −0.0083 (8) | 0.0068 (7) | −0.0032 (7) |
C1—O4 | 1.227 (2) | C6—C9 | 1.490 (3) |
C1—N1 | 1.342 (2) | C7—C8 | 1.438 (3) |
C1—N2 | 1.375 (2) | C7—H7 | 0.93 |
C2—N3 | 1.304 (2) | C8—O3 | 1.282 (2) |
C2—C4 | 1.452 (2) | C9—H9A | 0.96 |
C2—C3 | 1.489 (2) | C9—H9B | 0.96 |
C3—H3A | 0.96 | C9—H9C | 0.96 |
C3—H3B | 0.96 | N1—H1A | 0.84 (3) |
C3—H3C | 0.96 | N1—H1B | 0.87 (2) |
C4—C8 | 1.423 (2) | N2—N3 | 1.375 (2) |
C4—C5 | 1.434 (2) | N2—H2 | 0.91 (2) |
C5—O1 | 1.217 (2) | N3—H3 | 0.98 (3) |
C5—O2 | 1.394 (2) | O1W—H11W | 0.82 (3) |
C6—C7 | 1.325 (3) | O1W—H21W | 0.82 (3) |
C6—O2 | 1.368 (2) | ||
O4—C1—N1 | 124.65 (17) | C6—C7—H7 | 119.5 |
O4—C1—N2 | 121.02 (17) | C8—C7—H7 | 119.5 |
N1—C1—N2 | 114.33 (16) | O3—C8—C4 | 122.81 (16) |
N3—C2—C4 | 115.73 (15) | O3—C8—C7 | 119.05 (15) |
N3—C2—C3 | 119.87 (17) | C4—C8—C7 | 118.13 (15) |
C4—C2—C3 | 124.41 (16) | C6—C9—H9A | 109.5 |
C2—C3—H3A | 109.5 | C6—C9—H9B | 109.5 |
C2—C3—H3B | 109.5 | H9A—C9—H9B | 109.5 |
H3A—C3—H3B | 109.5 | C6—C9—H9C | 109.5 |
C2—C3—H3C | 109.5 | H9A—C9—H9C | 109.5 |
H3A—C3—H3C | 109.5 | H9B—C9—H9C | 109.5 |
H3B—C3—H3C | 109.5 | C1—N1—H1A | 118.7 (16) |
C8—C4—C5 | 119.53 (16) | C1—N1—H1B | 118.7 (14) |
C8—C4—C2 | 120.58 (15) | H1A—N1—H1B | 122 (2) |
C5—C4—C2 | 119.87 (15) | N3—N2—C1 | 115.93 (15) |
O1—C5—O2 | 113.83 (16) | N3—N2—H2 | 123.4 (14) |
O1—C5—C4 | 128.74 (18) | C1—N2—H2 | 120.7 (14) |
O2—C5—C4 | 117.43 (15) | C2—N3—N2 | 124.75 (15) |
C7—C6—O2 | 121.43 (17) | C2—N3—H3 | 113.8 (17) |
C7—C6—C9 | 126.21 (18) | N2—N3—H3 | 121.4 (17) |
O2—C6—C9 | 112.36 (16) | C6—O2—C5 | 122.49 (14) |
C6—C7—C8 | 120.93 (17) | H11W—O1W—H21W | 102 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.84 (2) | 2.18 (2) | 3.015 (2) | 176.3 (17) |
N1—H1B···O1Wii | 0.87 (2) | 2.30 (2) | 3.075 (2) | 147.9 (19) |
N2—H2···O1Wii | 0.91 (2) | 1.98 (2) | 2.839 (2) | 158 (2) |
N3—H3···O3 | 0.98 (2) | 1.60 (3) | 2.476 (2) | 147 (2) |
O1W—H11W···O4 | 0.82 (3) | 1.99 (3) | 2.796 (2) | 171 (3) |
O1W—H21W···O1iii | 0.82 (3) | 2.00 (3) | 2.823 (2) | 178 (2) |
C3—H3B···O1 | 0.96 | 2.29 | 2.812 (3) | 114 |
C7—H7···O4iv | 0.93 | 2.49 | 3.294 (2) | 145 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y−1/2, z+1/2; (iii) −x+2, −y, −z+1; (iv) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H11N3O4·H2O |
Mr | 243.22 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 7.1731 (4), 12.659 (1), 12.3698 (3) |
β (°) | 104.603 (6) |
V (Å3) | 1086.95 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.35 × 0.05 × 0.02 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11787, 2485, 1699 |
Rint | 0.055 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.121, 1.03 |
No. of reflections | 2485 |
No. of parameters | 178 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.26 |
Computer programs: COLLECT (Nonius, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.84 (2) | 2.18 (2) | 3.015 (2) | 176.3 (17) |
N1—H1B···O1Wii | 0.87 (2) | 2.30 (2) | 3.075 (2) | 147.9 (19) |
N2—H2···O1Wii | 0.91 (2) | 1.98 (2) | 2.839 (2) | 158 (2) |
N3—H3···O3 | 0.98 (2) | 1.60 (3) | 2.476 (2) | 147 (2) |
O1W—H11W···O4 | 0.82 (3) | 1.99 (3) | 2.796 (2) | 171 (3) |
O1W—H21W···O1iii | 0.82 (3) | 2.00 (3) | 2.823 (2) | 178.0 (18) |
C3—H3B···O1 | 0.9600 | 2.2900 | 2.812 (3) | 114.00 |
C7—H7···O4iv | 0.9300 | 2.4900 | 3.294 (2) | 145.00 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y−1/2, z+1/2; (iii) −x+2, −y, −z+1; (iv) −x+1, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by Université Farhet Abbes de Sétif, Sétif, Algeria.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Girija, C. R. & Begum, N. S. (2004a). Acta Cryst. E60, o535–o536. Web of Science CSD CrossRef IUCr Journals Google Scholar
Girija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. & Prasad, J. S. (2004b). Acta Cryst. E60, o586–o588. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3087. Web of Science CSD CrossRef IUCr Journals Google Scholar
Huang, L., Chen, D.-B., Qiu, D. & Zhao, B. (2006). Acta Cryst. E62, o5239–o5240. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liang, Z.-P., Li, J., Wang, H.-L. & Wang, H.-Q. (2007). Acta Cryst. E63, o2939. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Nonius (1997). COLLECT. Nonius BV, Delft The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Petek, H., Albayrak, Ç., Ağar, E. & Kalkan, H. (2006). Acta Cryst. E62, o3685–o3687. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tai, X.-S., Hao, M.-Y., Yin, J. & Liang, Z.-P. (2007). Acta Cryst. E63, o1725–o1726. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wojciechowski, G., Ratajczak-Sitarz, M., Katrusiak, A., Schilf, W., Przybylski, P. & Brzezinski, B. (2003). J. Mol. Struct. 650, 191–199. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
NLO materials play an important role in the field of fibre optic communications and optical signal processing. In the last two decades, extensive research has shown that organic crystals can exhibit nonlinear optical efficiencies which are two orders of magnitude higher than those of inorganic materials. Semicarbazones of substituted benzaldehydes and acetophenones were reported to be some of the potential organic NLO materials.
In this paper, the structure of the title compound (I), C9H13N3O5 is reported. The asymmetric unit of (I) contains one Dehydroacetic acid semicarbazide molecule and one water molecule (Fig. 1).
It is seen that the structure reported here adopts a zwitterion form, because, among other reasons, its N+—H bond distances [0.98 (3) Å] is comparable with those from similar zwitterions in the literature [1.11 (3) Å; 1.10 (3) Å] (Petek et al., 2006; Wojciechowski et al., 2003).
The bond distances shown in Table 1 indicate that the C2—N3 iminium bond length of 1.303 (2) Å agree with similar bond in related compounds (Girija & Begum, 2004a; Girija et al., 2004b). This distance is slightly longer than a typical C=N bond (1.269 Å); but much shorter than the single carbon-nitrogen (1.409 Å) (Gowda et al. 2007), because of the resonance.
The C8—O3 bond length [1.282 (2) Å] is intermediate between single and double carbon to oxygen bond lengths (1.362 Å, 1.222 Å) the carbon-carbon bond connecting the enol and imine groups exhibit intermediate distances between a single and a double bond, being closer to latter one. C4—C8 = 1.423 (2) Å, C2—C4 = 1.452 (2) Å, indicate the zwitterionic character of the title compound (Wojciechowski et al. 2003). The molecular configuration is determined by the presence of the intramolecular hydrogen bond O-···H—N+ (Table 2).
The main molecule in (I) is essentially planar, with a maximum deviation from the mean plane for the non-hydrogen atoms of 0.022 (2) Å. The iminium atom H3, participates in a strong intramolecular hydrogen bond with the enolate atom, O1 (Table 1), which generates an S(6) ring motif (Bernstein et al. 1995). Similar intramolecular hydrogen bonds were reported in the above-mentioned zwitterionic phenolates (Huang et al. 2006). This six-membered pseudocycle is almost planar, the maximum deviation from the mean plane being 0.012 Å for atom C2. The bond lengths and angles are in usual ranges (E)-1-(4-Hydroxybenzylidene) semicarbazide hemihydrate (Tai et al., 2007) and (E)-1-(4-Methoxybenzylidene) -semicarbazide (Liang et al., 2007).
The crystal structure of (I) is stabilized by N—H···O; O—H···O, and C—H···O hydrogen bonds (Fig. 2 and Table 2).