inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dicaesium hexa­mercury hepta­sulfide

aDepartment of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
*Correspondence e-mail: ibers@chem.northwestern.edu

(Received 30 June 2008; accepted 24 July 2008; online 9 August 2008)

The title compound, Cs2Hg6S7, crystallizes in a new structure type that is closely related to that of K2Zn6O7. The structure comprises a three-dimensional mercury sulfide network that is composed of channels. These channels, which are along [001], are of two different diameters. The crystal structure contains one Cs, two Hg, and three S atoms in the asymmetric unit. The Cs, one Hg, and one S atom are at sites of symmetry m, whereas a second S atom is at a site of symmetry 2mm. The Hg atoms are bound to the S atoms in both three- and four-coordinate geometries. The caesium cations occupy the central spaces of the larger diameter channels and exhibit a coordination number of 7.

Related literature

For literature on related alkali-metal mercury sulfides, see: Sommer & Hoppe (1978[Sommer, H. & Hoppe, R. (1978). Z. Anorg. Allg. Chem. 443, 201-211.]) for A6HgS4 (A = K, Rb); Klepp & Prager (1992[Klepp, K. O. & Prager, K. (1992). Z. Naturforsch. Teil B, 47, 491-496.]) for A2HgS2 (A = Na, K); Klepp (1992[Klepp, K. O. (1992). J. Alloys Compd. 182, 281-288.]) for Na2Hg3S4; Kanatzidis & Park (1990[Kanatzidis, M. G. & Park, Y. (1990). Chem. Mater. 2, 99-101.]) for K2Hg3S4 and K2Hg6S7. For literature on other compounds with Hg—S or Cs—S bonds, see: Gulay et al. (2002[Gulay, L. D., Olekseyuk, I. D. & Parasyuk, O. V. (2002). J. Alloys Compd. 347, 115-120.]); Rad & Hoppe (1981[Rad, H. D. & Hoppe, R. (1981). Z. Anorg. Allg. Chem. 483, 18-25.]); Iwasaki (1973[Iwasaki, H. (1973). Acta Cryst. B29, 2115-2124.]); Kinoshita et al. (1985[Kinoshita, H., Shimoi, M. & Ouchi, A. (1985). Bull. Chem. Soc. Jpn, 58, 1304-1307.]); Bronger & Hendriks (1980[Bronger, W. & Hendriks, U. (1980). Rev. Chim. Miner. 17, 555-560.]). The isoformular, but not isotypic, compound K2Zn6O7 was reported by Wambach & Hoppe (1978[Wambach, K.-R. & Hoppe, R. (1978). Z. Anorg. Allg. Chem. 445, 91-101.]). For synthetic details, see: Sunshine et al. (1987[Sunshine, S. A., Kang, D. & Ibers, J. A. (1987). J. Am. Chem. Soc. 109, 6202-6204.]). For computational details, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]); Gelato & Parthé (1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]); Le Page (1988[Le Page, Y. (1988). J. Appl. Cryst. 21, 983-984.]); Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]); Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Experimental

Crystal data
  • Cs2Hg6S7

  • Mr = 1693.78

  • Tetragonal, P 42 n m

  • a = 14.063 (3) Å

  • c = 4.1895 (18) Å

  • V = 828.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 60.56 mm−1

  • T = 215 (2) K

  • 0.44 × 0.06 × 0.04 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: face-indexed, numerical (SADABS; Sheldrick, 2006[Sheldrick, G. M. (2006). SADABS. University of Göttingen, Germany.]) Tmin = 0.011, Tmax = 0.131

  • 8644 measured reflections

  • 956 independent reflections

  • 907 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.082

  • S = 1.23

  • 956 reflections

  • 43 parameters

  • 1 restraint

  • .

  • Δρmax = 2.17 e Å−3

  • Δρmin = −2.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 389 Friedel pairs

  • Flack parameter: 0.00 (3)

Table 1
Selected geometric parameters (Å, °)

Hg1—S1 2.488 (4)
Hg1—S1i 2.540 (5)
Hg1—S1ii 2.549 (5)
Hg1—S3iii 2.7754 (15)
Hg2—S3 2.367 (7)
Hg2—S2 2.377 (5)
Hg2—S3iv 3.004 (7)
Cs1—S1v 3.526 (5)
Cs1—S1ii 3.526 (5)
Cs1—S1vi 3.561 (5)
Cs1—S1i 3.561 (5)
Cs1—S2vii 3.566 (4)
Cs1—S3iv 3.609 (7)
Cs1—S3 3.627 (7)
S1—Hg1—S1i 121.0 (2)
S1—Hg1—S1ii 120.6 (2)
S1i—Hg1—S1ii 110.83 (15)
S1—Hg1—S3iii 104.78 (15)
S1i—Hg1—S3iii 96.43 (18)
S1ii—Hg1—S3iii 95.74 (17)
S3—Hg2—S2 168.5 (3)
S3—Hg2—S3iv 101.9 (2)
S2—Hg2—S3iv 89.7 (2)
Symmetry codes: (i) [y-{\script{1\over 2}}, -x+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [y-{\script{1\over 2}}, -x+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-y+{\script{1\over 2}}, x+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x, y, z-1; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) [-y+{\script{1\over 2}}, x+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2008[Palmer, D. (2008). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Four structure types are found in alkali metal-mercury-sulfur ternary systems: A6HgS4 (A = K, Rb) exhibit discrete HgS4 tetrahedra with intercalated alkali-metal cations (Sommer & Hoppe, 1978). A2HgS2 (A = Na, K) possess nearly linear HgS2 units with alkali-metal cations occupying the voids (Klepp & Prager, 1992). The compounds Na2Hg3S4 (Klepp, 1992) and K2Hg3S4 (Kanatzidis & Park, 1990) feature infinite [Hg3S4]2- units parallel to (100) separated by alkali-metal cations. K2Hg6S7 has a three-dimensional mercury sulfide network composed of two types of channels, with the potassium cations occupying the spaces in the larger-diameter channels (Kanatzidis & Park, 1990).

Fig. 1 shows the unit cell of Cs2Hg6S7. Similar to K2Hg6S7, there is a three-dimensional mercury sulfide network containing two types of channels along [001]. There are two types of coordination geometries for the mercury atoms: Hg1 is four-coordinate with a distorted tetrahedral geometry and Hg2 is three-coordinate with a T-shaped planar geometry. The Hg1—S bond distances of 2.488 (4)-2.775 (2) Å are comparable to those of 2.345 (8)-2.718 (4) Å in K2Hg6S7. The Hg2—S bond distances are 2.367 (7), 2.377 (5), and 3.004 (7) Å. In K2Hg6S7, the Hg2 atom is considered to have a two-coordinate, nearly linear geometry. The Hg2 atom in Cs2Hg6S7 can also be viewed as having an approximately linear bonding environment if the Hg2—S coordination distance of 3.004 (7) Å is considered to be non-bonding. However, there are some examples in the literature of longer than expected Hg—S bonds in extended solid-state structures, including 2.92 (1) Å in Hg4SiS6 (Gulay et al., 2002), and 2.98 (1) Å in BaHgS2 (Rad & Hoppe, 1981). Long Hg—S bond distances of greater than 2.9 Å are more common in coordination compounds, including 2.965 (4) Å in Hg(S2CNEt2)2 (Iwasaki, 1973), 3.137 (6) Å in Hg2(S2CNEt2)4 (Iwasaki, 1973), and 2.991 (3) Å and 3.322 (4) Å in [CoHg(SCN)4{P(C6H5)3}2]2 (Kinoshita et al., 1985). Therefore, we consider the Hg2 atom in Cs2Hg6S7 to be three-coordinate with a T-shaped planar geometry. The Cs1 atoms, found in the centers of the larger-diameter channels, are seven-coordinate, with Cs—S distances of 3.526 (5)-3.627 (7) Å, as compared to 3.595 (7)-3.701 (6) Å in Cs2Zn3S4 (Bronger & Hendriks, 1980).

Because there is no S—S bonding in Cs2Hg6S7, a formal oxidation state of -II can be assigned to the S atoms. Bond valence sums (Brown & Altermatt, 1985; Brese & O'Keeffe, 1991) of Hg1 = 1.95, Hg2 = 1.84, and Cs1 = 1.13 confirm the formal oxidation states of +II for both Hg atoms, and +I for Cs.

Although they possess structural similarities, Cs2Hg6S7 and K2Hg6S7 are not isostructural. Cs2Hg6S7 belongs to space group P42nm and K2Hg6S7 belongs to space group P421m. Another related compound is K2Zn6O7, which crystallizes in space group P42nm (Wambach & Hoppe, 1978). However, the ADDSYM algorithm (Le Page, 1988) in PLATON (Spek, 2003) suggests that K2Zn6O7 properly belongs to space group P42/mnm. Apparently, Cs2Hg6S7 is not isostructural to K2Zn6O7 and instead crystallizes in a new structure type.

Related literature top

For literature on related alkali metal mercury sulfides, see: Sommer & Hoppe (1978) for A6HgS4 (A = K, Rb); Klepp & Prager (1992) for A2HgS2 (A = Na, K); Klepp (1992) for Na2Hg3S4; Kanatzidis & Park (1990) for K2Hg3S4 and K2Hg6S7. For literature on other compounds with Hg—S or Cs—S bonds, see: Gulay et al. (2002); Rad & Hoppe (1981); Iwasaki (1973); Kinoshita et al. (1985); Bronger & Hendriks (1980). The isoformular, but not isotypic, compound K2Zn6O7 was reported by Wambach & Hoppe (1978). For synthetic details, see: Sunshine et al. (1987). For computational details, see: Brown & Altermatt (1985); Gelato & Parthé (1987); Le Page (1988); Brese & O'Keeffe (1991); Spek (2003).

Experimental top

Cs2Hg6S7 was initially obtained in an attempt to produce a Cs/Hg/U/S quaternary phase. Cs2Hg6S7 was then synthesized rationally from a solid-state reaction of Cs2S3 (0.13 mmol), HgS (Alfa Aesar, 0.21 mmol), and S (Mallinckrodt, 99.6%, 0.44 mmol). CsI (Aldrich, 99.9%, 0.34 mmol) was added to aid in the crystallization of the final product. The Cs2S3 reactive flux (Sunshine et al., 1987) was prepared by the stoichiometric reaction of Cs (Strem Chemicals, 99.5%) and S in liquid NH3 at 194 K. The reactants were loaded into a fused-silica tube under an Ar atmosphere in a glove box. The tube was evacuated to 10 -4 Torr, sealed, and then placed in a computer-controlled furnace. The sample was heated to 1123 K in 24 hours, kept at 1123 K for 120 h, cooled at 5 K h-1 to 473 K, and then cooled to 293 K in 2 hours. The resulting black needles were washed with N,N-dimethylformamide. The yield was about 80% based on Hg.

Refinement top

The structure was standardized by means of the program STRUCTURE TIDY (Gelato & Parthé, 1987). The highest peak is 1.60 Å from atom Hg1 and the deepest hole is 1.03 Å from atom S3.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view down [001] of the unit cell of Cs2Hg6S7, with displacement ellipsoids at the 95% probability level.
Dicaesium hexamercury heptasulfide top
Crystal data top
Cs2Hg6S7Dx = 6.789 Mg m3
Mr = 1693.78Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42nmCell parameters from 5893 reflections
Hall symbol: P 4n -2nθ = 2.9–28.1°
a = 14.063 (3) ŵ = 60.56 mm1
c = 4.1895 (18) ÅT = 215 K
V = 828.6 (4) Å3Needle, black
Z = 20.44 × 0.06 × 0.04 mm
F(000) = 1404
Data collection top
Bruker SMART 1000 CCD
diffractometer
956 independent reflections
Radiation source: fine-focus sealed tube907 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 28.1°, θmin = 2.1°
Absorption correction: numerical
(SADABS; Sheldrick, 2006)
h = 1717
Tmin = 0.011, Tmax = 0.131k = 1717
8644 measured reflectionsl = 55
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0235P)2 + 40.9819P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.034(Δ/σ)max < 0.001
wR(F2) = 0.082Δρmax = 2.17 e Å3
S = 1.23Δρmin = 2.29 e Å3
956 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
43 parametersExtinction coefficient: 0.00320 (17)
1 restraintAbsolute structure: Flack (1983), 389 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
Cs2Hg6S7Z = 2
Mr = 1693.78Mo Kα radiation
Tetragonal, P42nmµ = 60.56 mm1
a = 14.063 (3) ÅT = 215 K
c = 4.1895 (18) Å0.44 × 0.06 × 0.04 mm
V = 828.6 (4) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
956 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2006)
907 reflections with I > 2σ(I)
Tmin = 0.011, Tmax = 0.131Rint = 0.052
8644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0235P)2 + 40.9819P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082Δρmax = 2.17 e Å3
S = 1.23Δρmin = 2.29 e Å3
956 reflectionsAbsolute structure: Flack (1983), 389 Friedel pairs
43 parametersAbsolute structure parameter: 0.00 (3)
1 restraint
Special details top

Experimental. The absorption correction program used the face indices and crystal dimensions that were supplied.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.15251 (5)0.57410 (5)0.22339 (19)0.0216 (2)
Hg20.09922 (5)0.09922 (5)0.3162 (3)0.0189 (3)
Cs10.33108 (8)0.33108 (8)0.2149 (5)0.0197 (3)
S10.0207 (3)0.6920 (3)0.2220 (13)0.0151 (7)
S20.00000.00000.000 (2)0.0193 (19)
S30.1828 (3)0.1828 (3)0.7187 (18)0.0153 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0248 (4)0.0215 (4)0.0184 (4)0.0052 (3)0.0002 (3)0.0002 (3)
Hg20.0180 (3)0.0180 (3)0.0206 (5)0.0015 (4)0.0032 (3)0.0032 (3)
Cs10.0216 (5)0.0216 (5)0.0157 (7)0.0037 (5)0.0013 (6)0.0013 (6)
S10.0134 (18)0.0160 (18)0.0158 (18)0.0006 (14)0.0002 (19)0.0017 (19)
S20.024 (3)0.024 (3)0.011 (4)0.006 (4)0.0000.000
S30.0154 (15)0.0154 (15)0.015 (2)0.002 (2)0.003 (2)0.003 (2)
Geometric parameters (Å, º) top
Hg1—S12.488 (4)Cs1—S2iv3.566 (4)
Hg1—S1i2.540 (5)Cs1—S3v3.609 (7)
Hg1—S1ii2.549 (5)Cs1—S33.627 (7)
Hg1—S3iii2.7754 (15)Cs1—Hg1viii4.1659 (17)
Hg1—Cs1iv4.1659 (17)Cs1—Hg1ii4.1659 (17)
Hg1—Cs1iii4.2013 (18)Cs1—Cs1x4.1895 (18)
Hg1—Cs14.2412 (12)Cs1—Cs1v4.1895 (18)
Hg2—S32.367 (7)Cs1—Hg1i4.2013 (18)
Hg2—S22.377 (5)S1—Hg1iii2.540 (5)
Hg2—S3v3.004 (7)S1—Hg1iv2.549 (5)
Hg2—Cs1i4.2392 (19)S1—Cs1iv3.526 (5)
Hg2—Cs1vi4.2392 (18)S1—Cs1iii3.561 (5)
Hg2—Cs14.631 (2)S2—Hg2xi2.377 (5)
Hg2—Cs1ii4.640 (2)S2—Cs1ii3.566 (4)
Hg2—Cs1vii4.640 (2)S2—Cs1vii3.566 (4)
Cs1—S1viii3.526 (5)S3—Hg1ix2.7754 (14)
Cs1—S1ii3.526 (5)S3—Hg1i2.7754 (14)
Cs1—S1ix3.561 (5)S3—Hg2x3.004 (7)
Cs1—S1i3.561 (5)S3—Cs1x3.609 (7)
S1—Hg1—S1i121.0 (2)S1ix—Cs1—S2iv77.06 (11)
S1—Hg1—S1ii120.6 (2)S1i—Cs1—S2iv77.06 (11)
S1i—Hg1—S1ii110.83 (15)S1viii—Cs1—S3v71.57 (10)
S1—Hg1—S3iii104.78 (15)S1ii—Cs1—S3v71.57 (10)
S1i—Hg1—S3iii96.43 (18)S1ix—Cs1—S3v111.39 (9)
S1ii—Hg1—S3iii95.74 (17)S1i—Cs1—S3v111.39 (9)
S1—Hg1—Cs1iv57.59 (10)S2iv—Cs1—S3v164.39 (19)
S1i—Hg1—Cs1iv92.09 (11)S1viii—Cs1—S3111.21 (9)
S1ii—Hg1—Cs1iv148.09 (10)S1ii—Cs1—S3111.21 (9)
S3iii—Hg1—Cs1iv58.64 (13)S1ix—Cs1—S370.96 (10)
S1—Hg1—Cs1iii57.74 (11)S1i—Cs1—S370.96 (10)
S1i—Hg1—Cs1iii148.92 (10)S2iv—Cs1—S3124.85 (19)
S1ii—Hg1—Cs1iii91.15 (11)S3v—Cs1—S370.76 (11)
S3iii—Hg1—Cs1iii58.46 (14)Hg1viii—Cs1—Hg1ii81.48 (4)
Cs1iv—Hg1—Cs1iii60.09 (3)S1viii—Cs1—Hg1i146.72 (8)
S1—Hg1—Cs1168.11 (10)S1ii—Cs1—Hg1i77.73 (8)
S1i—Hg1—Cs156.93 (10)S1ix—Cs1—Hg1i103.37 (9)
S1ii—Hg1—Cs156.13 (10)S1i—Cs1—Hg1i36.20 (6)
S3iii—Hg1—Cs187.09 (12)S2iv—Cs1—Hg1i111.51 (11)
Cs1iv—Hg1—Cs1132.09 (4)S3v—Cs1—Hg1i80.02 (9)
Cs1iii—Hg1—Cs1131.02 (4)S3—Cs1—Hg1i40.70 (2)
S3—Hg2—S2168.5 (3)Hg1viii—Cs1—Hg1i110.24 (4)
S3—Hg2—S3v101.9 (2)Hg1ii—Cs1—Hg1i60.09 (3)
S2—Hg2—S3v89.7 (2)Cs1x—Cs1—Hg1i59.53 (3)
S3—Hg2—Cs1i92.64 (11)Cs1v—Cs1—Hg1i120.47 (3)
S2—Hg2—Cs1i80.40 (11)Hg1—S1—Hg1iii104.31 (17)
S3v—Hg2—Cs1i125.85 (4)Hg1—S1—Hg1iv104.03 (17)
S3—Hg2—Cs1vi92.64 (11)Hg1iii—S1—Hg1iv110.83 (15)
S2—Hg2—Cs1vi80.40 (11)Hg1—S1—Cs1iv85.86 (12)
S3v—Hg2—Cs1vi125.85 (4)Hg1iii—S1—Cs1iv155.98 (17)
Cs1i—Hg2—Cs1vi104.84 (5)Hg1iv—S1—Cs1iv86.99 (14)
S3—Hg2—Cs150.68 (17)Hg1—S1—Cs1iii86.05 (12)
S2—Hg2—Cs1140.87 (19)Hg1iii—S1—Cs1iii86.37 (14)
S3v—Hg2—Cs151.17 (12)Hg1iv—S1—Cs1iii156.55 (16)
Cs1i—Hg2—Cs1119.97 (2)Cs1iv—S1—Cs1iii72.47 (8)
Cs1vi—Hg2—Cs1119.97 (2)Hg2—S2—Hg2xi112.2 (4)
S3—Hg2—Cs1ii133.26 (3)Hg2—S2—Cs1ii100.76 (3)
S2—Hg2—Cs1ii49.02 (6)Hg2xi—S2—Cs1ii100.76 (3)
S3v—Hg2—Cs1ii77.46 (8)Hg2—S2—Cs1vii100.76 (3)
Cs1i—Hg2—Cs1ii56.09 (3)Hg2xi—S2—Cs1vii100.76 (3)
Cs1vi—Hg2—Cs1ii126.15 (3)Cs1ii—S2—Cs1vii140.9 (3)
Cs1—Hg2—Cs1ii111.95 (3)Hg2—S3—Hg1ix98.40 (15)
S3—Hg2—Cs1vii133.26 (3)Hg2—S3—Hg1i98.40 (15)
S2—Hg2—Cs1vii49.02 (6)Hg1ix—S3—Hg1i156.8 (2)
S3v—Hg2—Cs1vii77.46 (8)Hg2—S3—Hg2x101.9 (2)
Cs1i—Hg2—Cs1vii126.15 (3)Hg1ix—S3—Hg2x96.04 (16)
Cs1vi—Hg2—Cs1vii56.09 (3)Hg1i—S3—Hg2x96.04 (16)
Cs1—Hg2—Cs1vii111.95 (3)Hg2—S3—Cs1x169.7 (3)
Cs1ii—Hg2—Cs1vii92.79 (5)Hg1ix—S3—Cs1x80.31 (13)
S1viii—Cs1—S1ii108.22 (17)Hg1i—S3—Cs1x80.31 (13)
S1viii—Cs1—S1ix72.47 (8)Hg2x—S3—Cs1x88.40 (19)
S1ii—Cs1—S1ix176.94 (13)Hg2—S3—Cs199.0 (2)
S1viii—Cs1—S1i176.94 (13)Hg1ix—S3—Cs180.83 (13)
S1ii—Cs1—S1i72.47 (8)Hg1i—S3—Cs180.83 (13)
S1ix—Cs1—S1i106.68 (16)Hg2x—S3—Cs1159.2 (2)
S1viii—Cs1—S2iv99.89 (11)Cs1x—S3—Cs170.76 (11)
S1ii—Cs1—S2iv99.89 (11)
Symmetry codes: (i) y1/2, x+1/2, z+1/2; (ii) y1/2, x+1/2, z1/2; (iii) y+1/2, x+1/2, z1/2; (iv) y+1/2, x+1/2, z+1/2; (v) x, y, z1; (vi) y+1/2, x1/2, z+1/2; (vii) y+1/2, x1/2, z1/2; (viii) x+1/2, y1/2, z1/2; (ix) x+1/2, y1/2, z+1/2; (x) x, y, z+1; (xi) x, y, z.

Experimental details

Crystal data
Chemical formulaCs2Hg6S7
Mr1693.78
Crystal system, space groupTetragonal, P42nm
Temperature (K)215
a, c (Å)14.063 (3), 4.1895 (18)
V3)828.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)60.56
Crystal size (mm)0.44 × 0.06 × 0.04
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionNumerical
(SADABS; Sheldrick, 2006)
Tmin, Tmax0.011, 0.131
No. of measured, independent and
observed [I > 2σ(I)] reflections
8644, 956, 907
Rint0.052
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.082, 1.23
No. of reflections956
No. of parameters43
No. of restraints1
w = 1/[σ2(Fo2) + (0.0235P)2 + 40.9819P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.17, 2.29
Absolute structureFlack (1983), 389 Friedel pairs
Absolute structure parameter0.00 (3)

Computer programs: SMART (Bruker, 2003), APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2008).

Selected geometric parameters (Å, º) top
Hg1—S12.488 (4)Cs1—S1v3.526 (5)
Hg1—S1i2.540 (5)Cs1—S1ii3.526 (5)
Hg1—S1ii2.549 (5)Cs1—S1vi3.561 (5)
Hg1—S3iii2.7754 (15)Cs1—S1i3.561 (5)
Hg2—S32.367 (7)Cs1—S2vii3.566 (4)
Hg2—S22.377 (5)Cs1—S3iv3.609 (7)
Hg2—S3iv3.004 (7)Cs1—S33.627 (7)
S1—Hg1—S1i121.0 (2)S1ii—Hg1—S3iii95.74 (17)
S1—Hg1—S1ii120.6 (2)S3—Hg2—S2168.5 (3)
S1i—Hg1—S1ii110.83 (15)S3—Hg2—S3iv101.9 (2)
S1—Hg1—S3iii104.78 (15)S2—Hg2—S3iv89.7 (2)
S1i—Hg1—S3iii96.43 (18)
Symmetry codes: (i) y1/2, x+1/2, z+1/2; (ii) y1/2, x+1/2, z1/2; (iii) y+1/2, x+1/2, z1/2; (iv) x, y, z1; (v) x+1/2, y1/2, z1/2; (vi) x+1/2, y1/2, z+1/2; (vii) y+1/2, x+1/2, z+1/2.
 

Acknowledgements

This research was supported by the US Department of Energy, Basic Energy Sciences Grant ER-15522.

References

First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBronger, W. & Hendriks, U. (1980). Rev. Chim. Miner. 17, 555–560.  CAS Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGulay, L. D., Olekseyuk, I. D. & Parasyuk, O. V. (2002). J. Alloys Compd. 347, 115–120.  Web of Science CrossRef CAS Google Scholar
First citationIwasaki, H. (1973). Acta Cryst. B29, 2115–2124.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKanatzidis, M. G. & Park, Y. (1990). Chem. Mater. 2, 99–101.  CrossRef CAS Web of Science Google Scholar
First citationKinoshita, H., Shimoi, M. & Ouchi, A. (1985). Bull. Chem. Soc. Jpn, 58, 1304–1307.  CrossRef CAS Web of Science Google Scholar
First citationKlepp, K. O. (1992). J. Alloys Compd. 182, 281–288.  CrossRef CAS Web of Science Google Scholar
First citationKlepp, K. O. & Prager, K. (1992). Z. Naturforsch. Teil B, 47, 491–496.  CAS Google Scholar
First citationLe Page, Y. (1988). J. Appl. Cryst. 21, 983–984.  CrossRef Web of Science IUCr Journals Google Scholar
First citationPalmer, D. (2008). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRad, H. D. & Hoppe, R. (1981). Z. Anorg. Allg. Chem. 483, 18–25.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2006). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSommer, H. & Hoppe, R. (1978). Z. Anorg. Allg. Chem. 443, 201–211.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSunshine, S. A., Kang, D. & Ibers, J. A. (1987). J. Am. Chem. Soc. 109, 6202–6204.  CrossRef CAS Web of Science Google Scholar
First citationWambach, K.-R. & Hoppe, R. (1978). Z. Anorg. Allg. Chem. 445, 91–101.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds