inorganic compounds
Redetermination of conichalcite, CaCu(AsO4)(OH)
aDepartment of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721-0077, USA
*Correspondence e-mail: hyang@u.arizona.edu
The 4)(OH), was redetermined from a natural twinned specimen found in the Maria Catalina mine (Chile). In contrast to the previous from photographic data [Qurashi & Barnes (1963). Can. Mineral. 7, 561–577], all atoms were refined with anisotropic displacement parameters and with the H atom located. Conichalcite belongs to the adelite mineral group. The Jahn–Teller-distorted [CuO6] octahedra share edges, forming chains running parallel to [010]. These chains are cross-linked by eight-coordinate Ca atoms and by sharing vertices with isolated AsO4 tetrahedra. Of five calcium arsenate minerals in the adelite group, the [MO6] (M = Cu, Zn, Co, Ni and Mg) octahedron in conichalcite is the most distorted, and the donor–acceptor O—H⋯O distance is the shortest.
of conichalcite [calcium copper(II) arsenate(V) hydroxide], with ideal formula CaCu(AsORelated literature
For background on the adelite mineral family, see: Qurashi & Barnes (1963, 1964); Qurashi et al. (1953). For structure refinements in the adelite group, see: Effenberger et al. (2002) for adelite, CaMgAsO4(OH); Clark et al. (1997) and Giuseppetti & Tadini (1988) for austinite, CaZnAsO4(OH); Yang et al. (2007) for cobaltaustinite, CaCoAsO4(OH); Cesbron et al. (1987) for nickelaustinite, CaNiAsO4(OH). Correlations between O—H streching frequencies and O—H⋯O donor–acceptor distances are given by Libowitzky (1999). Raman spectroscopic data on some minerals of the adelite group have been reported by Martens et al. (2003); for general background, see: Robinson et al. (1971).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2003); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536808024173/wm2185sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808024173/wm2185Isup2.hkl
The conichalcite crystal used in this study is from Maria Catalina mine, Pampa Larga Mining District, Tierra Amarilla, Chile, and is a sample from the RRUFF project (deposition No. R070430; http//rruff.info). The chemical composition, Ca(Cu0.99Zn0.01)(AsO4)(OH), was determined with a CAMECA SX50 electron microprobe (http//rruff.info).
The final
assumed a full occupancy of the metal site by Cu only, as the overall effects of the trace amount of Zn on the final structure results are negligible. In the final stages of the it turned out that the measured crystal was racemically twinned with an approximate twin fraction of 4:1 (BASF = 0.21). The H atom was located from difference Fourier maps and its position was refined freely. The highest residual peak in is located 1.60 Å from the H atom, and the deepest hole is 0.63 Å from the Ca atom.Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The crystal structure of conichalcite. Green octahedra, yellow tetrahedra, grey large sphares, and red small spheres represent [CuO6], [AsO4], Ca, and H, respectively. Hydrogen bonding is indicated with blue lines. |
CaCu(AsO4)(OH) | F(000) = 492 |
Mr = 259.57 | Dx = 4.359 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3371 reflections |
a = 7.3822 (2) Å | θ = 3.6–34.0° |
b = 5.8146 (2) Å | µ = 15.03 mm−1 |
c = 9.2136 (3) Å | T = 293 K |
V = 395.49 (2) Å3 | Euhedral, equant, green |
Z = 4 | 0.06 × 0.05 × 0.04 mm |
Bruker APEX2 CCD diffractometer | 1602 independent reflections |
Radiation source: fine-focus sealed tube | 1487 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ϕ and ω scans | θmax = 34.0°, θmin = 3.5° |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2008) | h = −9→11 |
Tmin = 0.492, Tmax = 0.585 | k = −9→9 |
7088 measured reflections | l = −14→14 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.018 | w = 1/[σ2(Fo2) + (0.0151P)2 + 0.1227P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.038 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.63 e Å−3 |
1602 reflections | Δρmin = −0.49 e Å−3 |
79 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0029 (5) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 644 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.00 (2) |
CaCu(AsO4)(OH) | V = 395.49 (2) Å3 |
Mr = 259.57 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.3822 (2) Å | µ = 15.03 mm−1 |
b = 5.8146 (2) Å | T = 293 K |
c = 9.2136 (3) Å | 0.06 × 0.05 × 0.04 mm |
Bruker APEX2 CCD diffractometer | 1602 independent reflections |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2008) | 1487 reflections with I > 2σ(I) |
Tmin = 0.492, Tmax = 0.585 | Rint = 0.023 |
7088 measured reflections |
R[F2 > 2σ(F2)] = 0.018 | All H-atom parameters refined |
wR(F2) = 0.038 | Δρmax = 0.63 e Å−3 |
S = 1.03 | Δρmin = −0.49 e Å−3 |
1602 reflections | Absolute structure: Flack (1983), 644 Friedel pairs |
79 parameters | Absolute structure parameter: 0.00 (2) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ca | 0.61727 (5) | 0.72961 (8) | 0.07340 (4) | 0.01133 (12) | |
Cu | −0.00416 (4) | −0.00002 (6) | 0.25029 (4) | 0.00898 (8) | |
As | 0.36728 (2) | 0.26438 (4) | 0.08118 (2) | 0.00768 (6) | |
O1 | 0.18844 (17) | 0.2450 (3) | 0.19847 (15) | 0.0135 (3) | |
O2 | 0.5395 (2) | 0.3313 (3) | 0.19256 (18) | 0.0187 (4) | |
O3 | 0.3514 (2) | 0.4927 (3) | −0.02947 (17) | 0.0157 (3) | |
O4 | 0.3885 (2) | 0.0147 (3) | −0.00782 (15) | 0.0145 (4) | |
O5 | −0.13880 (18) | 0.2539 (3) | 0.31777 (14) | 0.0113 (3) | |
H1 | −0.229 (5) | 0.232 (6) | 0.260 (3) | 0.055 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca | 0.01169 (18) | 0.0119 (2) | 0.01041 (18) | −0.00064 (17) | −0.00072 (13) | 0.00020 (18) |
Cu | 0.00885 (11) | 0.00621 (12) | 0.01190 (12) | 0.00029 (9) | 0.00211 (8) | −0.00121 (8) |
As | 0.00801 (8) | 0.00659 (9) | 0.00845 (9) | 0.00006 (8) | 0.00059 (7) | 0.00014 (9) |
O1 | 0.0141 (6) | 0.0107 (7) | 0.0157 (6) | −0.0025 (7) | 0.0035 (5) | −0.0006 (7) |
O2 | 0.0146 (7) | 0.0212 (9) | 0.0205 (8) | −0.0029 (6) | −0.0048 (6) | 0.0004 (7) |
O3 | 0.0201 (7) | 0.0107 (7) | 0.0164 (7) | 0.0011 (7) | 0.0044 (7) | 0.0035 (6) |
O4 | 0.0181 (8) | 0.0096 (7) | 0.0158 (8) | 0.0018 (6) | 0.0022 (7) | −0.0018 (6) |
O5 | 0.0106 (5) | 0.0102 (6) | 0.0132 (6) | 0.0000 (8) | 0.0002 (5) | −0.0003 (6) |
Ca—O5i | 2.3626 (13) | Cu—O5vi | 1.8855 (16) |
Ca—O3ii | 2.3995 (17) | Cu—O1vi | 2.0666 (16) |
Ca—O4iii | 2.4818 (16) | Cu—O1 | 2.0688 (15) |
Ca—O2iv | 2.5178 (17) | Cu—O3vii | 2.2976 (15) |
Ca—O4v | 2.5281 (16) | Cu—O4viii | 2.3882 (14) |
Ca—O1iv | 2.5462 (14) | As—O4 | 1.6749 (16) |
Ca—O3 | 2.5786 (17) | As—O3 | 1.6779 (16) |
Ca—O2 | 2.6264 (17) | As—O2 | 1.6796 (16) |
Cu—O5 | 1.8850 (15) | As—O1 | 1.7099 (13) |
O5i—Ca—O3ii | 75.88 (5) | O4v—Ca—O2 | 77.15 (5) |
O5i—Ca—O4iii | 73.62 (5) | O1iv—Ca—O2 | 79.00 (5) |
O3ii—Ca—O4iii | 89.42 (5) | O3—Ca—O2 | 61.06 (5) |
O5i—Ca—O2iv | 151.07 (5) | O5—Cu—O5vi | 177.68 (6) |
O3ii—Ca—O2iv | 108.51 (6) | O5—Cu—O1vi | 98.01 (6) |
O4iii—Ca—O2iv | 77.79 (5) | O5vi—Cu—O1vi | 84.26 (6) |
O5i—Ca—O4v | 74.41 (5) | O5—Cu—O1 | 84.21 (6) |
O3ii—Ca—O4v | 76.55 (5) | O5vi—Cu—O1 | 93.52 (6) |
O4iii—Ca—O4v | 147.36 (3) | O1vi—Cu—O1 | 177.66 (7) |
O2iv—Ca—O4v | 134.48 (5) | O5—Cu—O3vii | 91.88 (6) |
O5i—Ca—O1iv | 141.59 (5) | O5vi—Cu—O3vii | 88.82 (6) |
O3ii—Ca—O1iv | 73.13 (5) | O1vi—Cu—O3vii | 84.84 (6) |
O4iii—Ca—O1iv | 127.50 (5) | O1—Cu—O3vii | 95.85 (6) |
O2iv—Ca—O1iv | 62.85 (5) | O5—Cu—O4viii | 84.76 (6) |
O4v—Ca—O1iv | 76.76 (5) | O5vi—Cu—O4viii | 94.77 (6) |
O5i—Ca—O3 | 72.94 (5) | O1vi—Cu—O4viii | 89.81 (6) |
O3ii—Ca—O3 | 147.75 (2) | O1—Cu—O4viii | 89.67 (5) |
O4iii—Ca—O3 | 74.21 (5) | O3vii—Cu—O4viii | 173.23 (6) |
O2iv—Ca—O3 | 95.19 (5) | O4—As—O3 | 113.27 (7) |
O4v—Ca—O3 | 102.41 (5) | O4—As—O2 | 115.43 (8) |
O1iv—Ca—O3 | 138.68 (5) | O3—As—O2 | 103.94 (8) |
O5i—Ca—O2 | 117.86 (6) | O4—As—O1 | 108.94 (8) |
O3ii—Ca—O2 | 145.22 (5) | O3—As—O1 | 112.45 (8) |
O4iii—Ca—O2 | 124.48 (5) | O2—As—O1 | 102.33 (7) |
O2iv—Ca—O2 | 75.44 (3) |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) x+1/2, −y+3/2, −z; (iii) x, y+1, z; (iv) −x+1, y+1/2, −z+1/2; (v) x+1/2, −y+1/2, −z; (vi) −x, y−1/2, −z+1/2; (vii) x−1/2, −y+1/2, −z; (viii) −x+1/2, −y, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H1···O2ix | 0.86 (4) | 1.91 (4) | 2.678 (2) | 149 (3) |
Symmetry code: (ix) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | CaCu(AsO4)(OH) |
Mr | 259.57 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 7.3822 (2), 5.8146 (2), 9.2136 (3) |
V (Å3) | 395.49 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 15.03 |
Crystal size (mm) | 0.06 × 0.05 × 0.04 |
Data collection | |
Diffractometer | Bruker APEX2 CCD diffractometer |
Absorption correction | Multi-scan (TWINABS; Sheldrick, 2008) |
Tmin, Tmax | 0.492, 0.585 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7088, 1602, 1487 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.787 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.018, 0.038, 1.03 |
No. of reflections | 1602 |
No. of parameters | 79 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.63, −0.49 |
Absolute structure | Flack (1983), 644 Friedel pairs |
Absolute structure parameter | 0.00 (2) |
Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XtalDraw (Downs & Hall-Wallace, 2003), SHELXTL (Sheldrick, 2008).
Ca—O5i | 2.3626 (13) | Cu—O5vi | 1.8855 (16) |
Ca—O3ii | 2.3995 (17) | Cu—O1vi | 2.0666 (16) |
Ca—O4iii | 2.4818 (16) | Cu—O1 | 2.0688 (15) |
Ca—O2iv | 2.5178 (17) | Cu—O3vii | 2.2976 (15) |
Ca—O4v | 2.5281 (16) | Cu—O4viii | 2.3882 (14) |
Ca—O1iv | 2.5462 (14) | As—O4 | 1.6749 (16) |
Ca—O3 | 2.5786 (17) | As—O3 | 1.6779 (16) |
Ca—O2 | 2.6264 (17) | As—O2 | 1.6796 (16) |
Cu—O5 | 1.8850 (15) | As—O1 | 1.7099 (13) |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) x+1/2, −y+3/2, −z; (iii) x, y+1, z; (iv) −x+1, y+1/2, −z+1/2; (v) x+1/2, −y+1/2, −z; (vi) −x, y−1/2, −z+1/2; (vii) x−1/2, −y+1/2, −z; (viii) −x+1/2, −y, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H1···O2ix | 0.86 (4) | 1.91 (4) | 2.678 (2) | 149 (3) |
Symmetry code: (ix) x−1, y, z. |
Acknowledgements
The authors gratefully acknowledge support of this study by the RRUFF project.
References
Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cesbron, F., Ginderow, D., Giraud, R., Pelisson, P. & Pillard, F. (1987). Can. Mineral. 25, 401–407. CAS Google Scholar
Clark, L. A., Pluth, J. J., Steele, I., Smith, J. V. & Sutton, S. R. (1997). Mineral. Mag. 61, 677–683. CrossRef CAS Web of Science Google Scholar
Downs, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247–250. CAS Google Scholar
Effenberger, H., Krause, W. & Bernhardt, H. J. (2002). Exp. Miner. Petrol. Geochem. Abstr. 9, 30. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Giuseppetti, G. & Tadini, C. (1988). Neues Jahrb. Mineral. Monatsh. 1988, 159–166. Google Scholar
Libowitzky, E. (1999). Monatsh. Chem. 130, 1047–1059. Web of Science CrossRef CAS Google Scholar
Martens, W., Frost, R. L. & Williams, P. A. (2003). J. Raman Spectrosc. 34, 104–111. Web of Science CrossRef CAS Google Scholar
Qurashi, M. M. & Barnes, W. H. (1963). Can. Mineral. 7, 561–577. CAS Google Scholar
Qurashi, M. M. & Barnes, W. H. (1964). Can. Mineral. 8, 23–39. CAS Google Scholar
Qurashi, M. M., Barnes, W. H. & Berry, L. G. (1953). Am. Mineral. 38, 557–559. CAS Google Scholar
Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570. CrossRef PubMed CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, H., Costin, G., Keogh, J., Lu, R. & Downs, R. T. (2007). Acta Cryst. E63, i53–i55. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Minerals of the adelite group crystallize with orthorhombic symmetry in space group P212121 (Qurashi & Barnes, 1963, 1964) and have a general chemical formula A+,2+M2+,3+(X4+,5+,6+O4)(OH), where A = Na, Ca, Pb, M = Al, Mg, Zn, Mn, Fe, Co, Cu, Ni, and X = Si, P, V, As. There are five calcium arsenates in this group: adelite CaMgAsO4(OH), austinite CaZnAsO4(OH), conichalcite CaCuAsO4(OH), nickelaustinite CaNiAsO4(OH), and cobaltaustinite, CaCoAsO4(OH). All structures of these calcium arsenate minerals have been determined previously (Qurashi & Barnes, 1963; Cesbron et al., 1987; Giuseppetti & Tadini, 1988; Clark et al., 1997; Effenberger et al., 2002; Yang et al., 2007). However, in our efforts to understand the relationships between the hydrogen bonding schemes and Raman spectra of hydrous minerals, we noted that the structural information of conichalcite needs to be improved, because this structure was refined by Qurashi & Barnes (1963) with X-ray intensity data collected by Qurashi et al. (1953) from precession photographs without anisotropic displacement parameters and localisation of the H atom position.
Conichalcite can be compared with the other Ca-arsenate minerals in the adelite group. The distorted [CuO6] octahedra (i.e. elongated tetragonal bipyramids) share edges to form chains running parallel to [010], which are cross-linked by Ca atoms and by sharing vertices with isolated AsO4 tetrahedra (Fig. 1). The principal difference among the five calcium arsenates in the group is manifested in the bonding environments around the octahedrally coordinated M cations. The average M—O bond lengths appear to decrease from <Zn—O> (= 2.106 Å) in austinite (Clark et al., 1997), to <Cu—O> (= 2.099 Å) in conichalcite, <Co—O> (= 2.092 Å) in cobaltaustinite (Yang et al., 2007), <Ni—O> (= 2.085 Å) in nickelaustinite (Cesbron et al., 1987), and to <Mg—O> (= 2.075 Å) in adelite (Effenberger et al., 2002). Of these [MO6] octahedra, the Cu-octahedron, due to its strong Jahn-Teller effect, displays the greatest distortion in terms of the tetragonal elongation and angle variance (Robinson et al., 1971), which are 1.0229 and 23.58, respectively.
The donor-acceptor O5—H···O2 distance in conichalcite is 2.678 (2) Å, which is the shortest of all five Ca-arsenates in the adelite group [2.723 (2) Å in austinite (Clark et al., 1997), 2.721 (7) Å in cobaltaustinite (Yang et al., 2007), 2.73 (1) Å in nickelaustinite (Cesbron et al., 1987), and 2.766 (2) Å in adelite (Effenberger et al., 2002)]. As the O—H stretching frequencies (νOH) increase with the O—H···O distance (Libowitzky,1999), we should expect the smallest νOH value for conichalcite and the largest for adelite among the five calcium arsenates in the adelite group. Indeed, the major νOH band positions determined from Raman spectra for conichalcite and adelite are, respectively, 3158 and 3550 cm-1 from Martens et al. (2003), or 3161 and 3423 cm-1 from the RRUFF project (http://rruff.info), with intermediate νOH values for the other three minerals (austinite, cobaltaustinite, and nickelaustinite).