organic compounds
4-Methoxy-2-[(E)-(phenylimino)methyl]phenol
aNiğde University, Department of Chemistry, 51200, Niğde, Turkey, bHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey, and cAdnan Menderes University, Department of Chemistry, 09010, Aydın, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
In the molecule of the title compound, C14H13NO2, the two aromatic rings are oriented at a dihedral angle of 0.78 (20)°; with the exception of two methyl H atoms the molecule is essentially planar. The intramolecular O—H⋯N hydrogen bond results in the formation of a non-planar, six-membered ring, which adopts a flattened-boat conformation. In the intermolecular C—H⋯O hydrogen bonds link the molecules to form parallel networks. There is a C—H⋯π contact between the methyl group and the benzene ring. A π–π contact between the benzene and phenyl rings [centroid–centroid distance = 4.681 (5) Å] is also observed.
Related literature
For general background, see: Hökelek et al. (2004); Uçan & Mercimek (2005); Uçan et al. (2005); Garg & Kumar (2003); Mokles & Elzaher (2001); Amirnasr et al. (2002); Bella et al. (2004); Chandra & Kumar (2005); Ray et al. (2003); Yang et al. (2000). For bond-length data, see: Allen et al. (1987). For ring conformation puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S1600536808026883/wn2275sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808026883/wn2275Isup2.hkl
The title compound was prepared by the usual condensation method. Aniline (0.931 g, 10 mmol) was dissolved in methanol (10 ml) and added to a solution of 4-methoxysalicylaldehyde (3.042 g, 20 mmol) in methanol (10 ml). The reaction mixture was stirred for 3 h and left overnight at 298 K. The resulting precipitate was filtered and washed with cold ethanol. It was recrystalized from dichloromethane, dried in a vacuum desiccator and the purity was checked by TLC (yield; 3.854 g, 84%, m.p. 341 K).
H1 (attached to O1) and H7 (attached to C7) were located in difference syntheses and refined isotropically [O—H = 0.86 (5) Å and Uiso(H) = 0.05 (3) Å2; C—H = 1.03 (5) Å and Uiso(H) = 0.039 (18) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms. A restraint on the O—H bond was applied.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON.C14H13NO2 | F(000) = 480 |
Mr = 227.26 | Dx = 1.300 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 20.935 (2) Å | θ = 5.2–17.4° |
b = 4.7151 (10) Å | µ = 0.09 mm−1 |
c = 12.276 (3) Å | T = 294 K |
β = 106.623 (14)° | Rod-shaped, orange |
V = 1161.1 (4) Å3 | 0.40 × 0.20 × 0.10 mm |
Z = 4 |
Enraf–Nonius TurboCAD-4 diffractometer | 521 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.048 |
Graphite monochromator | θmax = 23.1°, θmin = 3.3° |
non–profiled ω scans | h = −22→21 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→5 |
Tmin = 0.971, Tmax = 0.990 | l = 0→13 |
1653 measured reflections | 3 standard reflections every 120 min |
1560 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.064 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.207 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.92 | w = 1/[σ2(Fo2) + (0.0803P)2] where P = (Fo2 + 2Fc2)/3 |
1560 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.20 e Å−3 |
1 restraint | Δρmin = −0.20 e Å−3 |
C14H13NO2 | V = 1161.1 (4) Å3 |
Mr = 227.26 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 20.935 (2) Å | µ = 0.09 mm−1 |
b = 4.7151 (10) Å | T = 294 K |
c = 12.276 (3) Å | 0.40 × 0.20 × 0.10 mm |
β = 106.623 (14)° |
Enraf–Nonius TurboCAD-4 diffractometer | 521 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.048 |
Tmin = 0.971, Tmax = 0.990 | θmax = 23.1° |
1653 measured reflections | 3 standard reflections every 120 min |
1560 independent reflections | intensity decay: 1% |
R[F2 > 2σ(F2)] = 0.064 | 1 restraint |
wR(F2) = 0.207 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.92 | Δρmax = 0.20 e Å−3 |
1560 reflections | Δρmin = −0.20 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7505 (3) | 0.7726 (12) | 1.0014 (4) | 0.0656 (17) | |
H1 | 0.725 (3) | 0.879 (11) | 0.951 (4) | 0.05 (3)* | |
O2 | 0.9196 (2) | 0.2785 (11) | 0.7864 (4) | 0.0649 (16) | |
N1 | 0.7019 (3) | 1.0588 (12) | 0.8146 (5) | 0.0452 (17) | |
C1 | 0.6566 (3) | 1.2627 (15) | 0.7496 (6) | 0.043 (2) | |
C2 | 0.6507 (4) | 1.3416 (17) | 0.6390 (7) | 0.065 (3) | |
H2 | 0.6792 | 1.2622 | 0.6015 | 0.078* | |
C3 | 0.6041 (4) | 1.5335 (18) | 0.5837 (7) | 0.079 (3) | |
H3 | 0.6003 | 1.5789 | 0.5083 | 0.095* | |
C4 | 0.5626 (4) | 1.6608 (17) | 0.6377 (8) | 0.066 (3) | |
H4 | 0.5314 | 1.7939 | 0.5997 | 0.079* | |
C5 | 0.5677 (4) | 1.5897 (17) | 0.7486 (8) | 0.064 (2) | |
H5 | 0.5399 | 1.6744 | 0.7860 | 0.076* | |
C6 | 0.6144 (4) | 1.3919 (15) | 0.8039 (6) | 0.055 (2) | |
H6 | 0.6177 | 1.3443 | 0.8789 | 0.066* | |
C7 | 0.7415 (4) | 0.9240 (16) | 0.7710 (7) | 0.043 (2) | |
H7 | 0.742 (2) | 0.943 (11) | 0.688 (5) | 0.039 (18)* | |
C8 | 0.7886 (3) | 0.7208 (15) | 0.8350 (6) | 0.0397 (19) | |
C9 | 0.8325 (3) | 0.5868 (15) | 0.7860 (6) | 0.049 (2) | |
H9 | 0.8306 | 0.6280 | 0.7111 | 0.059* | |
C10 | 0.8787 (4) | 0.3956 (16) | 0.8450 (7) | 0.048 (2) | |
C11 | 0.8823 (4) | 0.3314 (16) | 0.9555 (7) | 0.057 (2) | |
H11 | 0.9139 | 0.2028 | 0.9962 | 0.068* | |
C12 | 0.8383 (4) | 0.4607 (17) | 1.0059 (6) | 0.056 (2) | |
H12 | 0.8402 | 0.4159 | 1.0805 | 0.067* | |
C13 | 0.7918 (4) | 0.6544 (17) | 0.9470 (7) | 0.049 (2) | |
C14 | 0.9735 (3) | 0.1055 (17) | 0.8484 (7) | 0.077 (3) | |
H14A | 0.9978 | 0.0375 | 0.7982 | 0.115* | |
H14B | 0.9563 | −0.0527 | 0.8805 | 0.115* | |
H14C | 1.0026 | 0.2150 | 0.9082 | 0.115* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.085 (4) | 0.070 (4) | 0.045 (4) | 0.028 (4) | 0.023 (3) | 0.010 (4) |
O2 | 0.062 (4) | 0.072 (4) | 0.064 (4) | 0.026 (3) | 0.025 (3) | 0.010 (3) |
N1 | 0.058 (4) | 0.033 (4) | 0.043 (4) | −0.003 (3) | 0.012 (4) | 0.001 (3) |
C1 | 0.047 (5) | 0.032 (5) | 0.046 (5) | −0.010 (4) | 0.005 (4) | 0.000 (5) |
C2 | 0.067 (6) | 0.069 (7) | 0.055 (6) | 0.028 (5) | 0.011 (5) | 0.004 (5) |
C3 | 0.089 (7) | 0.074 (7) | 0.063 (6) | 0.034 (6) | 0.005 (6) | 0.015 (6) |
C4 | 0.071 (7) | 0.038 (6) | 0.072 (7) | 0.007 (5) | −0.008 (5) | 0.003 (5) |
C5 | 0.052 (6) | 0.048 (6) | 0.092 (8) | 0.001 (5) | 0.023 (5) | −0.006 (5) |
C6 | 0.062 (5) | 0.043 (5) | 0.068 (6) | 0.006 (5) | 0.031 (5) | 0.006 (5) |
C7 | 0.046 (5) | 0.041 (5) | 0.040 (5) | −0.003 (4) | 0.008 (4) | −0.002 (5) |
C8 | 0.046 (5) | 0.033 (5) | 0.036 (5) | 0.003 (4) | 0.007 (4) | 0.003 (4) |
C9 | 0.059 (5) | 0.043 (5) | 0.040 (5) | −0.002 (5) | 0.008 (4) | −0.001 (4) |
C10 | 0.052 (5) | 0.037 (5) | 0.053 (6) | 0.001 (4) | 0.014 (4) | 0.010 (5) |
C11 | 0.058 (5) | 0.052 (6) | 0.058 (6) | 0.013 (5) | 0.014 (5) | 0.022 (5) |
C12 | 0.068 (6) | 0.062 (6) | 0.034 (5) | 0.000 (5) | 0.010 (4) | 0.006 (5) |
C13 | 0.054 (5) | 0.048 (6) | 0.046 (5) | −0.002 (4) | 0.014 (4) | −0.005 (5) |
C14 | 0.064 (6) | 0.074 (6) | 0.093 (7) | 0.034 (5) | 0.025 (5) | 0.011 (6) |
O1—C13 | 1.355 (8) | C6—H6 | 0.9300 |
O1—H1 | 0.86 (5) | C7—C8 | 1.437 (9) |
O2—C10 | 1.381 (8) | C7—H7 | 1.03 (5) |
O2—C14 | 1.423 (7) | C8—C13 | 1.393 (8) |
N1—C1 | 1.424 (8) | C9—C8 | 1.387 (9) |
N1—C7 | 1.277 (8) | C9—C10 | 1.368 (8) |
C1—C2 | 1.379 (9) | C9—H9 | 0.9300 |
C2—C3 | 1.362 (9) | C11—C10 | 1.370 (8) |
C2—H2 | 0.9300 | C11—C12 | 1.390 (9) |
C3—H3 | 0.9300 | C11—H11 | 0.9300 |
C4—C3 | 1.372 (10) | C12—C13 | 1.378 (9) |
C4—C5 | 1.376 (9) | C12—H12 | 0.9300 |
C4—H4 | 0.9300 | C14—H14A | 0.9600 |
C5—H5 | 0.9300 | C14—H14B | 0.9600 |
C6—C1 | 1.390 (9) | C14—H14C | 0.9600 |
C6—C5 | 1.381 (9) | ||
C13—O1—H1 | 104 (5) | C9—C8—C13 | 118.3 (7) |
C10—O2—C14 | 117.7 (6) | C9—C8—C7 | 120.2 (7) |
C7—N1—C1 | 120.6 (7) | C13—C8—C7 | 121.5 (7) |
C2—C1—C6 | 117.7 (7) | C10—C9—C8 | 121.8 (7) |
C2—C1—N1 | 126.2 (7) | C10—C9—H9 | 119.1 |
C6—C1—N1 | 116.1 (7) | C8—C9—H9 | 119.1 |
C3—C2—C1 | 121.3 (8) | C9—C10—C11 | 120.1 (8) |
C3—C2—H2 | 119.3 | C9—C10—O2 | 115.9 (7) |
C1—C2—H2 | 119.3 | C11—C10—O2 | 124.0 (7) |
C2—C3—C4 | 120.8 (9) | C10—C11—C12 | 119.2 (7) |
C2—C3—H3 | 119.6 | C10—C11—H11 | 120.4 |
C4—C3—H3 | 119.6 | C12—C11—H11 | 120.4 |
C3—C4—C5 | 119.4 (9) | C13—C12—C11 | 121.0 (8) |
C3—C4—H4 | 120.3 | C13—C12—H12 | 119.5 |
C5—C4—H4 | 120.3 | C11—C12—H12 | 119.5 |
C4—C5—C6 | 119.7 (8) | O1—C13—C12 | 117.9 (8) |
C4—C5—H5 | 120.2 | O1—C13—C8 | 122.5 (7) |
C6—C5—H5 | 120.2 | C12—C13—C8 | 119.6 (8) |
C5—C6—C1 | 121.2 (8) | O2—C14—H14A | 109.5 |
C5—C6—H6 | 119.4 | O2—C14—H14B | 109.5 |
C1—C6—H6 | 119.4 | H14A—C14—H14B | 109.5 |
N1—C7—C8 | 121.9 (8) | O2—C14—H14C | 109.5 |
N1—C7—H7 | 125 (3) | H14A—C14—H14C | 109.5 |
C8—C7—H7 | 113 (3) | H14B—C14—H14C | 109.5 |
C7—N1—C1—C2 | −1.5 (10) | N1—C7—C8—C13 | 2.1 (10) |
C7—N1—C1—C6 | 178.3 (7) | C9—C8—C13—O1 | −179.3 (7) |
C1—N1—C7—C8 | 178.8 (6) | C7—C8—C13—O1 | 1.1 (11) |
C14—O2—C10—C9 | 172.5 (6) | C9—C8—C13—C12 | 0.4 (10) |
C14—O2—C10—C11 | −7.3 (10) | C7—C8—C13—C12 | −179.2 (7) |
N1—C1—C2—C3 | 178.0 (7) | C10—C9—C8—C13 | −0.6 (10) |
C6—C1—C2—C3 | −1.8 (11) | C10—C9—C8—C7 | 179.0 (6) |
C1—C2—C3—C4 | 1.9 (12) | C8—C9—C10—C11 | 0.1 (11) |
C5—C4—C3—C2 | −1.0 (12) | C8—C9—C10—O2 | −179.7 (6) |
C3—C4—C5—C6 | 0.1 (12) | C12—C11—C10—C9 | 0.6 (11) |
C5—C6—C1—C2 | 0.8 (10) | C12—C11—C10—O2 | −179.6 (7) |
C5—C6—C1—N1 | −179.0 (6) | C10—C11—C12—C13 | −0.8 (11) |
C1—C6—C5—C4 | 0.0 (11) | C11—C12—C13—O1 | −179.9 (7) |
N1—C7—C8—C9 | −177.5 (7) | C11—C12—C13—C8 | 0.4 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.86 (5) | 1.82 (5) | 2.604 (7) | 152 (5) |
C7—H7···O1i | 1.03 (5) | 2.55 (6) | 3.493 (10) | 151 (4) |
C14—H14A···O2ii | 0.96 | 2.57 | 3.500 (6) | 164 |
C14—H14B···Cg2iii | 0.96 | 3.27 | 4.142 (8) | 152 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+2, y−1/2, −z+3/2; (iii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C14H13NO2 |
Mr | 227.26 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 294 |
a, b, c (Å) | 20.935 (2), 4.7151 (10), 12.276 (3) |
β (°) | 106.623 (14) |
V (Å3) | 1161.1 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.40 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius TurboCAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.971, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1653, 1560, 521 |
Rint | 0.048 |
θmax (°) | 23.1 |
(sin θ/λ)max (Å−1) | 0.552 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.064, 0.207, 0.92 |
No. of reflections | 1560 |
No. of parameters | 163 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.20, −0.20 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX publication routines (Farrugia, 1999) and PLATON.
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.86 (5) | 1.82 (5) | 2.604 (7) | 152 (5) |
C7—H7···O1i | 1.03 (5) | 2.55 (6) | 3.493 (10) | 151 (4) |
C14—H14A···O2ii | 0.96 | 2.57 | 3.500 (6) | 164 |
C14—H14B···Cg2iii | 0.96 | 3.27 | 4.142 (8) | 152 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+2, y−1/2, −z+3/2; (iii) x, y+1, z. |
Acknowledgements
The authors acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Amirnasr, M., Mahmoudkhani, A. H., Gorji, A., Dehghanpour, S. & Bijanzadeh, H. R. (2002). Polyhedron, 21, 2733–2742. Web of Science CSD CrossRef CAS Google Scholar
Bella, S. D., Fragala, I., Leonardi, N. & Sortino, S. (2004). Inorg. Chim. Acta, 357, 3865–3870. Web of Science CSD CrossRef Google Scholar
Chandra, S. & Kumar, U. (2005). Spectrochim. Acta Part A, 61, 219–224. CrossRef Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Garg, B. S. & Kumar, D. N. (2003). Spectrochim. Acta Part A, 59, 229–334. CrossRef CAS Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mokles, M. & Elzaher, A. (2001). J. Chin. Chem. Soc. 48, 153–158. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Ray, M. S., Bhattacharya, R., Chaudhuri, S., Righi, L., Bocelli, G., Mukhopadhyay, G. & Ghosh, A. (2003). Polyhedron, 22, 617–624. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Uçan, S. Y. & Mercimek, B. (2005). Synth. React. Inorg. Met.-Org. Nanometal Chem. 35, 197–201. Google Scholar
Uçan, S. Y., Uçan, M. & Mercimek, B. (2005). Synth. React. Inorg. Met.-Org. Nanometal Chem. 35, 417–421. Google Scholar
Yang, Z. Y., Yang, R. D., Li, F. S. & Yu, K. B. (2000). Polyhedron, 19, 2599–2604. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Few classes of coordination compounds have been the subject of as much attention as Schiff base complexes formed by the condensation of amines with carbonyl derivatives (Hökelek et al., 2004; Uçan & Mercimek, 2005; Uçan et al., 2005). Schiff bases of diamines and their complexes have a variety of applications including biological, clinical and analytical (Garg & Kumar, 2003; Mokles & Elzaher, 2001; Amirnasr et al., 2002). A great number of Schiff base complexes with metals have provoked wide interest because they possess a diverse spectrum of biological and pharmaceutical activities, such as antitumor and antioxidative activities, as well as the inhibition of lipid peroxidation (Bella et al., 2004; Chandra & Kumar, 2005; Ray et al., 2003; Yang et al., 2000). We report here the crystal structure of the title compound.
In the molecule of the title compound, (Fig. 1) the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. Rings A (C1—C6) and B (C8—C13) are, of course, planar, and they are oriented at a dihedral angle of 0.78 (20)°; with the exception of two methyl H atoms the molecule is essentially planar. It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. Therefore, one can expect thermochromic properties in the title compound as a result of the planarity of the molecule. The intramolecular O—H···N hydrogen bond (Table 1) results in the formation of a non-planar, six-membered ring C (N1/O1/C7/C8/C13/H1); this adopts a flattened-boat conformation having a total puckering amplitude, QT, of 0.381 (3) Å (Cremer & Pople, 1975).
In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules to form a network structure (Fig. 2), in which they are arranged parallel to each other (Fig. 3). A C—H···π contact (Table 1) between the methyl group and B ring is observed. A π—π contact between the A and B rings Cg1···Cg2i [symmetry code: (i) x, y - 1, z, where Cg1 and Cg2 are the centroids of the rings A and B, respectively, further stabilizes the structure, with a centroid-centroid distance of 4.681 (5) Å.